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Direct numerical simulations of bubble-laden turbulent flows using
the two-fluid formulation

O. A. Druzhinina) and S. Elghobashi
Department of Mechanical and Aerospace Engineering, University of California, Irvine, California 92697
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Direct numerical simulations~DNS! of bubble-laden isotropic decaying turbulence are performed
using the two-fluid approach~TF! instead of the Eulerian–Lagrangian approach~EL!. The
motivation for the study is that EL requires considerable computational resources, especially for the
case of two-way coupling, where the instantaneous trajectories of a large number of individual
bubbles need to be computed. The TF formulation is developed by spatially averaging the
instantaneous equations of the carrier flow and bubble phase over a scale of the order of the
Kolmogorov length scale, which, in our case, is much larger than the bubble diameter. On that scale,
the bubbles are treated as a continuum~without molecular diffusivity! characterized by the bubble
phase velocity field and concentration~volume fraction!. The bubble concentration,C, is assumed
small enough (C<1023) to neglect the bubble–bubble interactions. As a test case, direct simulation
of a bubble-laden Taylor–Green vortex with one-way coupling is performed with a bubble response
time of the order of the flow time scale~inverse of the mean vorticity!. This simple flow allows a
direct examination of the effects of the preferential accumulation of bubbles in the high-enstrophy
regions of the flow on the accuracy of the two-fluid formulation. The temporal development of the
maximum bubble concentration obtained from DNS agrees well with the analytical solution. DNS
of the bubble-laden decaying turbulence are also performed for both cases of one-way and two-way
coupling. Here, the bubble diameter and response time are much smaller than the Kolmogorov
length and time scales, respectively. In this case, as expected, the effects of the preferential
accumulation of the bubbles are not pronounced. The results also show that the bubble-laden flow
is analogous to a stratified flow with an effective density5(12C)r f . Thus, due to the two-way
interaction between the bubbles and carrier flow, the turbulence decay is enhanced with stable
stratification, and reduced with unstable stratification. ©1998 American Institute of Physics.
@S1070-6631~98!02203-X#

I. INTRODUCTION

All published DNS studies of turbulent flows laden with
particles adopt the Lagrangian–Eulerian approach. In this
approach the carrier flow velocity field is obtained by solving
the Navier–Stokes and continuity equations at fixed mesh
points, whereas the trajectories of the dispersed particles are
computed by solving the Lagrangian equation of particle
motion.1,2 Employing this method to simulate turbulent flows
with two-way coupling between the particles and the carrier
flow is limited at present and in the foreseeable future by the
memory and speed of available supercomputers~including
the latest parallel supercomputers!. For example, for spheri-
cal particles with 50m diameter and occupying a volume
fraction f51023, we need about 105 particles per cm3, or
millions of particles in a typical volume for a practical ap-
plication. This fact together with computer limitations forces
all DNS of particle-laden turbulent flows~with two-way cou-
pling! to compute the trajectories ofonly a fraction of the

actual numberof particles. The accuracy of DNS results is
directly proportional to the magnitude of this fraction, being
highest when the fraction equals unity.2

The alternative approach for predicting particle-laden
flows is known as the ‘‘two-fluid,’’ or ‘‘Eulerian–Eulerian,’’
approach,3 and has been employed only with the Reynolds-
averaged equations of motion, not with DNS. In this ap-
proach, the governing equations are obtained by volume av-
eraging the equations of motion of both phases~the carrier
flow and particles! based on the assumption that the dis-
persed particles behave as a ‘‘continuum’’ under certain con-
ditions. In predicting practical dispersed two-phase flows us-
ing the two-fluid approach, time averaging is performed on
the volume-averaged equations of motion, thus resulting in
the closure problem, where second- and higher-order corre-
lations of both phases need to be modeled.

The objective of this paper is to describe how DNS can
be performed using the two-fluid approach for bubble-laden
homogeneous isotropic turbulence without forcing~i.e., de-
caying turbulence!.

It is important to point out that in employing the two-
fluid approach a difficulty may arise due to the phenomenon
of preferential accumulation of the dispersed particles. It is
well known4 that solid particles, due to their inertia, tend to

a!On leave from the Applied Physics Institute, Russian Academy of Sci-
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accumulate in the low-enstrophy regions of the flow,
whereas gaseous bubbles in a liquid flow tend to accumulate
in high-enstrophy regions, generally associated with the cen-
ters of vortices. Preferential accumulation in homogeneous
turbulence is most pronounced for particles with response
times of the order of the Kolmogorov time scaletk .5 This
segregation creates regions devoid of particles neighboring
regions of high particle concentration. Therefore, performing
DNS using the two-fluid approach may generate large con-
centration gradients causing numerical resolution and stabil-
ity problems, thus restricting the implementation of that ap-
proach.

In this paper we show that the two-fluid approach is
applicable to bubbles with diameter smaller than the Kol-
mogorov length scale, and accordingly their response time is
much smaller than the Kolmogorov time scale. Thus, the
effects of preferential accumulation of bubbles in the high-
enstrophy regions of the carrier flow become less pro-
nounced, so that DNS with the two-fluid approach can be
successfully used.

Turbulent liquid flows laden with gaseous bubbles
whose diameter is smaller than the Kolmogorov length scale
exist in nature~bubbles in the wakes of ships in the ocean!
and in chemical processing industries. A recent laboratory
experiment by Rightley~1995!6,7 provides an example of
such flows. In that experiment, a turbulent bubble-laden mix-
ing layer was created, with momentum thickness 5
mm<d<40 mm and fluid rms velocity 0.03 m/s<urms<0.05
m/s. Microbubbles were generated with free-stream volume
fraction a51.531025 and diameters in the range 20mm
<db<100 mm, which are smaller than the Kolmogorov
length scale,h, estimated ash.400 mm ~for liquid water
viscosityn51026 m2/s!.

The paper is organized as follows. In Sec. II the govern-
ing equations of motion of the bubble-laden flow and the
numerical method are described. The results for the bubble-
laden Taylor–Green vortex and isotropic decaying turbu-
lence with one-way coupling are presented in Sec. III. The
effects of the two-way coupling on isotropic turbulence are
discussed in Sec. IV. Concluding remarks are presented in
Sec. V.

II. GOVERNING EQUATIONS AND NUMERICAL
METHOD

A. Equations of motion for the bubble-laden flow

We consider spherical bubbles with diameterd much
smaller than the characteristic length scale of the flow,L f ,
and average the equations of motion of the fluid and bubble
over a length scale scalel that is much smaller thanL f but
much larger than the bubble diameter,d!l!L f . Thus the
bubble phase can be treated as a continuum characterized by
the velocity Vi~r ,t! and concentration~or volume fraction!
C(r ,t)5pd3n(r ,t)/6, where n(r ,t) is the bubble number
density.

We assume that the density of the gas and, consequently,
the mass of the bubble are negligible compared to those of
the surrounding fluid,r f@rb50. Taking into account the
effect of the bubbles on the fluid flow in a unit volume of the

mixture and neglecting the interactions between the bubbles,
we write the following equations for the bubble-laden
flow:8,9 ~a! the fluid momentum equation,

~12C!r f

DUi

Dt
52~12C!] i P1] j~12C!s i j 2CFi

d

2~12C!r fgd iz ; ~1!

~b! the fluid continuity equation,

2] tC1] j~12C!U j50; ~2!

~c! the bubble-phase momentum equation,

052C] i p1] jCs i j 1CFi
d ; ~3!

~d! the bubble-phase continuity equation,

] tC1] jCVj50. ~4!

In the above equations,Ui is the fluid velocity,Vi is the
velocity of the bubble phase,s i j is the viscous stress tensor,
s i j 5m(] jUi1] iU j ), the Lagrangian derivatives
D/Dt5]/]t1U j] j and d/dt5]/]t1Vj] j are taken along
the trajectories of the fluid point and bubble, respectively,
and g is the projection of the gravity acceleration on thez
axis, gi52gd iz . Here Fi

d denotes the force acting on the
bubble due to the pressure and viscous stresses caused by the
disturbance flowUd, owing to the boundary conditions at the
bubble surface. The details of the derivation of Eqs.~3!–~4!
are given in the Appendix.

Since we assume that the bubble mass is negligible, the
sum of the forces acting on the bubble must vanish, and thus
the equation of the bubble motion becomes

Fi
01Fi

d50, ~5!

whereFi
0 , the force exerted on the bubble by the undisturbed

fluid flow U0, is obtained by integrating both the pressure
and viscous stresses of the undisturbed flow over the bubble
surface. For small spherical bubbles with diameter much
smaller than the flow length scale,

db!L f , ~6!

and with Weber number less than unity,Fi
0 is given by

Fi
05r f S DUi

0

Dt
1gd izD 52] i P

01] js i j
0 , ~7!

whereP0 and s i j
0 are the undisturbed pressure and viscous

stresses fields, respectively~cf. the Appendix!.
The prescription of the boundary conditions at the sur-

face of a spherical bubble depends mainly on the properties
of the surrounding liquid and the bubble Reynolds number.
Available experimental data10–13 for a bubble rising in a
stagnant nonpurified liquid water with Reynolds number less
than unity show that the drag force on the bubble,D, is
described by the Stokes law,D53pdbr fnW ~where W is
the bubble terminal velocity!, rather than by the Hadamard–
Rybczynski formula,D52pdbr fnW. The reason is that in a
nonpurified water, the gas–liquid interface is ‘‘solidified,’’
owing to the presence of impurities. Thus, the boundary con-
dition at the bubble surface is effectively equivalent to that
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for a solid sphere rather than the free-stress condition needed
for the Hadamard–Rybczynski formula.11 Thus, for bubbles
with Reynolds number less than unity,

Reb5
dbuU02Vu

n
,1, ~8!

the force due to the disturbance flow,Fd, can be calculated
from the solution of the corresponding unsteady Stokes prob-
lem in the form

Fi
d5

18m

d2
~Ui

02Vi !1
r f

2 S DUi
0

Dt
2

dVi

dt D . ~9!

The first and second terms in~9! correspond to the
Stokes drag and added-mass forces, respectively. In the con-
sidered case of a small bubble, the Basset and lift forces can
be neglected. The recent theoretical studies14,15show that the
influence of the Basset force is negligible due to the en-
hanced temporal decay of the integral kernel. Also, the ex-
perimental measurements by Sridhar and Katz16 for bubbles
with diameters 500mm,db,800mm show that the effect of
the Basset force is negligible compared to that of the drag
and lift forces. In addition, Maxey and Riley17 show analyti-
cally that the lift force on a microparticle is negligible.
Therefore, we neglected the Basset and lift forces in the case
of microbubbles.

We obtain from Eq.~5! an equivalent expression for the
disturbance force:

Fi
d52Fi

0 , ~10!

whereFi
0 is given by~7!.

Therefore, the equation of the bubble motion~5! can be
rewritten in the form

dVi

dt
53

DUi

Dt
1

1

tb
~Ui2Vi1Wd iz!, ~11!

where the bubble response timetb and terminal velocityW
are defined as

tb5
d2

36n
, ~12!

and

W52tbg. ~13!

In Eqs. ~1!–~4!, ~11!, and the following discussion we omit
the superscript ‘‘0’’ in the notation for the undisturbed flow
U0.

We assume that the bubble concentration,C, is small
enough~i.e., C<1023), and thus neglect its contribution to
the fluid inertia and continuity, i.e., we retainC only in the
buoyancy term in the momentum equation of the carrier flow
~1!. This is analogous to the Boussinesq approximation in a
stratified fluid with effective density (12C)r f .

Substituting the expression for the disturbance force ob-
tained from Eqs.~10! and ~7! into the equation for the fluid
momentum~1!, and using~11!, we write equations of the
conservation of the fluid and bubble phase momentum and
mass in the form18

DUi

Dt
52

1

r f
] i P̃1nDUi1~C2^C&!gd iz , ~14!

] jU j50, ~15!

dVi

dt
53

DUi

Dt
1

1

tb
~Ui2Vi1Wd iz!, ~16!

]C

]t
1] jCVj50. ~17!

Using the analogy between the bubbly flow and a stratified
flow with density (12C)r f , we remove the modified hydro-
static part in the pressure field in Eq.~14!,

P̃5P1r fgE
0

z

~12^C&!dz, ~18!

where ^C& is the ensemble-averaged bubble concentration.
In the following discussion, we evaluate^C& as an average
over a horizontal~z! plane.

B. Numerical method

The momentum conservation and continuity equations
~14!–~17! for both phases are solved in a cubical domain
with periodic boundary conditions. The equations are dis-
cretized in an Eulerian framework using a second-order
finite-difference technique on a staggered grid containing 963

points equispaced within unit length in each of three coordi-
nate directions (x,y,z). The Adams–Bashforth scheme is
used to integrate the equations in time. Pressure is obtained
by solving the Poisson equation using Fast Fourier Trans-
form. More details about the numerical method and its accu-
racy are discussed by Elghobashi and Truesdell,19 Gerz
et al.,20 and Schumann.21

We perform the DNS for two different flows: the
Taylor–Green~TG! vortex and the decaying isotropic turbu-
lence. The TG flow field is discussed in detail in Sec. III. In
the case of decaying turbulence, we use an initialization al-
gorithm to generate a divergence-free random fluid velocity
field with a prescribed energy spectrumE(k) and spectral
cross-correlations matrixRi j (k) of the velocity and scalar
concentration, satisfying the realizability constraints.21 The
initial energy spectrum is prescribed by

E~k,0!5
3u0

2

4p

k

kp
2

expS 2
k

kp
D , ~19!

whereu0 is the dimensionless rms velocity,k51, . . . ,Ng/2
is the wave number for the given grid resolution (Ng596),
andkp is the wave number of peak energy. The wave number
is normalized by the lowest nonzero wave numberkmin52p.
The dimensionless kinematic viscosityn is calculated from
the prescribed initial microscale Reynolds number Rel0 and
the computed initial dissipatione(0).
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III. RESULTS

In this section we present the DNS results for bubble
dispersion in a TG vortex with one-way coupling and isotro-
pic decaying turbulence with both one-way and two-way
coupling.

A. Dispersion of bubbles in a Taylor–Green vortex

Here we study the dispersion of small spherical bubbles
in a Taylor–Green vortex flow with one-way coupling. The
main objective of this test case is to examine the effects of
the preferential accumulation of bubbles in this flow on the
performance of the numerical method with the two-fluid ap-
proach.

This flow represents an exact two-dimensional time-
dependent solution of the Navier–Stokes equations22 with
velocity components (Ux ,Uy,0). The corresponding instan-
taneous, local streamfunction can be written as

C~x,y,t !5
v0

k2
exp~2nk2t !coskxx coskyy, ~20!

wherev0 is the initial vorticity maximum,kx andky are the
wave numbers inx and y directions, andk25kx

21ky
2 . The

flow vorticity, v, and pressure,P, are

v5
]Uy

]x
2

]Ux

]y
5k2C, ~21!

P5P02
1

2F S ]C

]x D 2

1S ]C

]y D 2

1k2C2G . ~22!

The fluid velocity components are

Ux5
]C

]y
52v0

ky

k2
exp~2nk2t !coskxx sin kyy, ~23!

Uy52
]C

]x
5v0

kx

k2
exp~2nk2t !sin kxx coskyy. ~24!

We assume that the gravitational acceleration is normal to
the flow plane~x,y!, so that it does not affect the bubble
dynamics on that plane.

The computations are performed for a flow Reynolds
number Re51/n55000 and an initially uniform concentra-
tion ~volume fraction! of bubbles with response time
tb50.25. We set the parameterskx5ky52p and v051.
The initial fluid velocity and pressure are prescribed by Eqs.
~22!, ~23!, and ~24! at t50. The initial horizontal velocity
componentsVx andVy of the bubble are set equal to zero,

Vx50, Vy50. ~25!

The initial bubble concentration is a uniform constant,
C05a0, where the reference bubble volume fractiona0 is
assumed to be sufficiently small to neglect the influence of
the bubble on the carrier flow~i.e., only one-way coupling is
considered!.

The direct simulation is performed with a mesh of (96)3

points and continued for dimensionless time 0<t<14. Al-
though the TG-vortex flow studied here is essentially two

dimensional, the numerical method uses a three-dimensional
~3D! algorithm, and the flow is homogeneous in thez direc-
tion.

Figure 1 shows the contours of the enstrophy,v2, and
bubble concentration,C ~in the gray scale! in the ~x,y! plane
at z50.5 and timet512. The figure shows that the bubbles
accumulate, and sharp peaks of the concentration are formed
at the vortex centers located at points~x50, y50! and
~x50.5, y50.5!, corresponding to the local maxima of the
enstrophy.

In order to quantify the accumulation effects and the
correlation between the flow enstrophy and bubble concen-
tration, we calculate the average concentration and its vari-
ance conditioned on the magnitude of enstrophy,^C&v and
^C82&v , defined as

^C&v5
1

N~v2!
(
j 51

N~v2!

Cj /C0 , ~26!

^C82&v5
1

N~v2!
(
j 51

N~v2!

~Cj /C02^C&v!2, ~27!

whereN(v2) is the number of grid points where the enstro-
phy value lies within the range@v2,v21Dv2#, where
Dv250.025. Figure 2 shows the dependence of^C&v and
^C82&v on the enstrophy of the flow displayed in Fig. 1. As
expected,23,24 both the bubble concentration and its variance
increase with increasingv2. The growth of̂ C82&v is caused
by the preferential accumulation of bubbles in a smaller
number of computational cells@see Eq.~27!#.

The growth of the bubble concentration at the vortex
centers can be described analytically, provided that the
bubble response time is small compared to the flow time
scale, i.e.,tb,t f . The flow time scale,t f , in the case con-
sidered here is of the order 1/v0;1. In this case, an approxi-
mate solution of Eq.~16! for the bubble velocity can be
written in the form25,26

FIG. 1. Enstrophy and bubble concentration normalized by the maximum
values.~The increment for the enstrophy isolines is equal to the increment in
the table for the bubble concentration.!
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Vx5Ux12tb

DUx

Dt
1O~v0

2tb
2!,

~28!

Vy5Uy12tb

DUy

Dt
1O~v0

2tb
2!,

whereD/Dt5] t1Ux]x1Uy]y andv0
2tb

251/16!1. The dy-
namics of the bubble concentration is then described by the
equation

DC

Dt
522tbF ]

]xS C
DUx

Dt D1
]

]yS C
DUy

Dt D G . ~29!

In the vicinity of the vortex center (xe50, ye50), corre-
sponding to the elliptic stagnation point, the fluid velocity
field corresponds to that of a decaying ‘‘solid’’ vortex, and
the velocity components in thex andy directions are

Ux
e.2v0

ky
2y

k2
exp~2nk2t !, ~30!

Uy
e.v0

kx
2x

k2
exp~2nk2t !, ~31!

for uxu!1, uyu!1. Thus, the solution~28! for the bubble
velocity can be recast as

Vx
e.Ux

e22tbv0
2x

kx
2ky

2

k4
exp~22nk2t !,

~32!

Vy
e.Uy

e22tbv0
2y

kx
2ky

2

k4
exp~22nk2t !.

The first terms in Eqs.~32! are the fluid velocity compon-
ents,Ux,y

e , associated with the solid vortex rotation and thus
contribute to the corresponding rotation of the bubble. The
second terms represent the first-order correction caused by
the inertia of the bubble, owing to the added mass, and de-
scribe the radial drift of the bubble toward the vortex center.

This drift is caused by the pressure gradient force, directed
toward the vortex center, which, for a bubble, is not balanced
by the centrifugal force.

Now, the solution for the maximum bubble concentra-
tion, i.e., at the vortex center,Cm , for an initially uniformC0

is obtained using~29! and ~32! in the form

Cm5C0 expF2tb

n S v0

kxky

k3 D 2

@12exp~22nk2t !#G . ~33!

Figure 3 compares the time evolution of the maximum
bubble concentration, i.e., at the vortex center, normalized by
the initial concentrationC0, obtained from the analytical so-
lution ~33! ~dotted line! with that of DNS ~solid line! at
~x50.5,y50.5!. The agreement is excellent up tot58, after
which a small difference occurs due to the continuous
growth of the concentration gradient.

The figure also shows the time dependence of the maxi-
mum modulus of the concentration gradient~a dashed
curve!. The computations are performed until timet514,
when u¹Cum /C0.200. It should be noted that this time is
equivalent to nearly 14 times the eddy turnover time of the
flow considered. Continuation of the simulation beyond this
time results in numerical instabilities due to the development
of large concentration gradients.

In order to estimate a critical value of the local concen-
tration gradient we consider the following condition for the
smoothness of the bubble concentration field:

u¹Cu
C0

Dx!1, ~34!

whereDx is the grid cell size (Dx51/Ng) andC is a local
concentration. Then the critical gradientu¹Cucr is given by

u¹Cucr

C0
;Dx21. ~35!

FIG. 2. Dependence of the enstrophy-conditioned average bubble concen-
tration ~solid curve! and its variance~dashed curve! on the flow enstrophy.

FIG. 3. Time dependence of the maximum bubble concentration and the
modulus of the concentration gradient in the Taylor–Green vortex~full and
dashed curves, respectively!. The dotted curve corresponds to the analytical
solution ~33! for the concentration.
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In our DNS att514 we find the critical value of the concen-
tration gradientu¹Cunum/C0;O(102) ~cf. Fig. 3! which is of
the order ofDx21 for the given grid resolution (Ng596).

Note that in spite of the large value of the concentration
gradient for times 5,t,14, there is a good agreement be-
tween the analytical solution for the maximum concentration
~33! and the numerical results~Fig. 3!, indicating that nu-
merical diffusion effects remain negligible.

Therefore, the results of this test case show that it is
possible to use the two-fluid approach for the flow condi-
tions, where the effects of preferential accumulation are re-
solved appropriately.

Note that in the considered test case, the bubble response
time (tb50.25) is of the order of the flow time scale
(t f51), and the effects of bubble accumulation are pro-
nounced. In the next section we study the dispersion of
bubbles in a decaying isotropic turbulence, assuming that the
bubble diameter is much smaller than the Kolmogorov
length scale. In this case, the bubble response time is much
smaller than the Kolmogorov time scale, and the effects of
the preferential accumulation are not pronounced.

B. Dispersion of bubbles in isotropic decaying
turbulence „with one-way coupling …

DNS of bubble dispersion in isotropic decaying turbu-
lence is performed with the following initial conditions:
Rel0525, u050.05, andkp /kmin55, which correspond to
the initial dissipatione(0)50.002 584, Taylor microscale
l050.027 877, Kolmogorov length scaleh050.002 861, in-
tegral length scale L050.057 815, and viscosity
n55.5731025. The dimensionless gravity constantg is
considered equal to unity. The reference length and time
scales used in normalizing the above dimensionless quanti-
ties areL ref50.098 m andTref50.1 s, respectively.

The initial bubble velocity and concentration are pre-
scribed as

Vi5d izW, C05a0 , ~36!

where the bubble terminal velocityW is given by~13!.
The ability of the simulation to resolve the motion at the

smallest turbulence scales is assured by the criterion
hkmax.1, where kmax5Ngp is the highest resolved wave
number for the given number of grid points in each coordi-
nate directionNg ~596 in the present case!. Our simulations
show that 1<hkmax<2.65 for 0.75,t,10.

The choice of the bubble response time is restricted by
the conditions~6! and~8!, which can be rewritten in the form

db,h, ~37!

and

Reb5
Wdb

n
,1. ~38!

The first condition ensures that the bubble size is smaller
than the characteristic flow scale, i.e., the Kolmogorov
length scaleh5(n3/e)1/4 in the case of decaying isotropic
turbulence. The second condition restricts the bubble Rey-
nolds number, based on the bubble terminal velocity, to be

less than 1. Substituting the terminal velocity~13! and the
bubble diameter@db5(36ntb)1/2# in ~37! and~38!, and using
the equalityh25ntk , we rewrite the conditions~37! and
~38!, respectively, as

tb

tk
,

1

36
.0.028, ~39!

and

tb,S n

144g2D 1/3

5t* . ~40!

It should be emphasized that the conditions~39! and~40!
are essential for the derivation of the bubble motion equation
~11!. Thus, violating either of these conditions renders the
equation of motion ~11! invalid. Note that Wang and
Maxey23 and Maxeyet al.24 performed DNS of isotropic tur-
bulence laden with bubbles withtb5tk using the Eulerian–
Lagrangian approach and Eq.~11!, i.e., violating the condi-
tion ~39!.

Note also that in the case of solid particles, the condition
dp,h ~which is also required for the derivation of the par-
ticle motion equation! is equivalent to (tp /tk),(rp/18r f),
which allows (tp /tk) to be>1 for rp.18r f .

In our DNS of bubble-laden decaying turbulence we pre-
scribetb50.04tk0, where the initial dimensionless Kolmog-
orov time scale istk050.15. The bubbles are added to the
flow at time t51, when the magnitude of the skewness of the
fluid velocity derivative reaches about 0.47, indicating an
established rate of energy transfer across the energy spec-
trum. At that time, tk increases to 0.22, so that ratio
tb /tk50.027 and the timet* 50.0073@see Eq.~40!#. Since
tk increases monotonically in decaying turbulence, the con-
dition ~39! is satisfied throughout the simulation. Thus, both
conditions~39! and ~40! are met for the prescribed value of
tb . The corresponding bubble Reynolds number~38! equals
0.74 ~i.e., of the order of unity! and the dimensional bubble
diameter isdb.350mm ~for the bubble to remain spherical
in liquid water, i.e.,db is less than 1 mm!. Therefore, the
prescribed value oftb is close to the maximum limit for the
validity of the equation set~14!–~17!.

Figure 4 shows the time development of the turbulence
kinetic energyE(t) and its dissipation ratee(t) and the con-
centration variancêC82&5^(C2^C&)2& calculated from the
corresponding spectraE(k,t) andEC(k,t) as

E~ t !5 (
k51

Ng/2

E~k,t !, ~41!

e~ t !52n (
k51

Ng/2

k2E~k,t !, ~42!

and

^C82&~ t !5 (
k51

Ng/2

EC~k,t !, ~43!

and normalized by the respective initial valuesE(0), e(0),
andC0

2. Both E(t) ande(t) decay in time due to the viscous
dissipation. On the other hand, the bubbles concentration
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variance first increases from zero to^C82&.5.131023C0
2

~for time 1,t,5, wheret51 is the time of injecting the
bubbles into the flow!, and then decays. The growth of the
concentration variance is caused by the preferential accumu-
lation of bubbles in the high-enstrophy regions of the flow.
The effects of the bubble accumulation, as well as the decay
of the concentration variance fort.5, are discussed below.

Figure 5 shows the spectra of the fluid kinetic energy,
E(k), the dissipation,e(k)52nk2E(k), and the bubble con-
centration fluctuations,EC(k) at time t53 @here and below,
for convenience, we omit the explicit reference to the time
dependence ofE(k,t),e(k,t), andEC(k,t)]. At this time, the
energy spectrum peaks atk53. Note that since the transport
equation of bubble concentration is of the advection~La-
grangian! type, there is no molecular dissipation of the
bubble concentration fluctuations. Thus, there is no decay in
the spectrumEC(k) at high wave numbers, rather, the fluc-

tuation intensity piles up at larger wave numbers~cf. Fig. 5!.
Note, however, that the concentration variance~43! remains
finite and small, relative to the average concentrationC0

2,
throughout the computations~cf. Fig. 4!.

Figure 6 shows the DNS results obtained att53 for the
bubble concentration~gray scale! and flow enstrophy field
~contour lines! in the (x,y) plane atz50.5. Although the
bubble response time is much smaller than the Kolmogorov
time scale, we still observe the accumulation of bubbles in
the zones of maximum enstrophy~corresponding to the cen-
ters of intense vortices!. This means that even for such small
tb the bubble inertia, owing to the added mass, influences the
bubble motion, and causes the preferential accumulation of
bubbles in the high-enstrophy regions of the flow and the
initial growth of the concentration variance. Note that the
time intervalDt52 corresponds approximately to six char-
acteristic vortex time scales,^v2&21/2, estimated as an aver-
age Kolmogorov timet̄ k for 1,t,3, ^v2&21/2; t̄ k.0.3.

In order to quantify the accumulation effects we calcu-
lated the enstrophy-conditioned average bubble concentra-
tion, ^C&v , and its variance,̂C82&v , using the data shown
in Fig. 6 and Eqs.~26! and~27! with the enstrophy increment
Dv250.5. Figure 7 shows the dependence of^C&v and
^C82&v on v2. As in the case of bubble dispersion in the TG
vortex discussed earlier, both^C&v and ^C82&v increase in
the high-enstrophy regions of the flow. However, since the
bubble response time is much smaller than the Kolmogorov
time scale, the bubble preferential accumulation is signifi-
cantly reduced compared to the TG-vortex case, where
tb.t f . Note also that fluctuations of both^C&v and^C82&v

grow as the enstrophy increases, which shows the intermit-
tent nature of the high-enstrophy regions in turbulence.

Now, we introduce a mathematical model to explain
how the ratiotb /tk governs the preferential accumulation
process and the growth of the local concentration gradients
in isotropic turbulence.

Let us consider a single vortex with a radius of the order
of the Kolmogorov length scaleh and core vorticity
v051/tk . Assume that the bubble response time is much
smaller than the Kolmogorov time scale,tb /tk!1. Then,
the local accumulation rate can be estimated from the solu-

FIG. 4. The time dependence of the normalized turbulence kinetic energy
E(t)/E(0) ~solid curve!, its dissipation ratee(t)/e(0) ~dashed curve!, and
bubble concentration variance^C82&/C0

2 ~dash–dotted curve!.

FIG. 5. Spectra of the turbulence kinetic energyE(k) ~solid curve!, dissi-
pation e(k) ~dashed curve!, and bubble concentration fluctuationsEc(k)
~dash–dotted curve!.

FIG. 6. Turbulence enstrophy and bubble concentration normalized by the
maximum values.
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tion ~33! for the bubbles concentration in the TG vortex as

]C/]t

C0
.tbv0

2.
tb

tk
2

. ~44!

Thus the difference in bubble concentration between the in-
side and outside of the vortex,DC5Ci2Co , is related to
(tb /tk) via

DC

Co
.

tb

tk
, ~45!

and the corresponding concentration gradient is

u¹Cu
Co

;
DC

Coh
;

tb

htk
. ~46!

The smoothness condition~34! is then rewritten in the form

u¹Cu
Co

Dx.
tb

tk

Dx

h
!1. ~47!

The relations~44! and~46! show that both the accumulation
rate and the local concentration gradient are directly propor-
tional to the ratio (tb /tk) for tb,tk .

Note that according to~45!, the variance of the concen-
tration fluctuations is proportional to the ratio (tb /tk)

2 that
decreases with time in decaying turbulence, since the Kol-
mogorov time scale increases monotonically. This prediction
agrees with our DNS results for̂C82& in Fig. 4, which
shows that the concentration variance decays with time after
the initial transient~1,t,5!.

It should be noted that both the accumulation of bubbles
and the absence of the diffusivity in the transport equation
for the bubble concentration~17! may lead to instabilities in
the numerical solution due to the development of steep gra-
dients in the concentration field. The occurrence of this nu-
merical instability depends on the initial distribution of the
bubble concentration, the flow Reynolds number, and the
bubble response time. In our DNS we chose the initial mi-
croscale Reynolds number Rel0525, so that at time of the
injection of bubbles~t51! the small-scale motions are re-

solved, i.e.,kmaxh>1, where kmax5Ngp is the maximum
wave number for the given grid resolutionNg596. The nu-
merical instability may occur for higher-inertia bubbles, i.e.,
for tb of the order of the Kolmogorov time scaletk . How-
ever, prescribingtb.tk would violate the conditiondb,h,
which is necessary for deriving Eq.~16! of bubble motion.

In our DNS we prescribetb50.04tk050.006 for which
the bubble diameter (db.3.4731023) is smaller than the
Kolmogorov length scale at the time of the bubble injection
(h.3.531023 at t51! ~both db and h are dimensionless
here!, to remain within the validity limit of Eq.~16!. No
instability occurs in our DNS under these conditions for both
cases of the initially uniform and the initially linear bubble
concentration fields. This is evident in Fig. 8, which shows
the instantaneous concentration variance spectra, obtained
from our DNS for the initially uniform bubble distribution, at
four different times. The time evolution of the concentration
spectrum in Fig. 8 and the corresponding concentration vari-
ance,^C82& ~the dash–dotted curve in Fig. 4! show that no
numerical instability occurs. The spectrumEC(k) at high
wave numbers approaches an asymptotic form att510 ~Fig.
8!. The high wave number range in the spectrum~i.e.,
k>40) would detect any numerical instability if it existed.
Furthermore, Fig. 4 shows that the concentration variance,
^C82&, decays with time fort.5.

The reason for the absence of the instability is that the
fluctuations of the bubble concentration, caused by the pref-
erential accumulation, are proportional to the ratiotb /tk that
decreases with time~approximately as;1/t) in decaying
turbulence, as discussed above.

C. Two-way coupling effects on decaying turbulence

Here we examine the effects of the dispersed bubbles on
the temporal development of decaying isotropic turbulence.
We consider three cases with different initial bubble concen-

FIG. 7. Dependence of the enstrophy-conditioned average bubble concen-
tration ~solid curve! and its variance~dashed curve! on the enstrophy.

FIG. 8. Instantaneous spectra of the bubble concentration fluctuationsEc(k)
at four different times~with one-way coupling!.
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tration profiles in thez direction, but with the same bubble
response time as in the one-way coupling case.

The first case is for a uniform initial bubble concentra-
tion,

C05a0 , ~48!

wherea0 is a reference concentration set equal to 0.005 to
allow neglecting bubble–bubble interactions.

The second case is for stable linear stratification, with a
constant concentration gradient in the vertical~z! coordinate,

C05a0~11z!, ~49!

while the third case is for unstable linear stratification,

C05a0~22z!. ~50!

In the cases of stable and unstable stratification, periodic
boundary conditions in thez direction are imposed on the
instantaneous concentration fluctuationC85C2^C&.

We first consider the modification of the turbulence en-
ergy spectrum. We define a band-averaged kinetic energy
spectrumE(k) as

E~k!5
1

2 (
k,uku,k11

uU~k!u2. ~51!

Performing the Fourier transform of the fluid momentum
equation~14! and using the incompressibility condition for
the fluid velocity@kbUb(k)50# we obtain

] tE~k!5T~k!2e~k!1Cb~k!, ~52!

where dissipatione(k) is

e~k!52nk2E~k!, ~53!

and the band-averaged spectral energy transfer functionT(k)
is

T~k!5 (
k,uku,k11

T~k!, ~54!

T~k!5ImS km(
k8

Un~k8!Um~k2k8!Un* ~k!D . ~55!

The source of the modification of the energy spectrum and
spectral transfer process isCb(k), which can be regarded as
a spectral buoyancy flux, analogous to that in a stratified
fluid with densityC8, and is defined as

Cb~k!5 (
k,uku,k11

Cb~k!, ~56!

Cb~k!5g Re@C8~k!Uz* ~k!#. ~57!

Figure 9 shows the difference between the energy spec-
tra in two-way and one-way coupling cases computed at time
t53. As expected, the turbulence energy increases in the
case of unstable stratification and is reduced in the case of
stable stratification. In the nonstratified two-way coupling
case, the spectrum remains practically unchanged compared
to the one-way coupling case. Figure 10 shows the corre-
sponding modification of the dissipation functione(k).

Figure 11 shows the effect of bubbles on the turbulence
energy transfer functionT(k) in the three test cases. In the

case of stable stratification, the transfer of energy from lower
to higher wave numbers is reduced~since the difference
T2w2T1w is positive! compared to the one-way coupling
case, owing to the bubble-induced buoyancy. On the other
hand, in the case of unstable stratification, the transfer of
energy from low to highk is enhanced~i.e., the difference
T2w2T1w is negative!. In the nonstratified case, the two-way
coupling does not affectT(k).

The source termsCb(k), or spectral buoyancy fluxes, in
the three cases are shown in Fig. 12. Comparing it with Fig.
11 for the modification of the energy transfer function, we
find that spectral peaks of bothCb(k) and (T2w2T1w) @of
the orderO(1027)] are located in the wave number range
0,k,10. Consequently, the peaks of the energy spectra dif-
ferences (E2w2E1w) are of the orderO(1027) and are lo-
cated in the same wave number range~cf. Fig. 9 and Figs. 11
and 12!.

Figure 13 shows the difference between the kinetic en-
ergy spectra of the bubble phase and the fluid
@Eb(k)2E(k)#. In all cases the bubble kinetic energyEb(k)

FIG. 9. Modification of the turbulence kinetic energy spectrum in a bubble-
laden decaying turbulence.

FIG. 10. Modification of the turbulence dissipation spectrum.
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is reduced in the small-k region of the spectrum compared to
E(k) due to the bubble inertia~i.e., owing to the added-mass
inertia!. However, since the bubble response time is much
smaller than the Kolmogorov scale, the observed difference
is only of the order of 1% of the energy peakEmax(k).1024

~cf. Fig. 5!.
The transport equation for the turbulence kinetic energy,

E(t)5 1
2uU(r ,t)u2, can be obtained either from Eq.~52! by

integrating overk, or directly from Eq.~14! for the fluid
momentum by ensemble averaging, in the form

] tE52e1g^C8Uz&. ~58!

Equation~58! shows that the modification ofE(t) is caused
by the buoyancy flux term,g^C8Uz&. We evaluate this term
from our DNS results as an average over a horizontal plane
~x,y! for each z. Figure 14 shows the dependence of
^C8Uz&/C0 on thez coordinate. We find that the buoyancy
flux is nearly constant of value zero in the nonstratified case,
and nearly uniform negative and positive in the cases of

stable and unstable stratification, respectively. These results
suggest a closure model for the correlation^C8Uz& in the
form

^C8Uz&52Dz

]

]z
^C&, ~59!

with a uniform diffusivity coefficientDz .
Figure 15 shows the time development of the turbulence

kinetic energy relative difference (E2w2E1w)/E1w due to
the two-way coupling. As expected,E2w(t) is reduced com-
pared toE1w(t) in the case of stable stratification, and in-
creased for unstable stratification. In the nonstratified case,
the modification ofE(t) compared to the one-way coupling
case is negligible.

Therefore, two-way coupling enhances or reduces the
turbulence decay rate depending on whether the stratification
~due to the bubbles! is stable or unstable, while in the non-
stratified case there is no influence of the bubbles on the
turbulence dynamics.

FIG. 13. The difference between the bubble and fluid kinetic energy spec-
tra.

FIG. 14. Dependence of the normalized buoyancy flux,^C8Uz&/a0, aver-
aged over horizontal (z) planes, on thez coordinate.

FIG. 11. Modification of the spectral energy transfer function. The energy
transfer function in the one-way coupling case,T1w(k), is shown by the
dotted curve.

FIG. 12. Spectral buoyancy fluxFb(k).
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IV. CONCLUDING REMARKS

We have performed direct numerical simulations~DNS!
of bubble-laden isotropic decaying turbulence using the two-
fluid approach~TF! instead of the Eulerian–Lagrangian ap-
proach ~EL!. The motivation for this study is that EL re-
quires considerable computational resources, especially for
the case of two-way coupling, where the instantaneous tra-
jectories of a large number of individual bubbles need to be
computed.

We developed the TF formulation by spatially averaging
the instantaneous equations of the carrier flow and bubble
phase over a scale of the order of the Kolmogorov length
scale, which, in our case, is much larger than the bubble
diameter. On that scale, the bubbles are treated as a con-
tinuum ~without molecular diffusivity! characterized by the
bubble phase velocity field and concentration~volume frac-
tion!. The bubble concentration,C, is assumed small enough
(C<1023) to neglect the bubble–bubble interactions.

As a test case, we performed direct simulation of a
bubble-laden Taylor–Green vortex with one-way coupling
and a bubble response time of the order of the flow time
scale~the inverse of the mean vorticity!. This simple flow
allows a direct examination of the effects of the preferential
accumulation of bubbles in the high-enstrophy regions of the
flow on the accuracy of the two-fluid formulation. The tem-
poral development of the maximum bubble concentration ob-
tained from DNS agrees well with the analytical solution.

DNS of the bubble-laden decaying turbulence were also
performed for both cases of one-way and two-way coupling.
Here, the bubble diameter and response time are much
smaller than the Kolmogorov length and time scales, respec-
tively. In this case, as expected, the effects of the preferential
accumulation of the bubbles are not pronounced. The results
show that the bubble-laden flow is analogous to a stratified
flow with an effective density5 (12C)r f . Thus, due to the
two-way interaction, the turbulence decay is enhanced with
stable stratification, and reduced with unstable stratification.

The results show that the TF approach can be success-
fully implemented in the DNS of turbulent flows laden with
microbubbles. It should be noted that the results discussed

above are obtained for comparatively low Reynolds numbers
and smooth initial bubble distribution to ensure a sufficient
resolution of the fluid and bubble velocity and concentration
fields. In a recently completed study29 we examined a decay-
ing isotropic turbulence laden with solid heavy particles with
a response time much smaller than the Kolmogorov time
scale of the turbulence. In this case, the TF formulation is
analogous to the ‘‘dusty gas’’ formulation.27,28
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APPENDIX: EQUATION OF MOTION OF A SINGLE
BUBBLE IN A NONUNIFORM FLOW

Consider a spherical bubble of radiusa5d/2 and density
rb located atxb(t) and moving with velocity,

Vi~ t !5
dxi

dt
, ~A1!

in a nonuniform fluid flowUi(r ,t). The equation for the
bubble velocity is

mb

dVi

dt
5mbgi1 R

Sb

dSnj~2Pd i j 1s i j !, ~A2!

wheremb54/3pa3rb is the mass of the bubble,d/dt is the
material derivative along the bubble trajectory,gi is the ac-
celeration due to gravity, and the integral is taken over the
bubble surfaceSb , where ur 2xbu5a. The viscous stresses
tensors i j is defined as

s i j 5mS ]Ui

]xj
1

]U j

]xi
D , ~A3!

wherem is the dynamic viscosity of the fluid.
The pressure fieldP and the fluid velocity fieldU in

~A2! and ~A3! are generally obtained from the boundary
problem, formulated for a given flow at infinity~i.e., the
undisturbed flow! and proper boundary conditions at the
bubble surface. For a small bubble in liquid water, the
boundary conditions generally are well approximated by the
no-slip conditions for the fluid velocity.10–12 Thus, the cor-
responding equations are formulated as

r f~] tUi1U j] jUi !52] i P1m]2Ui1r fgi , ~A4!

] jU j50, ~A5!

where] j[]/]xj . The boundary conditions are

Ui~r ,t !u ur 2xbu@a5Ui
0~r ,t !,

~A6!
Ui~r ,t !u ur 2xbu5a5Vi~ t !,

whereUi
0(r ,t) is the undisturbed fluid velocity sufficiently

far from the bubble surface.
It is convenient to represent the fluid velocityUi as a

sum of the undisturbed velocity,Ui
0 , and a disturbance ve-

locity, Ui
d , brought about by the bubble,

FIG. 15. Time development of the turbulence kinetic energy modification.
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Ui~r ,t !5Ui
0~r ,t !1Ui

d~r ,t !. ~A7!

Figure 16 shows the decomposition of the flow~A7! in the
vicinity of the bubble surface for a case of rectilinear motion
~i.e., where the bubble and undisturbed fluid velocities,V
andU0, are parallel!.

The undisturbed fluid velocity,Ui
0 , satisfies the Navier–

Stokes equations,

r f

DUi
0

Dt
52] i P

01m]2Ui
01r fgi , ~A8!

] jU j
050, ~A9!

where

D/Dt5] t1U j
0] j . ~A10!

From Eqs.~A4!, ~A5!, and ~A6! we obtain the following
equations for the disturbance velocity,Ui

d ,

r f S DUi
d

Dt
1U j

d] jUi
01U j

d] jUi
dD 52] i P

d1m]2Ui
d ,

~A11!

] jU j
d50, ~A12!

with boundary conditions

Ui
d~r ,t !u ur 2xbu@a50,

~A13!

Ui
d~r ,t !u ur 2xbu5a5Vi~ t !2Ui

0@xb~ t !,t#.

Note that the gravity term is included only in Eq.~A8! for
the undisturbed flow since it does not depend on the velocity
field. The second and third terms on the lhs of Eq.~A11! are
due to the fact that the material derivativeD/Dt is defined in
~A10! with respect to the undisturbed flowUi

0 . Adding the
lhs of both~A8! and ~A11! produces the lhs of~A4!.

Now we can rewrite the integral on the rhs of~A2! as a
sum of two parts:

R
Sb

dSnj~2Pd i j 1s i j !5 R
Sb

dSnj~2P0d i j 1s i j
0 !

1 R
Sb

dSnj~2Pdd i j 1s i j
d !,

~A14!

where

s i j
d [m~] jUi

d1] iU j
d!.

The first integral term on the rhs of~A14! is the contribution
from the undisturbed flow,U0, and the second term is the
contribution of the disturbance field,Ud.

The contribution from the undisturbed flow can be cal-
culated explicitly for the case of the bubble with a radius
much smaller than the characteristic length scale of the flow.
Accordingly, the variations ofU0 and P0 inside the bubble
volume can be neglected and the integral on the rhs of~A14!
can be rewritten with the use of Gauss theorem as

R
Sb

dSnj~2P0d i j 1s i j
0 !5E

Volb
~2] i P

01m]2Ui
0!dV

.Volb Fi
0 , ~A15!

where the bubble volume Volb54/3pa3 and the forceFi
0 is

@cf. Eq. ~A8!#

Fi
0[2] i P

01m]2Ui
05r f S DUi

0

Dt
2gi D . ~A16!

The contribution of the disturbance field can be rede-
fined as

R
Sb

dSnj~2Pdd i j 1s i j
d !5Volb Fi

d . ~A17!

Assuming that the density of the bubble gas negligible
compared to that of the surrounding fluid, the equation for
the bubble motion~A2! reduces to26,6,7

05Fi
01Fi

d . ~A18!

The forceFi
d , caused by the disturbance, is defined by

Eq. ~A17! for the velocity and pressure fieldsUd and Pd

obtained from the solution of the equations~A11!–~A13! for
the disturbance flow. It is clear that the bubble motion@~A1!
or ~A2!# is coupled with the dynamics of the undisturbed
flow, U0, P0, defined by Eqs.~A8! and ~A9!. Once the
problem~A11!–~A13! for the disturbance field is solved, the
equation of the bubble motion is fully defined in terms of the
flow U0.

In general, the disturbance flow represented by~A11!–
~A13! has no analytical solution and can be obtained only via
a numerical solution of the 3-D time-dependent equations.
However, in the case of a sufficiently small bubble, for
which the inertia terms on the lhs of~A11! are negligible, the
problem is reduced to the unsteady Stokes problem:17

r f

]Ui
d

]t
52] i P

d1m]2Ui
d , ~A19!

] jU j
d50, ~A20!

FIG. 16. Flow decomposition in the vicinity of a bubble surface.
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with the boundary conditions~A13!. Then, the expression for
the force caused by the disturbance is given by Maxey and
Riley17 in the form

Fi
d5

9m

2a2
~Ui2Vi !1

r f

2 S DUi

Dt
2

dVi

dt D . ~A21!

The first and second terms in~A21! correspond to the Stokes
drag and added-mass forces, respectively. The contributions
due to the Basset and lift forces can be neglected in the
considered case of small bubbles.17,18
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