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An analysis of the Lagrangian motion for small particles denser than surrounding fluid in a 
two-dimensional steady cellular flow is presented. The Stokes drag, fluid acceleration, 
and added mass effect are included in the particle equation of motion. Although the fluid 
motion is regular, the particle motion can be either chaotic or regular depending on 
the Stokes number and density ratio. The implications of chaotic motion to particle mixing 
and dispersion are discussed. Chaotic orbits lead to the dispersion of particle clouds 
which has many of the features of turbulent dispersion. The mixing process of particles is 
greatly enhanced since the chaotic advection has the property of ergodicity. However, 
a high dispersion rate was found to be correlated with low fractal dimension and low mixing 
efficiency. A similar correlation between dispersion and mixing was found for particles 
convected by a plane shear mixing layer. 

1. INTRODUCTION 

Chaotic dynamics is now recognized as a common 
foundation of understanding nonlinear systems. In a spec- 
ified Eulerian flow field, the response of Lagrangian fluid 
elements which simply move with the local fluid velocity is 
described by a set of nonlinear ordinary differential equa- 
tions, i.e., a dynamical system. Therefore, the methods of 
chaotic dynamics can be applied to study the Lagrangian 
fluid motion. Even for simple laminar flows, the resulting 
dynamical system is nonintegrable and often displays cha- 
otic behavior. This has led to the study of chaotic advection 
or Lagrangian turbulence. lp2 This finding has important 
implications for fluid mixing and dispersion. A systematic 
account of lluid mixing by chaotic advection can be found 
in the book by Ottino.3 

can be characterized by a positive largest Lyapunov expo- 
nent. They also showed that a dispersion coefficient can be 
used to quantify the Lagrangian motion of particle clouds 
for some parameter ranges. Using numerical simulations 
they found a similarity between the particle motion and the 
motion of fluid elements in the presence of molecular dif- 
fusion. In other words, strong particle inertia may induce 
chaotic motion and dispersionlike phenomenon in simple 
regular flows. This finding seems to add an additional do- 
main to our usual belief that the dispersion processes are 
only found in complex Eulerian flows, i.e., turbulent fluid 
flows. For the same cellular flow, Mallier and Maxey6 
found that the settling motion of a nonspherical particle 
with large aspect ratio is chaotic even in the absence of 
particle inertia. 

The idea of chaos has recently been extended to the A three-dimensional version of this cellular Aow is the 
study of the motion of foreign passive particles in moving Arnold-Beltrami-Childress (ABC) flow. The motion of 
fluids, e.g., dense particles or droplets in air. These parti- fluid elements in ABC tlow is known to be chaotic in the 
cles follow different trajectories than fluid elements because neighborhood of the heteroclinic lines connecting the un- 
of the additional effects of inertia and external forces. Con- stable fixed p0ints.z McLaughlin’ investigated the motion 
sequently the dynamical system has higher dimensionality of passive particles in this flow in the limit of very small 
and allows for richer, and possibly chaotic behavior. The particle inertia and showed qualitatively that chaotic par- 
dynamical system that describes the motion of nonzero ticle trajectories existed but the degree of chaos tended to 
inertia particles in an incompressible flow is dissipative and be reduced by the particle inertia and virtual mass. Wang 
as such stable regular attractors or strange attractors may et aL8 extended the work by using a wider range of the 
exist. As noted in a review paper by Maxey,4 it appears to particle parameters and quantified the Lagrangian motion 
be a common feature that weak or moderate inertial effects using fractal dimension. They found that both small and 
over a long period of time lead to very organized regular or large particle inertia, compared to flow characteristic time 
periodic particle trajectories. Chaotic orbits that we will be scale, eliminated chaos, but for intermediate particle iner- 
mainly interested in are usually associated with strong par- tia the Lagrangian motion was chaotic and the irregularity 
ticle inertia. In a closely related work, C&anti et aL5 quan- was stronger than for fluid elements. Particle ‘settling was 
titatively studied the Lagrangian motion of particles in a shown to reduce chaos and eventually produce periodic or 
steady two-dimensional cellular flow where the motion of quasiperiodic motion at large settling velocities. Wang et 
fluid elements is completely integrable and regular. For al. also attempted to compute the effective particle diffu- 
particles slightly heavier than the fluid but with strong sivity based on a single particle trajectory ignoring the dif- 
inertia they found that the particle motion is chaotic and ference in spatial directions. Given the way diffusivity was 
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computed and the spatial complexity of the ABC flow, no 
relation between diffusivity and fractal dimension was 
found. 

Some preliminary effort has been made to study La- 
grangian motion of particles in fully turbulent flows and 
shear mixing layers using dynamical systems tools. Wang 
et a1.9 used a finite number of random Fourier modes to 
represent unsteady, three-dimensional turbulent flow and 
computed the fractal dimension for the attractor of heavy 
particles. They found that the fractal dimension increased 
linearly with increasing particle diffusivity for a wide range 
of particle inertia and settling velocities. This suggests that 
the notion of chaos may be useful for studying particle 
dispersion and mixing in real turbulence. GaiZin-Calvo and 
Lasheras” used a steady Stuart vortex solution of the Eul- 
erian equations to represent a plane, free-shear layer and 
showed that heavy particles can be suspended in the layer 
and have periodic, quasiperiodic, or chaotic orbits. When 
the motion is chaotic, the attractor in physical space has a 
finite height, indicating some degree of transverse disper- 
sion. 

Most of the above studies are still of a preliminary 
nature. They raise many issues that need further, detailed 
investigation. Questions that come to mind include the fol- 
lowing: Why does the appearance of chaos give rise to 
dispersion’? Does the occurrence of chaos guarantee disper- 
sion? What measure based on chaotic dynamics is corre- 
lated to the dispersion coefficient? In this paper we address 
these issues by examining the Lagrangian motion of small, 
heavy particles in the steady two-dimensional cellular flow. 
Chaotic orbits are shown to exist and the resulting disper- 
sion of particle clouds are found to have many of the fea- 
tures of turbulent dispersion. Correlations between the 
fractal dimension, the effective dispersion rate, and the ef- 
fective mixing efficiency are explored. Finally particle dis- 
persion and mixing in an evolving free-shear layer is briefly 
discussed in a similar context. 

II. AEROSOL PARTICLES IN A CELLULAR FLOW 

In this section we examine the Lagrangian motion of 
aerosol particles in a cellular flow. Such a flow arises in 
thermal convection with free-slip boundaries and has also 
been used to represent the transport effects of small-scale 
turbulent eddies on a passive scalar field.” Although the 
same flow was considered by C&anti et a1.,5 the equation 
of motion for particles adopted here is more general than in 
their work and a different particle parameter range is con- 
sidered. Maxey and his co-workers, in a series of 
papers,W2,13 have studied the motion of small spherical 
and nonspherical particles in the same flow. Their main 
focus was on particle suspension and possible change in the 
particle mean settling rate. Our focus is on the chaotic 
motion of small spherical particles and the relationship 
between chaos, dispersion, and mixing. 

A. Dynamical system 

The steady, two-dimensional, and incompressible cel- 
lular flow is given in terms of streamfunction $ in fixed 
coordinates by 

b.0000 3.i416 6.: 

x1 

FIG. 1. Streamlines in the cellular flow field. The increment in the values 
of streamfunction is 0.1. 

4= sin x1 sin x2. (1) 
All the variables are assumed to be normalized by a char- 
acteristic length scale L and a velocity scale Ua of the 
flow.12 Typical streamlines are shown in Fig. 1. The flow 
extends with periodic repetition in both the x1 and x2 di- 
rections. The maximum flow velocity occurs on the cell 
boundaries, and there are stagnation points at the center of 
each cell and at the corners. The orbits for fluid elements 
are streamlines, thus the fluid motion for almost all initial 
conditions is periodic and regular with a period changing 
from 2~ near the center to infinity near cell boundaries. 
Equation ( 1) is a solution to the inviscid Euler equation 
for steady flow. The pressure is minimum at the center of 
the cell and maximum at the corners. The pressure gradi- 
ent provides the force for the rotational motion of the fluid. 

We restrict our study to small spherical particles in the 
aerosol range as defined by Maxey,12 that is, the ratio of the 
particle density to the fluid density is larger than 2, 
pdpf> 2. The particle equation of motion in a steady flow 
is given in a nondimensional form by12 

dv u[Y(t),tl --v 
dt St +Ru*Vu+; RveVu. (2) 

In these equations, v(t) and y(t) are particle velocity and 
location; u(x,t) is Eulerian flow velocity field, and, for the 
cellular flow, it is independent oft. The terms on the right- 
hand side of Eq. (2) represent Stokes drag, the pressure 
gradient force on the particle (more generally, the fluid 
force on an equivalent element from the undisturbed flow 
field), and the added mass effect. The effect of gravitational 
settling is not considered in the present paper. (One may 
assume that gravity is aligned in the direction normal to 
the two-dimensional plane and thus does not affect the 
motion in the plane.) Equation (2) is a simplified version 
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of the more general equation of motion.12 A Stokes drag is 
assumed here. Previous experience indicates that Stokes 
drag gives qualitatively similar results as some nonlinear 
empirical drag law.14,15 While Eq. (2) may not capture all 
the relevant physical processes the results of this study 
should still be representative of those arising in more com- 
plicated systems. Two governing parameters appearing in 
Eq. (2) are defined as 

T,UO Sty7 R+- 

pp+pf ’ 

which measure the relative importance of particle inertia 
and fluid acceleration; r, is the particle inertia response 
time and given by 

r,= (mp+imf)/3r d,u. (4) 

Substituting Eq. (1) into Eq. (2) we obtain the dy- 
namical system for the motion of an aerosol particle in the 
cellular flow: 

dvl siny, cosy2--vl 
-= 
dt St + R sin y1 cos yl 

+iR(q cosyl cosy2-u2 siny, siny,), (54 

dv2 -cos y1 sin y2--v2 
-ZZZ 
dt St +R siny2cosy2 

+fR(uisinyi siny2-u2~~sy1~0sy2), (5b) 

This is a four-dimensional nonlinear system in the phase 
space (vi, us, yi, y2). Since the flow is steady the system is 
autonomous. The volume expansion rate in phase space is 
given by 

di, ai2 a+1 aJ& 2 
au+‘;iT+ay,+ay,=-st 1 2 

(6) 

and is a negative constant. Therefore the system is dissipa- 
tive and chaotic attractors (of zero volume) may exist. In 
fact, observing the similarity of power spectrum between 
the velocity space (vi, v,) and the physical space (yi, y2) as 
implied by Eqs. (5~) and (5d), we may assert that the 
particle clouds in physical space will also takesa fractal set 
at long time. We notice, however, ul( t) and v2( t) are sta- 
tionary in time under most conditions but yl(t) and y2(t) 
are not. The value of y, (t) and y2( t) may increase without 
an upper bound. The fixed points for the system and their 
stabilities have been discussed in detail by Maxey.12 In 
short, fixed points exist on the cell boundaries or at the 
center of each cell but all of them are unstable. 

To specify the motion of a particle, we need initial 
conditions for the system. The particle initial velocity was 
set to be zero. Although we cannot exclude the possibility 
that other initial conditions may give rise to a different 

long-time solution for a given set of parameters (St, R), 
test computations did show that the long-time particle mo- 
tion was not sensitive to the choice of initial particle veloc- 
ity or location. This will be discussed later in the next 
section. The system [(5a)-( 5d)] is not directly integrable 
and therefore was solved numerically by a fourth-order 
Adams method and a fourth-order Runge-Kutta 
method.16 A time step of 0.01 was used. Numerical tests 
showed that average quantities such as Lyapunov expo- 
nents were independent of time step for time steps smaller 
than 0.01. A more stringent test was to numerically inte- 
grate the trajectory of a fluid element; it was found that a 
closed orbit (streamline) was recovered after a long time of 
integration without any noticeable error. For example, a 
fluid orbit originating from (1.6, 0.3) was solved for one 
million time steps with step size 0.01. The period was 
found to be about 10.6 time units, therefore, the total in- 
tegration time ( 10 000) represents about 1000 cycles. Fig- 
ure 2(a) shows the positions of the fluid element for the 
first 100 time units, ire., t=0,1,2 ,..., 99; and Fig. 2(b) shows 
the positions of the fluid element for the last 100 time units 
starting from t=9901. The positions of the fluid elements 
at all IO 000 time units are plotted in Fig. 2(c). A single 
closed orbit for such a long time indicates the integration 
scheme was very accurate, i.e., there was no numerically 
induced inertia. One should not assume, however, that this 
implies an exact trajectory can be obtained in any case. In 
fact, if the motion of a particle is chaotic, a computer 
solution seldom gives the exact trajectory because of the 
exponential amplification of uncertainty by the system it- 
self. In such a case, the integration scheme is viewed to be 
accurate if further refmement does not alter the overall 
average features of the trajectory. 

It is useful to point out the overall, relative role of the 
various terms in Eq. (2) on the motion of an aerosol par- 
ticle in the cellular flow. In the numerical simulations the 
added mass term was found to be much smaller than the 
other two terms. Therefore, the main forces on the particle 
are the drag force and the pressure gradient force. Roughly 
speaking, the particle inertia represented by the drag force 
produces a centrifugal effect which causes the particle to 
move away from the cell center where the vorticity is the 
strongest. The pressure gradient force has an opposite ef- 
fect on the motion of the particle, i.e., pushing the particle 
back to the center of the cell. The two competing effects are 
controlled by the product, St-R, e.g., if St-R > 1, the pres- 
sure gradient force dominates over the drag force. For this 
reason, the value of St-R should play an important role in 
our system. 

6. Periodic and chaotic orbits 

For various combinations of St and R, the particle 
orbits were found to be either chaotic or periodic. The 
boundary curve between chaotic and periodic motion in 
the parameter space (St, R) is shown in Fig. 3. This curve 
was obtained by numerical iterations and represents the 
location separating the region of positive largest Lyapunov 
exponent (ai >O) from that of zero cr,. The Lyapunov 
exponents were defined in the usual way and calculated 
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FIG. 2. A typical fluid trajectory and test of integration scheme. (a) 
Fluid position at the first 100 time units; (b) fluid positions at the last 100 
time units (from 9901 to 10 000); (c) fluid positions at all 10 000 time 
units. 

following the procedures of Wolf et aZ.17 The largest Ly- 
apunov exponent was computed based on a particle trajec- 
tory in the time interval between 2000 and 4000, and was 
considered to be positive if its value was larger than 0.005. 
The initial particle location was ( 1.6,1.6). Seven represen- 
tative points on the boundary were actually iterated to 
form the smooth curve, although the exact boundary may 
not be smooth. The boundary curve can be approximated 
by St * R z 1. The fact that the chaos region is above the 
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FIG. 3. The regions for chaotic and periodic particle motion in the pa- 
rameter space. Particle motion is chaotic in the shaded region and peri- 
odic in the remaining region. The two points indicate the two represen- 
tative cases. I: (St=S,R=0.3); II: (St=5,R=O.l). 

curve (i.e., St*R>l) indicates that the pressure gradient 
force is significant compared to the drag force in such a 
region. In the limit for heavy particles, where the particle 
density is much larger than the fluid density (p/pf= 00 ), 
i.e., R =O.O, the particle motion is always periodic. 

To test the effect of initial location on the long-time 
behavior of the particle orbit, we compute the probability 
density function (pdf) of the short-time, average exponen- 
tial growth rate of infinitesimal variations along particle 
trajectories following Varosi et al.‘* In the long term this 
average will converge to give the largest Lyapunov expo- 
nent. Figure 4 shows the pdf function at three different 
times for the case of St=5.0 and R=0.3. The pdf was 
found using 40 000 points starting from a uniform grid in 
the square 0 < (x1,x2) CT. Of significance is the fact that 
the pdf is not bimodal, as would be the case if there was a 
dependence on initial position. As time increases, the pdf is 
sharpened with the peak location approaching the value of 
the largest Lyapunov exponent from below. At t-100, 

d 
-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 

.hverage growth rate 

FIG. 4. The pdf function of a short-time Lyapunov exponent for a given 
set of system parameters. 
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FIG. 5. (a) A typica trajectory of a particle in the chaos region with 
St=5 and R=0.3. Initial particle location is (1.6,1.6). Dashed lines mark 
the cell boundaries. (b) The power spectra for the particle velocities in 
the x, and x2 directions for the same condition. 

almost all the points have a positive average exponential 
growth rate. We expect that all the points will have a sim- 
ilar, single asymptotic growth rate when t-t CO, indicating 
that the long-term behavior is unique and independent of 
the initial location. Further evidence is presented later 
when the ergodicity of the system is discussed. 

and u2 spectrum as expected. The broadband frequency 
contribution indicates the motion is chaotic. The power 
spectrum was obtained by taking a long time series of par- 
ticle velocity (with 2048X50 data points) at a sampling 
rate of 2.5 samples per time unit. The VFFTPK library on 
Cray-YMP at the Pittsburgh Supercomputing Center 
(PSC) was used to derive the Fourier coefficients. 

A typical trajectory for the chaotic motion is shown in Figure 6 shows a typical particle trajectory when the 
Fig. 5. The parameters used in this calculation are shown motion is periodic. It will be referred to as case II and the 
in Fig. 3 as point I. This set of parameters will be referred parameters are shown as point II in the parameter space of 
to as case I in later discussions. The initial particle location Fig. 3. In this case the particle travels along a 45” zigzag 
( 1.6,1.6) is near the center of the cell. The particle moves curve. The power spectrum has a strong peak at the fun- 
along an outward spiral curve for some initial time due to damental frequency and its harmonics. The period is about 
inertial (centrifugal) force. The long-time motion is very 8.64 time units. In contrast with the periodic motion of 
irregular. The centrifugal effect does not allow the particle fluid elements where the orbit is closed streamlines, the 
to stay in any cell for long. Actually the particle seldom periodic motion of the aerosol particles follows an open 
visits the center of the cell where the vorticity is strong. At trajectory. In other words, the particle inertia destroys 
times the particle cuts through the cell boundary and en- closed periodic orbits and in turn can generate open peri- 
ters a new cell. This process repeats nonperiodically. Also odic orbits. It is noted that by open periodic orbits we do 
shown are the power spectra of the particle’s velocity at not distinguish (y, +2m7~, y,+2nr) from (y,, y2), where 
long time. There is no difference between the u1 spectrum m and n are arbitrary integers. 

(a) 
by------- x1 

5-5 
2 4 6 

lb) f 
FIG. 6. (a) A typical periodic trajectory of a particle with St=5 and 
R=O.l. Initial particle location is (1.6,1.6). (b) The power spectra for 
the particle velocities in the x1 and x2 directions for the same condition. 
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C. Dispersion and anomalous dispersion 

The dispersion characteristics of particle clouds are 
often of interest in engineering applications. An under- 
standing of the dispersion mechanism can lead to better 
methods of controlling and predicting the dispersion rate. 
First we shall clarify what we mean by dispersion. A true 
dispersion process is what one observes when particles are 
released into a fully developed turbulent flow. This process 
is usually described by stochastic dynamics like that used 
in the classical paper by Taylor.lg Turbulent dispersion has 
the following characteristics: (1) In a turbulent flow the 
Lagrangian velocity is correlated with itself only for a lim- 
ited time, the integral time TL. This loss of history leads to 
very irregular particle trajectories. (2) The mean-square 
displacement of the particles grows linearly with increasing 
time for t) Tk (3) The probability distribution of displace- 
ment is asymptotically normal (for example, see Batchelor 
and Townsend2’). The linear growth of the mean-square 
displacement allows one to define a long-time dispersion 
coefficient as, 

where R(T) is the Lagrangian velocity correlation, 

R(~)=Mt)4t+d). (8) 

Angle brackets represent ensemble average over particle 
trajectories. We will show that all these characteristics can 
be observed for aerosol particles in the cellular flow if the 
motion is chaotic. 

To visualize how a cloud of aerosol particles evolves, 
we place 10 000 particles uniformly in the region 
O<X~<~Z-, O<x2<27r (four cells) at t=O with an initial 
velocity of zero. Figure 7 shows the locations of these par- 
ticles at t=O, 120, and 240 for case I. The particles appear 
to disperse in all directions and the region containing the 
particles expands with time. The initial square cloud shape 
is gradually lost as time increases. The probability distri- 
bution of the displacement in the x1 direction, 
y,(t) -yl (t=O), is computed for the particle cloud and 
shown in Fig. 8 for t= 120 and 240. It clearly approaches 
a normal distribution at long time except for an abnormal 
peak at the center. The peak represents the effect of fixed 
points in the system. Particles located exactly at these 
points remain there. The main source of the peak is from 
the particles located at the cell boundaries (about 400 out 
of 10 000 particles) at t=O.O. These particles will stay on 
the boundaries and eventually be trapped by a fixed point 
since cell boundaries are stable manifolds. For example, on 
the boundary of O<x1<2r and x,=0.0 there are two such 
fixed points, 

x1=7rfcos-1[ l/(St.R)], x2=0. (9) 

In addition, particles placed very close to these points take 
a long time to escape. The contribution of the peak to the 
overall distribution is small (about 6% at t= 120 and 5% 
at t=240) and is negligible. The peak can also be elimi- 
nated by offsetting the particle initial locations slightly. 
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FIG. 7. Position plots at t=240 of 10 000 particles that were uniformly 
distributed in the fundamental box at f=O for case I. 

Since the cellular flow field is symmetric the coordinates x1 
and x2 are interchangeable and the probability distribution 
is the same in the x2 direction. 

To measure the growth of the particle cloud, we fur- 
ther computed the mean-square displacement (MSD) as a 
function of time (Fig. 9). Except for some initial transition 
time, MSD is isotropic and a linear function of time. The 
slope can be accurately determined from the curve. Based 
on Eq. (7), the effective diffusivity is computed to be 3.15. 

The shape of the velocity correlation can be used to 
help understand the dispersion dynamics. The velocity cor- 
relation was computed from a single particle trajectory 
starting from (1.6,1.6). After the initial transition, a long 
particle velocity record was taken at a sample rate of 2.5 
samples per unit. A total of 2048X50 data points were 
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FIG. 8. The probability distribution of particle displacement in the x1 
direction for Fig. 7. The curves are a normal distribution of same standard 
deviations. 

used. The average was taken over time instead of over 
trajectories since it was assumed, a priori, that the La- 
grangian motion is statistically stationary and ergodic. Fig- 
ure 10 gives the results for both u1 and v2 velocity compo- 
nents. The velocity correlation decays quickly with time 

0 60 120 160 240 

FIG. 9. Mean-square displacement (MSD) for case I as a function of 
time. MSD was computed based on 10 000 particles that were uniformly 
distributed in the fundamental box at t=O. 

FIG. 10. The Lagrangian velocity correlations for case I. 

delay and is approximately zero for long time. This is very 
similar to Lagrangian velocity correlation in a turbulent 
flow. The correlation value at zero time delay is 0.1947, 
which corresponds to a particle root-mean-square (rms) 
fluctuating velocity of 0.4412. From the correlation curves, 
the integral correlation time can be estimated to be 16.04 
time units. The area under the correlation curve is the 
effective diffusivity [see Eq. (7)], that is, e=O. 1947X 16.04 
=3.12. This value is very close to the value calculated 
from the MSD. This finding allows us to assume that Tay- 
lor’s theory of turbulent diffusion is applicable to the La- 
grangian motion of aerosol particles in our simple cellular 
flow. In addition, it confirms, a posteriori, that the chaotic 
motion is ergodic. Further support and discussions for the 
ergodicity will be given in Sec. II E. The consistency in the 
diffusivity result also confirms our belief that the initial 
conditions do not affect the long-time average quantities, 
since the velocity correlation based on a single trajectory 
gives us the same information as the MSD based on 10 000 
particle trajectories. The loss of correlation in the particle 
velocity due to Lagrangian chaos is the reason for the lin- 
ear growth of MSD at long time. 

To be complete, we will briefly discuss the particle 
cloud evolution for case II. Again 10 000 particles are 
placed uniformly in a small region as we did for case I. The 
particle locations at t = 120 and 240 are shown in Fig. 11. 
In this case, the initial cloud splits into four patches and 
each of the patches moves with a constant velocity along 
45” lines in the four quadrants (on a scale much larger than 
the cell size). The MSD is linearly related to I? rather than 
t since 

Yj(t> -Yi(O) * trlTlt, (10) 

where T is the period for a particle to travel through a cell 
of size Z-. This is verified in Fig. 12 where MSD is plotted 
as a function of ?. The slope of the straight line is 0.132 
which is exactly equal to d/p as expected. This 3 anom- 
alous dispersion was also observed by Crisanti et al.,’ how- 
ever, the reason for this behavior is made clearer here. 

In summary, our model problem indicates that even 
for a very simple flow a dispersion process with essentially 
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FIG. 11. Position plots at t=240 of 10 000 particles were uniformly 
distributed in the fundamental box at t=O for case II. 

the same features as turbulent dispersion exists when cha- 
otic Lagrangian motion occurs. 

D. Correlation between chaos and dispersion 

The system discussed above is fully deterministic and 
the appearance of Lagrangian chaos is a necessary condi- 
tion for dispersion. A natural question that arises here is 
how the degree of chaos and rate of dispersion are corre- 
lated. In terms of dynamical systems, the long-time solu- 
tion of a dissipative nonlinear system is an attractor and 
the dimension of the attractor is perhaps its most basic 
property. If the solution is chaotic, the attractor is often 
called a strange attractor and it has a noninteger dimen- 
sionality. Our focus here is to examine how the degree of 
chaos affects the effective dispersion rate and what measure 
of an attractor best correlates with the diffusivity. Farmer 
et a1.21 reviewed a number of different definitions of attrac- 
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PIG. 12. Mean-square displacement (MSD) for case II as a function of 
2. MSD was computed based on 10 000 particles which were uniformly 
distributed in the fundamental box at t=O. 

tor dimension. Of the definitions they discussed, the Ly- 
apunov dimension, which is defined in terms of Lyapunov 
exponents, is usually much easier to calculate than any 
other. Lyapunov exponents characterize the mean expo- 
nential rate of divergence of neighboring trajectories from 
a given reference trajectory in phase space. A positive max- 
imum Lyapunov exponent indicates that the individual so- 
lution (but not average feature or measure) of the system 
is very sensitive to its initial conditions. Therefore, we ex- 
plored the quantitative correlation of diffusivity with Ly- 
apunov dimension and tried to provide a physical basis for 
such a correlation. 

For our autonomous four-dimensional system given by 
(5a)-( 5d), there exist four Lyapunov exponents. They can 
all be computed by the standard procedure as given by 
Wolf et a1.i7 We used the same method in our earlier 
paper&’ and we assumed the values of Lyapunov expo- 
nents for our system were independent of the initial parti- 
cle location due to the property of ergodicity (except for 
isolated fixed points). The Kaplan-Yorke conjecture22 was 

(D 
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FIG. 13. Fractal dimension and effective diffusivity as a function of St for 
R=0.2. 
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FIG. 14. Particle mean-square fluctuating velocity and integral correla- 
tion time as a function of St for R=0.2. 

then used to derive a fractal dimension based on the Ly- 
apunov exponents. 

We restrict our discussion to a fixed density ratio, R 
=0.2, and vary St over the region of chaos of the param- 
eter space (Fig. 3). Both fractal dimension and diffusivity 
are plotted as a function of St in Fig. 13. For the parameter 
range shown in Fig. 13, we note that only the largest Ly- 
apunov exponent is positive, the next one is zero, and the 
other two are negative. As St increases, the drag force 
becomes less and less important as compared to the pres- 
sure gradient force. The pressure gradient force causes a 
particle to become temporarily trapped in a cell, thus for 
larger St a particle tends to stay longer in a cell before 
entering a new cell. This means that a particle orbit may 
visit more space in each cell (cf. next section). In addition, 
the cell size represents the smallest scale of the particle 
orbit and the fractal dimension is a measure of fine-scale 
structure of the orbit. Therefore, the attractor is likely to 
take on a larger dimension as St increases. On the other 
hand, the dispersion rate is reduced for two reasons. First 
the rms fluctuating velocity decreases as St increases and, 
second, frequent trapping of the particle by cells also re- 
sults in a loss of large-scale particle velocity correlation. In 
fact, the second reason dominates the reduction of disper- 
sion rate, as is shown by Fig. 14. The mean-square particle 
fluctuating velocity seems to decrease with increasing St. 
But near St=6.0, it actually increases slightly with St. The 
velocity correlation time drops very quickly for relatively 
small St but then appears to change slowly for relatively 
large St. Since the nature of the particle motion is mainly 
determined by the product St*R, increasing R for a fixed St 
should give similar results as increasing St for a fixed R. 

The diffusivity is plotted as a function of fractal dimen- 
sion in Fig. 15, and a definite correlation is observed. The 
diffusivity decreases monotonically with increasing fractal 
dimension. Figure 16 shows diffusivity as a function of the 
positive Lyapunov exponent. The correlation is less clear 
than that between diffusivity and fractal dimension. 
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FIG. 15. Diffusivity as a function of fractal dimension for R=0.2 and 
varying St. 

E. Nonuniform distribution and mixing in physical 
space 

The dispersion discussed above represents the particle 
motion on a large scale compared to the cell size. In this 
subsection we examine particle distribution on a scale com- 
parable to the cell size, small-scale mixing. 

Suppose that a large number of particles are uniformly 
distributed in the space (not just a single cell) at t=O. We 
are interested in the asymptotic distribution of the particles 
after a long time. Because of the spatial periodicity of the 
Eulerian flow field, the procedure that can be used to find 
this distribution is13 (1) uniformly place a large number 
(say 10 000) of particles in the fundamental box contain- 
ing four cells, O<x,<27r and O<x2<27r; (2) solve for the 
long-time location of all particles numerically, where long 
time means much longer than the correlation time for cha- 
otic trajectories; and (3) instead of plotting the true loca- 
tions as we did in Fig. 7, truncate the position coordinates 
of particles to the fundamental box by taking the modulo 
with respect to 2~. Other reflectional symmetries in the 

CU, --T- ---- 
0.10 0.11 0.12 0.13 ( 

Lf 1 
14 

FIG. 16. Diffusivity as a function of the largest Lyapunov exponent for 
R =0.2 and varying St. 
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FIG. 17. (a) Position plots for 10 OIXI particles at time t=240 for case I. FIG. 18. (a) Position plots for 10 000 particles at time t=240 for case II. 
The particles are placed uniformly in the fundamental box at t=O. (b) The particles are placed uniformly in the fundamental box at t=O. (b) 
Position plots for a single particle at 10 000 time steps starting from Position plots for a single particle at 10 000 time steps starting from 
1=200 with step size equal to one. Initial particle location is (1.6,1.6). t=200 with step size equal to one. Initial particle location is (1.6,1.6). 

fundamental box can be used to reduce the actual number 
of initial particles considered. 

Figure 17(a) shows the position of 10 000 particles at 
t=240 for case I. The asymptotic concentration is not uni- 
form. In a small region near the center of each cell, the 
local particle concentration is about zero. The maximum 
concentration appears to occur at the saddle points or cor- 
ners of each cell. 

To help understand if the system is ergodic and to 
study the mixing property, we consider the asymptotic 
probability of a single particle visiting a given region in 
space. Figure 17(b) shows locations visited by a single 

0 3.14 6:28 

particle starting from t=200 with a uniform step size of 
one and continuing for 10 000 time steps. The initial par- 
ticle location is again (1.6,1.6). The single particle more 
frequently visited the region near the cell boundaries and 
we find that Fig. 17(b) is almost identical to Fig. 17(a). 
The equivalence of position probability for a single particle 
and the concentration distribution for a cloud of particles 
indicates ergodicity of the dynamical system (see ArefU). 
Ergodicity and exponential stretching of material lines (a 
characteristic of chaotic systems) implies efficient mixing 
of particles. We notice that for fluid elements a single ele- 
ment only visits a closed streamline, therefore, the position 
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probability of a single particle is very different from the 
concentration distribution of particle cloud. This indicates 
poor mixing of fluid elements, with no mixing among dif- 
ferent streamlines. 

The position plots for case II are given in Figs. 18 (a) 
and 18 (b). Figure 18 (a) shows the particle cloud starting 
to accumulate into isolated curves. This type of movement 
has been discussed by Maxey and Corrsin.13 At t=240, 
there is still a small portion of particles in the clouds lo- 
cated away from the accumulation curves. Figure 18 (b) 
shows the positions at 10 000 time steps of a single particle. 
All the points fall on two well-defined line segments which 
are the image of a periodic orbit in the box. The region 
taken up by the curves in Fig. 18(b) is one-eighth of the 
region taken up by the curves in Fig. 18 (a). The mixing in 
case II is poor as compared to case I for two reasons; first, 
a single particle only visits a portion of the attraction 
curves, and second, the attractor region forms isolated 
curves instead of nearly space-filling, spreading sets. 

Finally, we compared the position plots for St=&0 
and 10.0 given R =0.2. For both cases the Lagrangian mo- 
tion is chaotic and the position probability of a single par- 
ticle was found to be the same as the concentration distri- 
bution of particle cloud. Thus we only provide the position 
plots of particle clouds at t=240 in Fig. 19. Further reflec- 
tional symmetry, i.e., n-+yl-~-y, and rr+yz-+rr-y2, 
was used to reduce the region of O<y,, y2<2r to a single 
cell O<y,, y2<7r for the position plots. The concentration 
distribution for St = 10.0 is more uniform than for St = 6.0. 
Actually there is a void in the center of the plot for St = 6.0. 
[Note that a particle starting within the void region will 
eventually move away from the region, i.e., the void is a 
result of the asymptotic evolution of the system and not a 
reflection of the system dependence on the initial location.) 
While for St=10 the concentration distribution is almost 
uniform. This is very interesting because the case of St= 10 
and R =0.2 approaches the-definition of dynamical system 
(OS) mixing (Aref23). Dynamical system mixing is a de- 
sirable property since it indicates efficient mixing. It is sur- 
prising that it can be asymptotically achieved for aerosol 
particles in a regular flow field! In fact, for all the param- 
eter combinations in the region where chaos is found (see 
Fig. 3), the Lagrangian motion has the property of er- 
godicity. For our model problem in the chaos region, the 
more uniform the concentration distribution, the closer the 
system approaches DS mixing, i.e., the better the mixing 
efficiency. To further quantify the degree of nonuniformity 
in the concentration distribution, we computed the relative 
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FIG. 19. (a) Position plots for 10 000 particles at time t=240 for St=&0 
and R=0.2. The particles are placed uniformly in the fundamental box at 
t=O. Reflectional symmetry was used to replace all the particles in a 
single cell. (b) Same as (a) for St= 10.0 and R-0.2. 

and the number of particles in each grid cell, ni, was 
counted. If N is the total particle number, then 

concentration variance using 
(4X1,X2) -4w2))” 

I flim2 

c i 1 

2 
Z --1 , i2 N (12) 

(C(XlJ2) --chxz) )’ 
N= 10 000, and m =50 were used. The portion of particles 
attracted by fixed points was not counted. Figure 20 shows 

~~=~Jo<~,,~~~~(c(X,,X,)-f)idXIdx2. (11) 
the relative concentration variance as a function of St. The 
concentration tends toward a uniform distribution as St 
increases. In Sec. II D, we found that the diffusivity de- 
creases and the fractal dimension increases as the St in- 

The overbars denote the average over space. The region, creases. These results indicate that the larger the fractal 
O<xl, xZ<r, was discretized by a uniform grid of mxm, dimension the better the particles will be mixed. 
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FIG. 20. Relative concentration variance as a function of St for R=0.2. 

III. HEAVY PARTICLES IN A SHEAR MIXING LAYER 

In the discussion of Lagrangian motion of aerosol par- 
ticles in a cellular flow, it was shown that a large dispersion 
rate correlates with small fractal dimension. It is also 
shown that an increase in the fractal dimension leads to 
better mixing efficiency, i.e., toward DS mixing. Therefore, 
large dispersion corresponds to a low degree of chaos and 
relatively low mixing efficiency. We would expect to find 
similar correlations between dispersion and mixing (or de- 
gree of chaos) in more realistic flows such as a plane mix- 
ing layer that have features in common with cellular flows. 
We provide here some preliminary and qualitative results 
for the motion of heavy particles in such flow. A detailed 
study of this subject is beyond the scope of the present 
paper. 

We consider a two-dimensional, incompressible, vis- 
cous, and temporally evolving mixing layer. The flow orig- 
inates from a prescribed initial mean velocity profile and 
nonlinear instability of certain perturbations. The main ac- 
tivity of the mixing layer flow is the development of a 
localized roll of vortices and their subsequent pairing. Such 
a plane mixing layer and the cellular flow have many sim- 
ilar characteristics as well as many differences. The most 
striking similarity is the significant role played by the ro- 
tational motion of the fluid, i.e., vertical structures. The 
passive motion of particles denser than the fluid is then 
controlled by the inertial centrifugal effect. Some differ- 
ences are also noted as a reminder that only qualitative 
comparisons should be made for Lagrangian particle mo- 
tion between the two flows. The mixing layer flow is un- 
steady and not periodic in the vertical direction. In addi- 
tion the vertical dispersion for a mixing layer is measured 
on the scale of vortices, in contrast with the cellular flow 
where the dispersion is usually measured on a scale much 
larger than the cell size. The mixing property will also be 
defined differently. 

The dispersion of heavy particles in a mixing layer has 
been an active research area in recent years. For example, 
the interaction between the particles and the large-scale 
vertical structures has been addressed by Crowe er a1.24 

and studied experimentally by Lazaro and Lasheras.“’ 
Chung and Trouttz6 and Chein and Chung27 calculated the 
particle dispersion rate using discrete point vortices to sim- 
ulate the flow. The main finding of these studies was that 
particles of intermediate inertia can disperse at rates 
greater than for fluid elements. The larger dispersion is due 
to the vertical structure of the flow, which produces a 
centrifugal effect which in turn drives the particles toward 
the edge of the vertical region. However, the mixing prop- 
erty of particles has been overlooked in these earlier stud- 
ies. 

Consider a mixing layer governed by the two- 
dimensional incompressible Navier-Stokes equations (in 
dimensionless form) : 

au aw 

au au 
z+uz+w$+g=$-$+$), (13b) 

aw aw 
~+yg-+w~+~=~ =+s * 

aw ap i (azw a%) (13c) 

Here x and z are coordinates in the horizontal direction 
and the vertical direction, u and w are fluid velocity com- 
ponents, and P is static pressure. The Reynolds number, 
Re, is based on the free-stream velocity and initial vorticity 
layer thickness. The initial velocity field is 

u(X,z,t=O)Ftanh(z), w(x,z,f=O) =O. (14) 
It is well known that such an initial layer is unstable under 
small perturbation due to Kelvin-Helmholtz instability. 
The flow was solved by direct numerical simulation on a 
grid resolution of 128X 128. Full Fourier expansion was 
applied to flow velocity and vorticity in the x direction and 
sine/cosine expansion was used in the z direction. The orig- 
inal code was developed to study the structures of stratified 
shear layers and a detailed description can be found in 
Wang et aL2* The eigenfunctions of linear instability were 
used for initial perturbation. Both fundamental and sub- 
harmonic waves with wave number aI =0.4446 and 
cr,=O.2223 were used in the initial perturbation to simu- 
late vortex roll-up and pairing. The perturbation amplitude 
for both waves was 0.05. Periodic boundary conditions 
were used in the x direction. The simulation box had a size 
of 271/o, (or 28.26) in the x direction and 24.00 in the z 
direction. 

To illustrate the difference between dispersion and 
mixing of particles, we placed two lines of particles hori- 
zontally above and below the center of the layer at z= * 1. 
Each line was formed by 1000 uniformly distributed par- 
ticles. The motion of each particle was found numerically. 
Hermite interpolation2’ was used to obtain the fluid veloc- 
ity at the particle’s location and the initial velocity of the 
particle was set equal to the local fluid velocity. Two kinds 
of particles, i.e., fluid elements and heavy particles, were 
studied. Fluid elements were convected by the local fluid 
velocity. Equation (2) with R =0 was used to calculate the 
motion of the heavy particle, which means only a Stokes 
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FIG. 21. Evolution of vorticity distribution for the shear layer and material lines for fluids and heavy particles. 



drag force and particle inertia were considered. The inertia 
parameter St was set to one. In the numerical simulations, 
only one material line at z= 1.0 was computed since the 
material line at z= - 1 .O can be derived from the symmetry 
consideration, i.e., a mapping (x,z) --, (hx--x, -z) where 
h, is the box size in the x direction. 

Figure 21 shows the numerical results for Re=300. 
The vorticity distribution, fluid particle positions, and 
heavy particle positions are plotted from t=O.O to 90 for 
every ten time units. The roll-up of the fundamental wave 
occurs at t = 20 and the pairing of the fundamental vortices 
takes place immediately as a result of nonlinear growth of 
the subharmonic component. The merging of vortices gives 
rise to a larger vertical region as well as increased viscous 
diffusion. The development of the shear layer instability is 
well known and is in agreement with other studies (e.g., 
Corcos and Sherman3’). The main focus of the simulation 
is to study how the particles are dispersed and mixed. The 
fluid material lines are stretched by the straining field at 
the braids and at the center before pairing, and folded by 
the rotational motion inside the vertical regions. Most of 
the fluid particles are captured by the vertical region as the 
region grows. During this process the two material lines 
are brought very close together and mixed. The stretching 
and folding does not happen as rapidly for the heavy par- 
ticles due to inertia effects. Heavy particles do not enter the 
vertical regions due to the centrifugal effect, which leads to 
a void region in the center of the box. This void region 
grows as time increases. The material lines of heavy parti- 
cles have a relatively simple geometry which resembles the 
edge of the vertical structure. This process leads to a larger 
vertical dispersion of the heavy particles. Also, we notice 
that the two material lines of heavy particles are not mixed 
efficiently since some portions of the lines stay in distinct 
regions of the box. However, there are certain regions, for 
example, near the inner edge of the void region, where the 
mixing of heavy particles is efficient locally. 

We now proceed to make a quantitative comparison of 
the dispersion rate and mixing rate between the fluid par- 
ticles and the heavy particles. The vertical dispersion can 
be quantified by the mean-square displacement, which is 
defined in the usual way as 

MSD-; ,i [q(t) -zj(t=0)J2, 
r-l 

where N is the number of particles and zi( t) is the vertical 
position of the ith particle at time t. The term mixing is 
used here to describe the rate at which the two spatially 
separated (unmixed) particle sources introduced initially 
approach each other and become homogenized. The two 
line sources may be viewed as two point sources for a 
spatially evolving mixing layer. Similar configurations have 
been used to study the mixing of a continuous, passive 
scalar field and interaction between the sources in turbu- 
lent flow~.~t The mixing of scalars by homogeneous turbu- 
lent flows is usually quantified in terms of the intensity of 
scalar fluctuations.32’33 Small scalar fluctuations imply a 
high degree of homogenization and good mixing. The use 
of concentration fluctuations is not feasible for our prob- 
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FIG. 33. Comparison of dispersion and mixing between fluids and heavy 
particles in the shear layer. 

lem since the flow is highly inhomogeneous and the con- 
centration of particles is not continuous for the limited 
number of particles considered. (Even with a large number 
of particles the concentration will depend on the length 
scale over which it is defined.) Instead, we introduce a 
measure called mixing percentage, which should measure 
the degree of homogenization on the average, to quantify 
the mixing process of the two material lines. Mixing per- 
centage is defined as the ratio of the number of particles 
mixed to the total number of particles. A particle “A” is 
viewed as being mixed if at a given instant of time at least 
one other particle “B” from the second material line can be 
found in some small circular region near the particle “A,” 

[X*(t)--Xg(t)12+[Z*(t)--Zg(t)12<12; 
z*(t=O)#zg(t=O). 

The mixing percentage depends on the value used for r. We 
used r=0.4 which is one-fifth of the initial spacing between 
the two material lines. This value is chosen to ensure that 
no particle is mixed initially, but most fluid particles are 
indeed mixed at the end of the simulation. Figure 22(a) 
shows the vertical MSD for the fluid particles and the 
heavy particles. The MSD for the fluid particles is slightly 
larger than for heavy particles for t < 40 and has a maxi- 
mum of 0.042 at t=40. It appears to saturate at longer 
times. The MSD for the heavy particles, however, increases 
monotonically and becomes much larger than for the fluid 
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particles at large time due to the accumulation of heavy 
particles at the edge of the vertical region. The mixing 
percentage as a function of time is shown in Fig. 22(b). 
The mixing percentage for fluid elements is much larger 
than for heavy particles at all times. The maximum is 87% 
at t=47.5 for the fluid particles, and 61% at f =80 for the 
heavy particles. The fact that the mixing for fluid elements 
is better than for heavy particles can also be realized as the 
following. Imagine that both the fluid particles and heavy 
particles are introduced in the computation box with a 
same uniform concentration. The concentration for fluid 
particles remains uniform for a long time since the flow is 
incompressible. However, the concentration for heavy par- 
ticles will not be uniform since no heavy particles stay in 
the center region for a long time. In other words, if the 
fluid particles are well mixed with the fluid initially they 
remain well mixed at all times. This is not true for heavy 
particles. In summary, the comparison indicates that larger 
dispersion correlates with a smaller degree of mixing in a 
shear mixing layer. 

IV. CONCLUDING REMARKS 

The motion of aerosol particles in a regular, steady, 
and two-dimensional cellular tlow was analyzed numeri- 
cally and found to be very different from the motion of 
nondiffisive fluid elements. Aerosol particles move along 
open orbits which cross over the cell boundaries. These 
orbits can be either chaotic or periodic depending on the 
system parameters, i.e., Stokes number and density ratio. 
(Under certain conditions, closed periodic orbits or other 
regular asymptotic solutions may exist.) In general, the 
dispersion of aerosol particles which have chaotic orbits 
shares many features of Lagrangian dynamics in turbulent 
flows. It can enhance the mixing process of particles since 
the chaotic advection has the property of ergodicity. How- 
ever, one should distinguish dispersion from mixing for 
this two-dimensional, well-organized circulation flow. In 
fact it was shown that high dispersion rate is correlated 
with low fractal dimension and low mixing efficiency. A 
similar correlation between dispersion and mixing was 
found for particles convected by a plane shear mixing 
layer. 

It is worth noting that the dispersion of aerosol parti- 
cles in the cellular flow is somewhat similar to the Taylor 
longitudinal dispersion.34 Both dispersions are strongly af- 
fected by flow advection. The longitudinal dispersion coef- 
ficient in a pipe is inversely proportional to the transverse 
diffusivity or the radial mixing rate. The time scale that is 
needed for the dispersion in our system to become a valid 
description, i.e., the integral time of the velocity correla- 
tion, is usually much greater than both the particle re- 
sponse time and the time scale of the flow. This is also a 
feature of the Taylor longitudinal dispersion, i.e., the time 
scale for the longitudinal dispersion to become established 
is much larger than for the transverse dispersion. 

In this study, only the long-time characteristics of mix- 
ing and dispersion for chaotic particle motion are consid- 
ered. The dispersion coefficient is a useful description for 
our system because the chaotic orbits are not bounded and 

the long-time motion is ergodic or spatially homogeneous. 
It is also equivalent to long-time two-particle, reIative dis- 
persion. For many other well-known systems, such as the 
blinking-vortex system’ or the journal-bearing fl~w,~ the 
chaotic motion is confined to a region of finite size, then a 
dispersion coefficient cannot be easily defined. The analysis 
of short-time dispersion and mixing for our system is a 
more difficult problem and remains to be resolved. 

Another interesting feature of the Lagrangian turbu- 
lence in our dissipative system is that the chaotic behavior 
is independent of the initial particle location and the region 
of chaos in physical space may appear to be space filling, 
provided the system evolves for a long enough period. Only 
the isolated equilibrium points and cell boundaries are dif- 
ferent. In many nondissipative systems exhibiting Lagrang- 
ian turbulence,‘” the regions of chaos are localized in 
space or separated by regions of regular motion. 

The results presented here are limited to aerosol par- 
ticles of zero settling velocity. The gravitational settling 
has the effect of modifying the flow field and in turn the 
correlation between dispersion and chaotic mixing may be 
altered. The effect of settling on the chaotic motion and 
dispersion rate is currently under investigation and will be 
reported in a separate paper. The parameter range for 
Stokes number St is also limited since it is costly to simu- 
late the motion of particles at very large St. The question of 
whether the particle motion for very large St is chaotic 
remains open. 
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