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Direct numerical simulations of bubble-laden turbulent flows using
the two-fluid formulation
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Direct numerical simulation§DNS) of bubble-laden isotropic decaying turbulence are performed
using the two-fluid approaciTF) instead of the Eulerian—Lagrangian approa@l). The
motivation for the study is that EL requires considerable computational resources, especially for the
case of two-way coupling, where the instantaneous trajectories of a large number of individual
bubbles need to be computed. The TF formulation is developed by spatially averaging the
instantaneous equations of the carrier flow and bubble phase over a scale of the order of the
Kolmogorov length scale, which, in our case, is much larger than the bubble diameter. On that scale,
the bubbles are treated as a continu@mithout molecular diffusivity characterized by the bubble
phase velocity field and concentratiGrolume fraction. The bubble concentratiof, is assumed

small enoughC=<10"2) to neglect the bubble—bubble interactions. As a test case, direct simulation
of a bubble-laden Taylor—Green vortex with one-way coupling is performed with a bubble response
time of the order of the flow time scalenverse of the mean vorticify This simple flow allows a

direct examination of the effects of the preferential accumulation of bubbles in the high-enstrophy
regions of the flow on the accuracy of the two-fluid formulation. The temporal development of the
maximum bubble concentration obtained from DNS agrees well with the analytical solution. DNS
of the bubble-laden decaying turbulence are also performed for both cases of one-way and two-way
coupling. Here, the bubble diameter and response time are much smaller than the Kolmogorov
length and time scales, respectively. In this case, as expected, the effects of the preferential
accumulation of the bubbles are not pronounced. The results also show that the bubble-laden flow
is analogous to a stratified flow with an effective densityl—C)p;. Thus, due to the two-way
interaction between the bubbles and carrier flow, the turbulence decay is enhanced with stable
stratification, and reduced with unstable stratification.1€98 American Institute of Physics.
[S1070-663(98)02203-X]

I. INTRODUCTION actual numberof particles. The accuracy of DNS results is
directly proportional to the magnitude of this fraction, being
All published DNS studies of turbulent flows laden with highest when the fraction equals untty.
particles adopt the Lagrangian—Eulerian approach. In this The alternative approach for predicting particle-laden
approach the carrier flow velocity field is obtained by solvingflows is known as the “two-fluid,” or “Eulerian—Eulerian,”
the Navier—Stokes and continuity equations at fixed mesRPProact’, and has been employed only with the Reynolds-
points, whereas the trajectories of the dispersed particles af¥eraged equations of motion, not with DNS. In this ap-

computed by solving the Lagrangian equation of particleproaCh' the governing equations are obtained by volume av-

motion? Employing this method to simulate turbulent flows eraging the equatmns of motion of both phaéum carner
. X . . flow and particles based on the assumption that the dis-
with two-way coupling between the particles and the carrier : . : N .
ersed particles behave as a “continuum” under certain con-

flow is limited at present anq in the foreseeable.future' by th itions. In predicting practical dispersed two-phase flows us-
memory and speed of available supercomputérsiuding g the two-fluid approach, time averaging is performed on

the latest parallel supercomputerBor example, for spheri- e yolume-averaged equations of motion, thus resulting in
cal particles with 50u diameter and occupying a volume the closure problem, where second- and higher-order corre-
fraction =103, we need about fOparticles per cify or  |ations of both phases need to be modeled.

millions of particles in a typical volume for a practical ap- The objective of this paper is to describe how DNS can

plication. This fact together with computer limitations forcesbe performed using the two-fluid approach for bubble-laden

all DNS of particle-laden turbulent flowvith two-way cou- homogeneous isotropic turbulence without forcing., de-

pling) to compute the trajectories afly a fraction of the caying turbulence
It is important to point out that in employing the two-

fluid approach a difficulty may arise due to the phenomenon
30n leave from the Applied Physics Institute, Russian Academy of Sci-Of preferential aCCUmUIaU(?n of the dlsper§eq pa.rt'des- It is
ences, 603600 Nizhni Novgorod, Russia. well knowrf that solid particles, due to their inertia, tend to
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accumulate in the low-enstrophy regions of the flow, mixture and neglecting the interactions between the bubbles,
whereas gaseous bubbles in a liquid flow tend to accumulatee write the following equations for the bubble-laden
in high-enstrophy regions, generally associated with the cerflow:®° (a) the fluid momentum equation,
ters of vortices. Preferential accumulation in homogeneous
turbulence is most pronounced for particles with5 response (l—C)pf%:—(l—C)ﬁiP'i‘o'?j(l—C)O'ij—CFid
times of the order of the Kolmogorov time scatg.” This t
segregation creates regions devoid of particles neighboring 1 .
. . . . . (1-C)pt96i; D
regions of high particle concentration. Therefore, performing
DNS using the two-fluid approach may generate large contb) the fluid continuity equation,
centration gradients causing numerical resolution and stabil- A
ity problems, thus restricting the implementation of that ap- —aCH(1-C)U;=0; e
proach. (c) the bubble-phase momentum equation,
In this paper we show that the two-fluid approach is dq.
applicable to bubbles with diameter smaller than the Kol- 0= ~CdiP+d;Coij+CF )
mogorov length scale, and accordingly their response time igd) the bubble-phase continuity equation,
much smaller than the Kolmogorov time scale. Thus, the
effects of preferential accumulation of bubbles in the high- 9 C+9;CV;=0. (4)

enstrophy regions of the carrier flow become less proj, the above equations); is the fluid velocity,V; is the

nounced, so that DNS with the two-fluid approach can bgejacity of the bubble phasey; is the viscous stress tensor,
successfully us_ed._ . gij=un(9;U;+9,U)), the Lagrangian derivatives
Turb_ulent Ilqmd flows laden with gaseous bUbbleSD/thalo?HUjaj and d/dt=a/at+V;4; are taken along
whose diameter is smaller than the Kolmogorov length scalgye rajectories of the fluid point and bubble, respectively,
exist in nature(bubbles in the wakes of ships in the ocean andg is the projection of the gravity acceleration on the
and in chemical processing industries. A recent Iaborator)éxis, gi=—9g4,. Here F¢ denotes the force acting on the

. . 6’7 .
experiment by Rightley(1995™" provides an example of p hpie due to the pressure and viscous stresses caused by the
such flows. In that experiment, a turbulent bubble-laden miXyisturbance flowJ® owing to the boundary conditions at the

ing layer was created, with momentum thickness Sy phe surface. The details of the derivation of E@—(4)
mms= <40 mm and fluid rms velocity 0.03 m#8;,:<0.05 5.0 given in the Appendix.

m/s. Microbubbles were generated with free-stream volume  gjnce we assume that the bubble mass is negligible, the

B _ _5 . .
fraction «=1.5X10"" and diameters in the range 2m gy, of the forces acting on the bubble must vanish, and thus
<dp=<100 um, which are smaller than the Kolmogorov e equation of the bubble motion becomes

length scale,, estimated ag;=400 um (for liquid water
viscosity v=10"% m?s). FO+Fd=0, 5

. The Paperis orgamzed as follows. In Sec. Il the govern whereF?, the force exerted on the bubble by the undisturbed
ing equations of motion of the bubble-laden flow and the, . U, . . .
. . fluid flow U", is obtained by integrating both the pressure
numerical method are described. The results for the bubble- . .
. . . and viscous stresses of the undisturbed flow over the bubble

laden Taylor—Green vortex and isotropic decaying turbu- . . .
. ) . surface. For small spherical bubbles with diameter much

lence with one-way coupling are presented in Sec. Ill. The

effects of the two-way coupling on isotropic turbulence aresmaller than the flow length scale,

discussed in Sec. IV. Concluding remarks are presented in  d,<L;, (6)
Sec. V. ) P
and with Weber number less than unlsfﬁ is given by
Il. GOVERNING EQUATIONS AND NUMERICAL 0 DUiO 0 0
METHOD Fi=pi| pr T9%iz) = —diP +djoy, (7

A. Equations of motion for the bubble-laden flow 0

where P° and o) are the undisturbed pressure and viscous
We consider spherical bubbles with diametemuch  stresses fields, respectivelgf. the Appendix.
smaller than the characteristic length scale of the flow, The prescription of the boundary conditions at the sur-
and average the equations of motion of the fluid and bubbléace of a spherical bubble depends mainly on the properties
over a length scale scalethat is much smaller thah; but  of the surrounding liquid and the bubble Reynolds number.
much larger than the bubble diametdrcA<L;. Thus the Available experimental datd 3 for a bubble rising in a
bubble phase can be treated as a continuum characterized Stagnant nonpurified liquid water with Reynolds number less
the velocity V,(r,t) and concentratiorfor volume fraction  than unity show that the drag force on the bubfik, is
C(r,t)=md>n(r,t)/6, wheren(r,t) is the bubble number described by the Stokes lal=37d,p;¥W (WhereW is
density. the bubble terminal velocijy rather than by the Hadamard—
We assume that the density of the gas and, consequentliRybczynski formulaD =27d,psvW. The reason is that in a
the mass of the bubble are negligible compared to those afonpurified water, the gas-liquid interface is “solidified,”
the surrounding fluidp;>pp,=0. Taking into account the owing to the presence of impurities. Thus, the boundary con-
effect of the bubbles on the fluid flow in a unit volume of the dition at the bubble surface is effectively equivalent to that
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for a solid sphere rather than the free-stress condition needed pu; 1
for the Hadamard—Rybczynski formulaThus, for bubbles oL Ef?iPJF vAU;+(C—(C))gd;;, (14
with Reynolds number less than unity,

dp|U°—V U.=
on bl V |<1! @® d;U;=0, (15)
the force due to the disturbance flo?, can be calculated ﬁngUi N i(U-—V-+W5~ ) 16
from the solution of the corresponding unsteady Stokes prob-  dt Dt 7, ' 127
lem in the form
dC
18u pi(DUY dV, L acv =
d_ =9 0\, PHZTEE O EYE +0,CV.=0. (17

The first and second terms i®) correspond to the Using the analogy between the bubbly flow and a stratified
Stokes drag and added-mass forces, respectively. In the coflow with density (1- C)ps, we remove the modified hydro-
sidered case of a small bubble, the Basset and lift forces cagtatic part in the pressure field in Ed4),
be neglected. The recent theoretical stufié€dshow that the
influence of the Basset force is negligible due to the en- ,
hanced temporal decay of the integral kernel. Also, the ex- ’|5:P+pfgf (1-(C))dz (18
perimental measurements by Sridhar and Kafiar bubbles 0
with diameters 50Qum<d, <800 um show that the effect of
the Basset force is negligible compared to that of the dragvhere(C) is the ensemble-averaged bubble concentration.
and lift forces. In addition, Maxey and Riltyshow analyti- In the following discussion, we evalua(€) as an average
cally that the lift force on a microparticle is negligible. over a horizontalz) plane.

Therefore, we neglected the Basset and lift forces in the Case Numerical method
of microbubbles. '

We obtain from Eq(5) an equivalent expression for the The momentum conservation and continuity equations
disturbance force: (14)—(17) for both phases are solved in a cubical domain
p 0 with periodic boundary conditions. The equations are dis-
Fi=—Fi, (100 cretized in an Eulerian framework using a second-order

finite-difference technique on a staggered grid containirty 96
points equispaced within unit length in each of three coordi-
nate directions X,y,z). The Adams—Bashforth scheme is
used to integrate the equations in time. Pressure is obtained
by solving the Poisson equation using Fast Fourier Trans-
form. More details about the numerical method and its accu-
racy are discussed by Elghobashi and Truesde(erz
et al,?® and Schumanft

We perform the DNS for two different flows: the

whereF? is given by (7).

Therefore, the equation of the bubble moti&h can be
rewritten in the form

Vi PY L L Uty ws 11

dt ~ ~ Dt Tb( b i2)s (1)
where the bubble response timg and terminal velocityV/
are defined as

g2 Taylor—GreenTG) vortex and the decaying isotropic turbu-
=36, (12 lence. The TG flow field is discussed in detail in Sec. lll. In
the case of decaying turbulence, we use an initialization al-
and gorithm to generate a divergence-free random fluid velocity

field with a prescribed energy spectruatk) and spectral
W=2m,g. (13 cross-correlations matriR;; (k) of the velocity and scalar

In Egs.(1)—(4), (11), and the following discussion we omit concentration, satisfying the realizability constrafitshe

the superscript “0” in the notation for the undisturbed flow initial energy spectrum is prescribed by

uo.

We assume that the bubble concentrati@n,is small 3ug K K
enough(i.e., C<10 3), and thus neglect its contribution to E(k,0)= P —Zexp( - k_)‘ (29
the fluid inertia and continuity, i.e., we retaf only in the 7 kp P
buoyancy term in the momentum equation of the carrier flow
(1). This is analogous to the Boussinesq approximation in avhereuy is the dimensionless rms velocitig=1, .. . Ng/2
stratified fluid with effective density (£ C)ps. is the wave number for the given grid resolutidd,& 96),

Substituting the expression for the disturbance force obandk, is the wave number of peak energy. The wave number
tained from Eqs(10) and(7) into the equation for the fluid is normalized by the lowest nonzero wave numkegp=21.
momentum(1), and using(11), we write equations of the The dimensionless kinematic viscosiyis calculated from
conservation of the fluid and bubble phase momentum anthe prescribed initial microscale Reynolds numbefRend
mass in the forrf the computed initial dissipatioa(0).
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ll. RESULTS C/C,,0°/w? t=12.0
1.0 T
In this section we present the DNS results for bubble y @ \g .
dispersion in a TG vortex with one-way coupling and isotro- ~F s on
pic decaying turbulence with both one-way and two-way ' ose
coupling. os

06

A. Dispersion of bubbles in a Taylor—Green vortex Y

Here we study the dispersion of small spherical bubbles 3

in a Taylor—Green vortex flow with one-way coupling. The

main objective of this test case is to examine the effects of o2
the preferential accumulation of bubbles in this flow on the
performance of the numerical method with the two-fluid ap-
proach.

This flow re-presents an e).(aCt two-d|men3|(.)nall tlme_FIG. 1. Enstrophy and bubble concentration normalized by the maximum
dependent solution of the Navier—Stokes equa%mth values.(The increment for the enstrophy isolines is equal to the increment in
velocity componentsy,,U,,0). The corresponding instan- the table for the bubble concentratipn.
taneous, local streamfunction can be written as

Re=5000,7,=0.25
(1-way,C,=0,)

1.0

o
W(x,y,t)= Fexp(— vk?t)coskyx cosk,y, (200 dimensional, the numerical method uses a three-dimensional
(3D) algorithm, and the flow is homogeneous in thdirec-
wherew is the initial vorticity maximumk, andk, are the  tion.

wave numbers irx andy directions, and<2=k)2(+ k§, The Figure 1 shows the contours of the enstropty, and
flow vorticity, w, and pressure?, are bubble concentratiorC (in the gray scalein the (x,y) plane
atz=0.5 and timet=12. The figure shows that the bubbles
— & _ % — K2 (21) accumulate, and sharp peaks of the concentration are formed
X ay ’ at the vortex centers located at points=0, y=0) and
1 aw\2 | w2 (x=0.5, y=0.5), corresponding to the local maxima of the
P=Py— = (—) + ( —) + klefz}. (22)  enstrophy.
2|\ ax ay In order to quantify the accumulation effects and the

correlation between the flow enstrophy and bubble concen-

The fluid velocity components are ' . - !
tration, we calculate the average concentration and its vari-

v Ky ) ) ance conditioned on the magnitude of enstrop|®), and
UXZW =— woﬁexp(— vket)coskx sinkyy, (23 (C'?),,, defined as
AY Ky o N(w?)

Uy=- i woﬁexp(— vket)sin kyx coskyy.  (24) (C),= o le C,/Co. (26)
We assume that the gravitational acceleration is normal to
the flow plane(x,y), so that it does not affect the bubble N(w?)
dynamics on that plane. Cc'?),= > (C| /Co—{(C),)?, (27)

The computations are performed for a flow Reynolds N(w?) /=1

number Re= 1/»=5000 and an initially uniform concentra-

tion (volume fraction of bubbles with response time whereN(w?) is the number of grid points where the enstro-
m,=0.25. We set the parametekg=k,=27 and wo=1.  phy value lies within the rangd w? w’+Aw?], where
The initial fluid velocity and pressure are prescribed by EqsA »?=0.025. Figure 2 shows the dependence(©§,, and
(22), (23), and (24) at t=0. The initial horizontal velocity (C’2), on the enstrophy of the flow displayed in Fig. 1. As
components/, andV, of the bubble are set equal to zero, expected>?*both the bubble concentration and its variance
increase with increasing?. The growth of C’?)  is caused

V.= V,=0. 2 . . .
=0, Vy=0 (25 by the preferential accumulation of bubbles in a smaller
The initial bubble concentration is a uniform constant,number of computational cel[see Eq.(27)].
Co= aq, Where the reference bubble volume fractiog is The growth of the bubble concentration at the vortex

assumed to be sufficiently small to neglect the influence otenters can be described analytically, provided that the
the bubble on the carrier flof.e., only one-way coupling is bubble response time is small compared to the flow time

considered scale, i.e.,r,<7;. The flow time scaler;, in the case con-
The direct simulation is performed with a mesh of (96) sidered here is of the orderdd~ 1. In this case, an approxi-
points and continued for dimensionless time3<14. Al- mate solution of Eq(16) for the bubble velocity can be

though the TG-vortex flow studied here is essentially twowritten in the forn?>2°
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Re=5000,7,=0.25,t=12.0 Re=5000,t,=0.25
2172 <C> 4

1.4;— <C o m: | Crn/Co |VC|m/CO

FIG. 2. Dependence of the enstrophy-conditioned average bubble concefi!/G. 3. Time dependence of the maximum bubble concentration and the

tration (solid curve and its variancédashed curveon the flow enstrophy. ~ modulus of the concentration gradient in the Taylor—Green vdfteékand
dashed curves, respectivelirhe dotted curve corresponds to the analytical

solution (33) for the concentration.

DU,
Vy=U,+27,—— +O(wird),
X~ xT Ty (©97p) This drift is caused by the pressure gradient force, directed

DU toward the vortex center, which, for a bubble, is not balanced
Vy=U,+27, y +O(w§r§), by the centrifugal fprce. _

Dt Now, the solution for the maximum bubble concentra-
tion, i.e., at the vortex centet,,,, for an initially uniformC,
E‘ obtained using29) and(32) in the form

(28)

whereD/Dt= d;+ U,dx+U,d, andwimh=1/16<1. The dy-
namics of the bubble concentration is then described by th

equation 2
ZTb kxky 2
DC 5| 2 PUx|, 7 DYy 2 Cm=Co exp —=| wo 3 [1—exp(—2vk7t)]|. (33
bt 2™ ot ) Pyl C o) @9

o Figure 3 compares the time evolution of the maximum
In the vicinity of the vortex centerxe=0, ye=0), corre-  ,,phje concentration, i.e., at the vortex center, normalized by
sponding to the elliptic stagnation point, the fluid velocity yhe jnitial concentratiorC,, obtained from the analytical so-
field corresponds to that of a decaying “solid” vortex, and lution (33 (dotted ling with that of DNS (solid line) at
the velocity components in theandy directions are (x=0.5,y=0.5). The agreement is excellent uptte8, after
2 which a small difference occurs due to the continuous
Ue=— KYY ool — o2 th of th trati dient
S~ — wo—-exp( — vk?t), (30)  growth of the concentration gradient. _
The figure also shows the time dependence of the maxi-
2 mum modulus of the concentration gradie@ dashed
Uizwoixexq—vkzt), (31) curve. The corrlputatlons are performed until t|_me=.14, .
K2 when |VC|,,/C,=200. It should be noted that this time is
equivalent to nearly 14 times the eddy turnover time of the
for |x|<1, |[y|<1. Thus, the solution28) for the bubble flow considered. Continuation of the simulation beyond this
velocity can be recast as time results in numerical instabilities due to the development
of large concentration gradients.
In order to estimate a critical value of the local concen-
tration gradient we consider the following condition for the
(32 smoothness of the bubble concentration field:

21,2
Ve=U§— ZwagX% exp(— 2vk?t),

21,2
Ve=Ue-2 2 KKy —2vk?
y=Uy— 2705y o exp( —2vk4t). |VC]
Co

Ax<1, (34

The first terms in Eqs(32) are the fluid velocity compon- . . _ .
ents,Ug,, associated with the solid vortex rotation and thusWhereAx is the grid cell size §x=1/N,) andC is a local
contribute to the corresponding rotation of the bubble. The&oncentration. Then the critical gradigimiC|, is given by
second terms represent the first-order correction caused by

the inertia of the bubble, owing to the added mass, and de- |VC|CFNA

_ e b x~ L. (35)
scribe the radial drift of the bubble toward the vortex center. Co
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In our DNS att=14 we find the critical value of the concen- less than 1. Substituting the terminal veloci#3) and the

tration gradientVC|,m/Co~ O(10?) (cf. Fig. 3 whichis of  bubble diametefd,= (36v7,)*?] in (37) and(38), and using

the order ofAx ! for the given grid resolutionNy= 96). the equality 7°=v7,, we rewrite the conditiong37) and
Note that in spite of the large value of the concentration(38), respectively, as

gradient for times 5t<14, there is a good agreement be-

tween the analytical solution for the maximum concentration ﬁ<i:0_028, (39)
(33) and the numerical result$-ig. 3), indicating that nu- T 3
merical diffusion effects remain negligible. and
Therefore, the results of this test case show that it is s
possible to use the two-fluid approach for the flow condi- v
tions, where the effects of preferential accumulation are re- b<( 14492) T T (40)

solved appropriately.
Note that in the considered test case, the bubble response It should be emphasized that the conditi¢83) and(40)
time (r,=0.25) is of the order of the flow time scale are essential for the derivation of the bubble motion equation
(r4=1), and the effects of bubble accumulation are pro-(11). Thus, violating either of these conditions renders the
nounced. In the next section we study the dispersion oequation of motion(11) invalid. Note that Wang and
bubbles in a decaying isotropic turbulence, assuming that thiMlaxey?” and Maxeyet al2* performed DNS of isotropic tur-
bubble diameter is much smaller than the Kolmogorovbulence laden with bubbles with,= 7, using the Eulerian—
length scale. In this case, the bubble response time is mudtagrangian approach and Ed.1), i.e., violating the condi-
smaller than the Kolmogorov time scale, and the effects ofion (39).
the preferential accumulation are not pronounced. Note also that in the case of solid particles, the condition
d,<7 (which is also required for the derivation of the par-
ticle motion equationis equivalent to ¢,/7)<(p,/18ps),

B. Dispersion _of bubbles in iso_tropic decaying which allows (r,/7) to be=1 for p,>18p;.

turbulence  (with one-way coupling ) In our DNS of bubble-laden decaying turbulence we pre-

DNS of bubble dispersion in isotropic decaying turbu- Scribe7,=0.04r,,, where the initial dimensionless Kolmog-
lence is performed with the following initial conditions: Orov time scale isr=0.15. The bubbles are added to the
Re,o=25, uy="0.05, andk,/ky,=5, which correspond to flow at time &1, when the magnitude of the skewness of the
the initial dissipatione(0)=0.002 584, Taylor microscale fluid velocity derivative reaches about 0.47, indicating an
\o=0.027 877, Kolmogorov length scalg=0.002 861, in- established rate of energy transfer across the energy spec-
tegral length scale L,=0.057 815, and viscosity trum. At that time, 7, increases to 0.22, so that ratio
»=5.57x10"5. The dimensionless gravity constagtis  7b/7«=0.027 and the time, =0.0073[see Eq(40)]. Since
considered equal to unity. The reference length and timék increases monotonically in decaying turbulence, the con-
scales used in normalizing the above dimensionless quantfition (39) is satisfied throughout the simulation. Thus, both

ties areL o= 0.098 m andT,=0.1 s, respectively. conditions(39) and (40) are met for the prescribed value of
The initial bubble velocity and concentration are pre-7h- The corresponding bubble Reynolds num(&S8) equals
scribed as 0.74(i.e., of the order of unityand the dimensional bubble
diameter isd,=350um (for the bubble to remain spherical
Vi=8,W,  Co=ao, (38 in liquid water, i.e..d, is less than 1 mm Therefore, the
where the bubble terminal velocity is given by(13). prescribed value ofy, is close to the maximum limit for the

The ability of the simulation to resolve the motion at the validity of the equation set14)—(17).
smallest turbulence scales is assured by the criterion Figure 4 shows the time development of the turbulence
7Kmax>1, wherekn,=Ngm is the highest resolved wave kinetic energyE(t) and its dissipation rate(t) and the con-
number for the given number of grid points in each coordi-centration variancéC’?)=((C—(C))?) calculated from the
nate directioNy (=96 in the present caseOur simulations ~ corresponding spectia(k,t) andEc(k,t) as

show that & 7k,,=2.65 for 0.75t<10. Ng/2

The choice of the bubble response time is restricted by ()= E(k,t), (41)
the conditiong6) and(8), which can be rewritten in the form k=1

dpy<n, (37) Ng/2 ,
and e(t)=2vgl K2E(K,t), (42)

wd
Re,=—"2<1. (3 2
14 Ng/2

The first condition ensures that the bubble size is smaller (C'2>(t):gl Ec(k,t), (43)

than the characteristic flow scale, i.e., the Kolmogorov

length scalen=(v°/€)¥* in the case of decaying isotropic and normalized by the respective initial valugg), €(0),
turbulence. The second condition restricts the bubble Rewmdcg. Both E(t) ande(t) decay in time due to the viscous
nolds number, based on the bubble terminal velocity, to belissipation. On the other hand, the bubbles concentration
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Re,,=25,1,=0.041,, (1-way,C=a,)

(1-way,Cy=0,)

FIG. 6. Turbulence enstrophy and bubble concentration normalized by the
maximum values.

FIG. 4. The time dependence of the normalized turbulence kinetic energy
E(t)/E(0) (solid curve, its dissipation rate(t)/e(0) (dashed curve and

bubble concentration varian¢€’?2)/C3 (dash—dotted curye tuation intensity piles up at larger wave numbgas Fig. 5.

Note, however, that the concentration variafé8 remains
finite and small, relative to the average concentraiizf
variance first increases from zero ¢€'?)=5.1x10"3C3  throughout the computatiortsf. Fig. 4.
(for time 1<t<5, wheret=1 is the time of injecting the Figure 6 shows the DNS results obtained a8 for the
bubbles into the flow and then decays. The growth of the bubble concentratiorigray scalg and flow enstrophy field
concentration variance is caused by the preferential accumicontour lineg in the (x,y) plane atz=0.5. Although the
lation of bubbles in the high-enstrophy regions of the flow.bubble response time is much smaller than the Kolmogorov
The effects of the bubble accumulation, as well as the decalfme scale, we still observe the accumulation of bubbles in
of the concentration variance for-5, are discussed below. the zones of maximum enstropkgorresponding to the cen-
Figure 5 shows the spectra of the fluid kinetic energy,ters of intense vorticesThis means that even for such small
E(k), the dissipatione(k) = 2vk?E(k), and the bubble con- 7 the bubble inertia, owing to the added mass, influences the
centration fluctuationsE(k) at timet=3 [here and below, bubble motion, and causes the preferential accumulation of
for convenience, we omit the explicit reference to the timebubbles in the high-enstrophy regions of the flow and the
dependence dE(k,t),e(k,t), andEc(k,t)]. At this time, the  initial growth of the concentration variance. Note that the
energy spectrum peaks lat 3. Note that since the transport time intervalAt=2 corresponds approximately to six char-
equation of bubble concentration is of the advectiba-  acteristic vortex time scale¢w?)~*/% estimated as an aver-
grangian type, there is no molecular dissipation of the age Kolmogorov timer, for 1<t<3, (w?) Y2~ 7,=0.3.
bubble concentration fluctuations. Thus, there is no decay in  In order to quantify the accumulation effects we calcu-
the spectrunEc(k) at high wave numbers, rather, the fluc- lated the enstrophy-conditioned average bubble concentra-
tion, (C),,, and its variance{C'?),,, using the data shown
in Fig. 6 and Eqgs(26) and(27) with the enstrophy increment
Re,,=25,7,=0.041,,,t=3.0 (1-way,C =0,,) Aw?=0.5. Figure 7 shows the dependence (@f), and
1 10° (C'?), on w?. As in the case of bubble dispersion in the TG
] vortex discussed earlier, botiC), and(C'?), increase in
the high-enstrophy regions of the flow. However, since the
bubble response time is much smaller than the Kolmogorov
time scale, the bubble preferential accumulation is signifi-
cantly reduced compared to the TG-vortex case, where
=75 . Note also that fluctuations of bofit),, and(C'?),,
grow as the enstrophy increases, which shows the intermit-
tent nature of the high-enstrophy regions in turbulence.
Now, we introduce a mathematical model to explain

T A 107

7 10° how the ratior, /7, governs the preferential accumulation
. ] process and the growth of the local concentration gradients
] in isotropic turbulence.
10° : P s RN Let us consider a single vortex with a radius of the order

1 k ' of the Kolmogorov length scalep and core vorticity

FIG. 5. Spectra of the turbulence kinetic enefgfk) (solid curve, dissi- wO:l/Tk' Assume that the bubble response time Is much

pation e(k) (dashed curye and bubble concentration fluctuatios(k) smaller than the K(_)lmOQOrOV time SCf_ileo/Tk<1- Then,
(dash—dotted curye the local accumulation rate can be estimated from the solu-
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Re,,=25,7,=0.041,,,t=3.0 (1-way,C=0,) Re,,=25,7,=0.047,, (1-way,C=0,)

* _ <C’2>:D/2 <C>, :j 10° Ec - 2
[ e
04 13 10° e :?o

10*

10°

10°

LREELLL AN WAL BN ELLL BRI BT |

107

T TR

10° . RS EATE WRTTTTIT M T
FIG. 7. Dependence of the enstrophy-conditioned average bubble concen- K 10 20 30 40
tration (solid curve and its variancédashed curveon the enstrophy.

FIG. 8. Instantaneous spectra of the bubble concentration fluctu&jgky
at four different timegwith one-way coupling

tion (33) for the bubbles concentration in the TG vortex as

(?C/(?t Th
C—:wa(%:—z- (44)  solved, i.e. k=1, wherekm,=Ngm is the maximum
0 Tk wave number for the given grid resolutiddy=96. The nu-

Thus the difference in bubble concentration between the inmerical instability may occur for higher-inertia bubbles, i.e.,
side and outside of the vorteAC=C;—C,, is related to for 7, of the order of the Kolmogorov time scalg. How-

(7p/7) via ever, prescribing,= 7, would violate the conditiord,< 7,
which is necessary for deriving E¢L6) of bubble motion.
&: E' (45) In our DNS we prescribe,= 0.04r,,=0.006 for which
Co 7 the bubble diameterd,=3.47x10 3) is smaller than the
and the corresponding concentration gradient is Kolmogorov length scale at the time of the bubble injection
(p=3.5x10"% att=1) (both d, and » are dimensionless
V| NA_CNE (46) herg, to remain within the validity limit of Eq.(16). No
Co Com n7¢ instability occurs in our DNS under these conditions for both

cases of the initially uniform and the initially linear bubble

concentration fields. This is evident in Fig. 8, which shows

|VC| Th AX the instantaneous concentration variance spectra, obtained
Ax=——<1. (47

C, T« 7 from our DNS for the initially uniform bubble distribution, at

The relations44) and (46) show that both the accumulation four d|ffergnt t_|mes. The time evolutlon_ of the conceqtratlon_
spectrum in Fig. 8 and the corresponding concentration vari-

r_ate and the Ioc_al concentration gradient are directly proPorénce,(C’2> (the dash—dotted curve in Fig) how that no
tional to the ratio ¢,/7) for r,<m.

Note that according t645), the variance of the concen- numerical instability occurs. The spectruby(k) at high

tration fluctuations is proportional to the ratiey( 7,)? that wave numbers approaches an asymptotic for 0 (Fig.

decreases with time in decaying turbulence, since the Koli—g)' The high wave number range in the spectrire.,

: : . : . . _k=40) would detect any numerical instability if it existed.
mogorov time scale increases monotonically. This predlctlori:urthermOre Fio. 4 shows that the concentration variance
agrees with our DNS results fofC’2) in Fig. 4, which » 119 ’

: : v C'2), decays with time fot>5.
shows that the concentration variance decays with time afte@ The reason for the absence of the instability is that the

<t<5). : .
the initial transien(1<t<5) . fluctuations of the bubble concentration, caused by the pref-
It should be noted that both the accumulation of bubbles . . . .
e . _erential accumulation, are proportional to the raiiér, that
and the absence of the diffusivity in the transport equation

for the bubble concentratiofi7) may lead to instabilities in decreases with timéapproximately as-1/t) in decaying

. . turbulence, as discussed above.
the numerical solution due to the development of steep gra-

dients in the concentration field. The occurrence of this nu-

merical instability depends on the initial distribution of the C. Two- i - q . bul
bubble concentration, the flow Reynolds number, and the™ wo-way coupling effects on decaying turbulence
bubble response time. In our DNS we chose the initial mi-  Here we examine the effects of the dispersed bubbles on
croscale Reynolds number Re=25, so that at time of the the temporal development of decaying isotropic turbulence.
injection of bubblest=1) the small-scale motions are re- We consider three cases with different initial bubble concen-

The smoothness conditid34) is then rewritten in the form
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tration profiles in thez direction, but with the same bubble Re,,=25,1,=0.047,,,t=3.0 (2-way)
response time as in the one-way coupling case. 1.0E6
The first case is for a uniform initial bubble concentra- 4.,f EowEw Co=at,
tion, 6087, /ﬁ‘-. A Cy=0,(1+2)
Co=ao, (48) 4087 7" Y \'\_\\ S Cy=0,,(2-2)
whereay is a reference concentration set equal to 0.005 tCze7
allow neglecting bubble—bubble interactions. 0080 e
The second case is for stable linear stratification, with a PR
constant concentration gradient in the verti@lcoordinate, %" L T
Co=ao(1+2), (a9 TR A
SOE-7F N T
while the third case is for unstable linear stratification, ok v
COZQ’O(Z—Z). (50) P R [ SR EE S S S B S
0 10 20 30 40
In the cases of stable and unstable stratification, periodic k
boundary conditions in the direction are imposed on the FiG. 9. Modification of the turbulence kinetic energy spectrum in a bubble-
instantaneous concentration fluctuatioh=C—(C). laden decaying turbulence.
We first consider the modification of the turbulence en-
ergy spectrum. We define a band-averaged kinetic energy
spectrumig(k) as case of stable stratification, the transfer of energy from lower
to higher wave numbers is reducdsince the difference
E(k)zl ; lU(K)|2. (51) TZW—le_ is positive compgred to the one-way coupling
2 k<|K=<k+1 case, owing to the bubble-induced buoyancy. On the other

hand, in the case of unstable stratification, the transfer of
energy from low to highk is enhancedi.e., the difference
T,w— T1w IS Negative. In the nonstratified case, the two-way
coupling does not affect(k).

HE(K)=T(K) — e(k) +Wy(k), (52) The source term¥ ,(k), or spectral buoyancy fluxes, in
the three cases are shown in Fig. 12. Comparing it with Fig.
11 for the modification of the energy transfer function, we

Performing the Fourier transform of the fluid momentum
equation(14) and using the incompressibility condition for
the fluid velocity[ kU 5(k) =0] we obtain

where dissipatiore(k) is

e(k)=2vk’E(k), (53)  find that spectral peaks of boti,(k) and (To,— T1,) [Of
and the band-averaged spectral energy transfer funtlen  the orderO(107)] are located in the wave number range
is 0<k<10. Consequently, the peaks of the energy spectra dif-

ferences E,,—E;,) are of the ordelO(10™’) and are lo-

T(k)= T(k) (54) cated in the same wave number rarigle Fig. 9 and Figs. 11

k<|k§k+l ’ and 12.

Figure 13 shows the difference between the kinetic en-
TK)=Im| k> U (k")U (k=K HU*(K) |. (55 ergy spectra of the bubble phase and the fluid

( e " " " [Ep(K)—E(K)]. In all cases the bubble kinetic energy(k)

The source of the modification of the energy spectrum and
spectral transfer processis,(k), which can be regarded as

a spectral buoyancy flux, analogous to that in a stratiﬁeczo&7 )
fluid with densityC’, and is defined as

Re,,=25,7,=0.041,,,t=3.0 (2-way)

1.6E-7

W (k)= Py(k), (56) 1267
k<|K|<k+1 sore
Wy(k)=g REC' (UZ (K)]. Y

Figure 9 shows the difference between the energy spec o.oe0
tra in two-way and one-way coupling cases computed at time
t=3. As expected, the turbulence energy increases in thi
case of unstable stratification and is reduced in the case ¢**®®f
stable stratification. In the nonstratified two-way coupling -12&-7
case, the spectrum remains practically unchanged compare, g, F
to the one-way coupling case. Figure 10 shows the corre
sponding modification of the dissipation functiefk).

Figure 11 shows the effect of bubbles on the turbulence
energy transfer functioif (k) in the three test cases. In the FIG. 10. Modification of the turbulence dissipation spectrum.

4.0E-8 |-

=}
=
N
=3
15}
=3
IS
[
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Re,,=25,1,=0.041,,,t1=3.0 (2-way) Rem=25,’cb=0.04’ck0,t=3.0 (2-way)
— 3.0E-7 4.0E-7 -
1.0E5 |
T1w T2w-T1w Eb'Ef - Co=a0
e C,=0,(1+2)
50E6 BOETEL C.=a,(2-2)
1.0E-7 0~ 0
0.0E0 0.0E0 0.0E0 |ry_
-1.0E-7
-5.0E-6 | -2.0E-7
-2.0E-7
1.0E-5
P E I N R Y14 AU RS S RS S S RS T RS
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k k

FIG. 11. Modification of the spectral energy transfer function. The energyFIG. 13. The difference between the bubble and fluid kinetic energy spec-
transfer function in the one-way coupling cadg,(k), is shown by the  tra.
dotted curve.

stable and unstable stratification, respectively. These results

is reduced in the smak-region of the spectrum compared to suggest a closure model for the correlati@®’U,) in the
E(k) due to the bubble inertié.e., owing to the added-mass form
inertia). However, since the bubble response time is much
smaller than the Kolmogorov scale, the observed difference (C'U,)=-D
is only of the order of 1% of the energy peBl,.(K)=10*
(cf. Fig. 5. with a uniform diffusivity coefficientD, .

The transport equation for the turbulence kinetic energy, Figure 15 shows the time development of the turbulence
E(t)=3|U(r,t)|?, can be obtained either from E¢2) by  kinetic energy relative differenceEg,,—E,)/E;, due to
integrating overk, or directly from Eq.(14) for the fluid  the two-way coupling. As expecteB,,(t) is reduced com-

momentum by ensemble averaging, in the form pared toE4,(t) in the case of stable stratification, and in-
creased for unstable stratification. In the nonstratified case,

25<C>v (59)

HE=—e+g(C'Uy). (58 the modification ofE(t) compared to the one-way coupling
Equation(58) shows that the modification d(t) is caused case is negligible.
by the buoyancy flux terng(C’U,). We evaluate this term Therefore, two-way coupling enhances or reduces the

from our DNS results as an average over a horizontal planéirbulence decay rate depending on whether the stratification
(x,y) for each z. Figure 14 shows the dependence of(due to the bubblgss stable or unstable, while in the non-
(C'U,)IC, on thez coordinate. We find that the buoyancy stratified case there is no influence of the bubbles on the
flux is nearly constant of value zero in the nonstratified casefurbulence dynamics.

and nearly uniform negative and positive in the cases of

Re,=25,7,=0.041,,t=3.0 (2-way)

Re,,=25,1,=0.047,,t=3.0 (2-way) 3.0E-3

' - C=
Joe <C'U /0, Co % 1
¥ B =0, (142
soe7f P - C0=o‘o 2083 CO 022 ))
2 T =0, (2-Z
A — 0 0
coer b A C,=0,(1+2)
A 0o 1esf . A PPN
\ - e per N TN s T - - .
ae7f VN T C,=0,(2-2) : , e
4:
2.0E-7 1 \\,\ 0.0E0 N D NI N WA e
0.0E0 T o
2087 | o VOESEe - N TN e e e
.“ ,—, ~7 ~ - ~
ae7h
Leon S 20E-3 |
60TV
60E7 "
W
807 T R T S S
L 0.0 02 04, 08 08 1.0
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FIG. 14. Dependence of the normalized buoyancy fi,U,)/a,, aver-
FIG. 12. Spectral buoyancy flu®,(k). aged over horizontalz) planes, on the coordinate.
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Re,,=25,7,=0.041,, (2-way) above are obtained for comparatively low Reynolds numbers
020 —— C=q, and smooth initial bubble distribution to ensure a sufficient
sk EnEwEn® C=0,(1+2) resolution of the fluid and bubble velocity and concentration

fields. In a recently completed stufdyve examined a decay-
010 o ing isotropic turbulence laden with solid heavy particles with

wsh a response time much smaller than the Kolmogorov time
' e scale of the turbulence. In this case, the TF formulation is

0,00 [——mwazzzzs=T analogous to the “dusty gas” formulatich:?®
0.05 | -\_"\“-x__
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FIG. 15. Time development of the turbulence kinetic energy modification. APPENDIX: EQUATION OF MOTION OF A SINGLE
BUBBLE IN A NONUNIFORM FLOW

Consider a spherical bubble of radais d/2 and density
pp located atx,(t) and moving with velocity,

We have performed direct numerical simulatigbs\S) d

. X . . X;

of bubble-laden isotropic decaying turbulence using the two-  v;(t)= —, (A1)
fluid approach(TF) instead of the Eulerian—Lagrangian ap- dt
proach (EL). The motivation for this study is that EL re- in a nonuniform fluid flowU;(r,t). The equation for the
quires considerable computational resources, especially fasubble velocity is
the case of two-way coupling, where the instantaneous tra- :
jectories of a large number of individual bubbles need to be mbd_t':mbgi+ % dSn(—Pé&;+0y), (A2)
computed. Sy

We developed the TF formulation by spatially averagingwheremb:4/377a3pb is the mass of the bubble/dt is the

the instantaneous equations of the carrier flow and bubblg o:arial derivative along the bubble trajectogy,is the ac-
phase over a scale of the order of the Kolmogorov lengthejeration due to gravity, and the integral is taken over the

scale, which, in our case, is much larger than the bubblg ;e surfaceS,, where|r—x,|=a. The viscous stresses
diameter. On that scale, the bubbles are treated as a CORsnsoro

tinuum (without molecular diffusivity characterized by the
bubble phase velocity field and concentrati@olume frac- L adl
tion). The bubble concentratioft, is assumed small enough gij T H IXj O
73 _ . .
(C=<10") to neglect the bubble—bubble interactions. where . is the dynamic viscosity of the fluid.

As a test case, we performed direct simulation of a™“rp o e field and the fluid velocity fieldU in

bubble-laden Taylor—-Green vortex with one-way coupling .
and a bubble response time of the order of the flow time(AZ) and (A3) are generally obtained from the boundary

scale(the inverse of the mean vorticjtyThis simple flow Sac:j?é?mb;gr?g\l/)?t:g dforr: grlvggu?%v;r atcg]:]giltti%r?s” gt]ethe
allows a direct examination of the effects of the preferential brop y

accumulation of bubbles in the high-enstrophy regions of th bubble surface. For a small bubble in liquid water, the
an phy reg %oundary conditions generally are well approximated by the
flow on the accuracy of the two-fluid formulation. The tem-

- . e . . _12 _
poral development of the maximum bubble concentration ob!° slip conditions for the fluid velocity:™** Thus, the cor

tained from DNS agrees well with the analytical solution. responding equations are formulated as

DNS of the bubble-laden decaying turbulence were also  p¢(d;U;+U;d;U;) = — 3P+ ud*U;+ psQ; , (A4)
performed for both cases of one-way and two-way coupling. 59U =0 (A5)
Here, the bubble diameter and response time are much “171 =
smaller than the Kolmogorov length and time scales, respeawhered;= d/dx; . The boundary conditions are
tively. In this case, as expected, the effects of the preferential Ui(r.1)] —Ur.)
accumulation of the bubbles are not pronounced. The results '+ /1l =xpl>a= =it
show that the bubble-laden flow is analogous to a stratified Ui(rat)||rfx —a=Vi(t),
flow with an effective density= (1—C)p;. Thus, due to the b
two-way interaction, the turbulence decay is enhanced WitlwhereU?(r,t) is the undisturbed fluid velocity sufficiently
stable stratification, and reduced with unstable stratificationfar from the bubble surface.

The results show that the TF approach can be success- It is convenient to represent the fluid velocity; as a
fully implemented in the DNS of turbulent flows laden with sum of the undisturbed velocity)?, and a disturbance ve-
microbubbles. It should be noted that the results discussedcity, Uid, brought about by the bubble,

IV. CONCLUDING REMARKS

is defined as
U, auj)

ij

(A3)

(A6)
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S dSr](—Pﬁij+0'ij)= %5 dSr](—P°5”+0'?J)
b b

+ 35 dsn(—Pis;+ o),
So

(A14)

where

The first integral term on the rhs ¢A14) is the contribution
from the undisturbed flomiJ°, and the second term is the
contribution of the disturbance fieldl®.

The contribution from the undisturbed flow can be cal-
FIG. 16. Flow decomposition in the vicinity of a bubble surface. culated explicitly for the case of the bubble with a radius
much smaller than the characteristic length scale of the flow.
Accordingly, the variations ob)® and P° inside the bubble
volume can be neglected and the integral on the riiad4)

Ui(r,t)=UP(r,t)+ U(r,1). (A7) can be rewritten with the use of Gauss theorem as
Figure 16 shows the decomposition of the flg#7) in the dsn(—P%s. + o0 :f — 9P+ ua2U%dV
vicinity of the bubble surface for a case of rectilinear motion S i1 it o) olb( P )

(i.e., where the bubble and undisturbed fluid velocitiés,

__ 0
andU°, are parallel =Vol, F7, (A15)
The undisturbed fluid velocityJio, satisfies the Navier— where the bubble volume Vipk 4/37a® and the forcd:? is
Stokes equations, [cf. Eq. (A8)]
0
Du? DU
pr_t': — 3P+ nd?UP+ pg; (A8) F?E_ﬁipo+“&2U?:pf(D_'tl_gi)' (A16)
o The contribution of the disturbance field can be rede-
9;U)=0, (A9)  fined as
where _dSn(—Ps;+0f)=Vol, FY. (A17)
b
D/Dt=g,+U%; . (A10)

Assuming that the density of the bubble gas negligible

From Egs.(A4), (A5), and (A6) we obtain the following compared to that of the surrounding fluid, the equation for
: J ’ ; 6,7
equations for the disturbance velocity?, the bubble motior(A2) reduces t&

DU 0=FP+F. (A18)
P D—t'+U]-dajU?+ Ufa,uf| = —g,P%+ na?uy, The forceF{, caused by the disturbance, is defined by

(ALD) Eq. (A17) for the velocity and pressure field$® and P¢

obtained from the solution of the equatioisl1)—(A13) for

ajufzo, (A12) the disturbance flow. It is clear that the bubble mofithl)

or (A2)] is coupled with the dynamics of the undisturbed
flow, U°, P°, defined by Eqs(A8) and (A9). Once the
problem(A11)—(A13) for the disturbance field is solved, the
U-d(r t)] =0 equation of the bubble motion is fully defined in terms of the
i\ r=xy|>a ’ 0
(A13)  flow U”.
In general, the disturbance flow represented(A%1)—
(A13) has no analytical solution and can be obtained only via

. o . a numerical solution of the 3-D time-dependent equations.
Note that the gravity term is included only in EG\8) for However, in the case of a sufficiently small bubble, for

the undisturbed flow since it does not depend on the VelOCit)évhich the inertia terms on the Ihs 6A11) are negligi

. ; gligible, the
field. The second and third te_rms on th_e Ihs Qf qu_l) are problem is reduced to the unsteady Stokes probiem:
due to the fact that the material derivatidéDt is defined in

(A10) with respect to the undisturbed ﬂow?. Adding the r9Uid d 20 1d

lhs of both(A8) and (A11) produces the Ihs ofA4). Pt = — P T+ naUy, (A19)
Now we can rewrite the integral on the rhs(@?2) as a g

sum of two parts: d;U;=0, (A20)

with boundary conditions

UL D) -y =a= Vi(t) = UPLxp(1) 1]
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