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A novel dimensionless parameter, the particle moment number Pa, was derived using dimensional

analysis of the particle-laden Navier-Stokes equations, in order to understand the underlying physics of

turbulence modification by particles. A set of 80 previous experimental measurements where the turbulent

kinetic energy was modified by particles was examined, and all results could clearly be divided into three

groups in Re-Pa mappings. The turbulence attenuation region was observed between the augmentation

regions with two critical particle momentum numbers.
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Previous studies of particle-laden flows have shown that
a dilute dispersion of fine particles can either augment or
attenuate the carrier-phase turbulent kinetic energy (TKE).
Although broad patterns can be observed in the literature
on turbulence modification, the factors controlling the level
of turbulence modification are not well understood. It is
possible to examine the effects of dispersed particles on
both the production of turbulence and the dissipation rate
using either experiments or simulations. However, know-
ing only these two rates does not allow one to know the
equilibrium level of the turbulent kinetic energy in a sta-
tistically stationary flow. Many experiments have shown
little change in the mean fluid phase velocity profile with
the addition of particles. Therefore, there should be little
change in the production of turbulence due to mean veloc-
ity gradients. Also, heavy particles falling through the flow
are giving up gravitational potential energy and introduc-
ing random velocity fluctuations to the fluid phase. This
suggests that the addition of particles would increase the
turbulence level, a phenomenon observed in many flows.
However, in other particle-laden flows, extra dissipation
caused by local distortion of the turbulence around inertial
particles leads to an overall reduction in the turbulent
kinetic energy. To date, no method has emerged that is
capable of accurately predicting turbulence modification
by particles over a broad range of parameters. Gore and
Crowe [1] successfully categorized the turbulence modifi-
cation into augmentation and attenuation by proposing an
intuitive parameter, dp=le. This parameter is the ratio of the

particle diameter, dp, to a characteristic size of large

eddies, le. However, the classification does not describe
the effects of changing particle material density, nor does it
predict the magnitude of the turbulence modification. The
single parameter cannot capture the effects of other im-
portant parameters such as the mass loading or particle
Reynolds number. Other single parameter classifications,
including those based on Stokes number and particle
Reynolds number, are even less effective than dp=le. In

order to describe the turbulence modification accurately,
other physical approaches are necessary.

In this Letter, we first consider appropriate dimensional
parameters to describe turbulence modification by non-
dimensionalizing the particle-laden Navier-Stokes equa-
tion and introduce a resultant nondimensional parameter.
Next, we propose a mapping method to classify turbulence
augmentation and attenuation with the resultant nondimen-
sional parameter. We evaluate the utility of the parameter
for both turbulence augmentation and turbulence attenu-
ation by examining previous turbulence modification ex-
periments for internal flows [2–11]. The experiments are
summarized in Table I. The reader is referred to the origi-
nal papers for details of the experiments. Generally, the
turbulence level was determined using phase-sensitive op-
tical methods (LDA or PIV) to measure the fluid phase
velocity field with and without particles. These turbulence
modifications are clearly categorized by using the non-
dimensional number as described later.
The governing equations for particle-laden flows are

concisely described assuming a Newtonian fluid and
spherical particles. For the particulate phase, the linear
momentum and angular momentum equations are applied.

dxpi
dt

¼ Up
i ; mp dU

p
i

dt
¼ Fi; Ip d�

p
i

dt
¼ �i; (1)

where xpi , U
p
i , and�

p
i are, respectively, the ith component

of the position, the velocity, and the angular momentum of

TABLE I. Summary form of the previous turbulence modifi-
cation experiments for internal flows [2–11].

Ref. Flow descriptions Carrier Particles

[2] Horizontal channel water glass

[3] Downward channel air glass or copper

[4,5] Horizontal channel air glass

[6] Upward pipe air glass

[7] Horizontal pipe air polyacrylate.

[8] Downward channel water glass or cellulose

[9] Downward channel water ceramic

[10] Horizontal pipe air plastic

[11] Vertical pipe air polyethylene
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the sphere. The operator, d=dt, denotes a derivative along
the particle trajectory, mp is the mass of the sphere and Ip

is the moment of inertia. The force, Fi, is the integration of
the pressure and the viscous stress over the sphere surface.
Body forces are neglected. The total torque acting on a
particle, �i, is calculated by integrating the contributions
from the shear stresses.

For the fluid phase, the incompressible Navier-Stokes
equation is applied:

DUi

Dt
¼ � 1

�f

@p

@xi
þ �

@2Ui

@xj@xj
; (2)

where, Ui, p, �f, and � denote the fluid velocity in the ith

direction, the pressure, the fluid density and the fluid kine-
matic viscosity. The operator, D=Dt, denotes a substantial
derivative along the fluid path. The particle and fluid
equations are coupled through the total force, Fi, the total
torque, �i and the boundary conditions at the particle
surface: namely, the no penetration and no slip conditions.
Fluid motion in particle-laden flows is ideally described by
two basic equations: the continuity equation and the
Navier-Stokes equation. However, the complicated issue
is the boundary condition at the moving particle surface.
Since it is fairly difficult to describe the momentum ex-
change for only a single particle as mentioned in the
previous section, it is currently impossible to accurately
determine interactions between a large number of particles
and fluids in particle-laden turbulence.

The momentum equation for fluid flows containing dis-
persed particles can be constructed by considering very
small differential volume of the Navier-Stokes equation.

DUi

Dt
¼ � 1

�f

@p

@xi
þ �

@2Ui

@xj@xj
� 1

�f

fi: (3)

The total force per unit volume exerted by the fluid onto
particles, fi, is the integration of the surface force, S (per
unit surface), over the particle surface inside the control
volume.

fi ¼ lim
�Vcell!0

1

�Vcell

Z
Sið ~ei � ~nsÞds: (4)

The unit vectors, ~ei and ~ns are oriented in ith direction and
normal to the surface, respectively. Note that the particle
force term, fi, behaves like the Dirac delta function at the
particle surface when the control volume size shrinks to
zero (�Vcell ! 0þ), while it becomes zero elsewhere. The
force is not defined inside particles since Eq. (3) is con-
structed only for the continuous phase. By integrating over
the surface of one particle, the total force can be described
as

Fi ¼
Z

Sið ~ei � ~nsÞds: (5)

Next, we nondimensionalize the particle-laden Navier-
Stokes equation proposed in Eq. (3) to find relevant non-
dimensional parameters. We follow the same scaling as the

Reynolds’ nondimensionalization [12] for the convection,
pressure, and viscous stress terms, since the only difference
from the Reynolds’ nondimensionalization is the particle
term. Thus,

U�
i ¼

Ui

UL

; x�i ¼
xi
L
; p� ¼ p� p0

�fU
2
L

; t� ¼ tUL

L
;

(6)

where UL and L are the large scale velocity and length
scales, and the superscript, �, denotes a nondimensional
variable. We nondimensionalize the particle term in two
different ways related to particle Reynolds number, Rep, or

Stokes number, St.
Although the particle force term, fi, is treated as a delta

function in our description of the carrier-phase momentum
equation, it can be scaled based on its volumetric average
value as used in the point force momentum coupling
method [13,14]:

fi � 1

�Vcell

XNp

n¼1

Fi;n; (7)

where Np is the instantaneous number of particles inside a
differential volume of the Navier-Stokes equation. The
Stokes drag, FStokes

i ð�mp

�p
ðUi �Up

i ÞÞ, can be chosen as

the representative force scale, since it is dominant (Fi �
FStokes
i ), where �p is the particle aerodynamic relaxation

time. By introducing the concentration of particles, or mass
of particles per unit volume, �C, (�Npmp=�Vcell), the
particle force term can also be described as

fStokesi ¼ �C

�p
hUi �Up

i i; (8)

where the angle brackets, hi, denote an ensemble-averaged
quantity. By replacing the slip velocity, hUi �Up

i i, with
the particle Reynolds number, Repð� dpjh ~U� ~Upij=�Þ,
and the relaxation time, �p, with its definition under the

Stokes flow approximation (�p � d2p
18�

�p

�f
), the Stokes force

per unit volume can be scaled as

fi ¼ 18�C

�f

�p

Rep�
2

d3p
f�Rei ; (9)

where the superscript, �Re denotes the nondimensional
variable based on the particle Reynolds number and �p is

the particle density.
Finally, the normalized momentum equation becomes

DU�
i

Dt�
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@x�i
þ 1
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@x�j@x�j
� 18�
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�p

L3

d3p

Rep

Re2L
f�Rei ;

(10)

where the mass of particles per unit volume, �C, is ex-
pressed with the mass loading ratio, � (��C=�f).

The particle term in Eq. (10) includes the ratio of the
large scale to the particle diameter raised to the third
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power. This indicates that variations in L=dp have a large

effect on the carrier-phase flow. The Reynolds number
squared term, Re2L, in the denominator is also prominent
in the particle force term, and this probably relates to the
ratio of the particle diameter and the Kolmogorov scale
since the large scale Reynolds number fixes the
Kolmogorov scale.

Another possible nondimensionalization is based on the
Stokes number, St. Though the nondimensionalization
based on Rep is reasonable, it is sometimes difficult to

estimate the slip velocity. Rep is not given for most experi-

ments in the literature, while St is easier to obtain. The slip
velocity may be scaled by the Kolmogorov velocity scale,

vK ( � �=�) as vK � jh ~U� ~Upij, where � is the
Kolmogorov length scale. The assumption is valid when
Rep � dp=�. The particle force term becomes

fi ¼ �C

�p
vKf

�St
i ; (11)

where the superscript, �St, denotes the nondimensional
value based on the Kolmogorov velocity scale. Using the
definitions of Kolmogorov time scale, �fð� �2=�Þ, and
velocity scale, vK, the nondimensionalized particle-laden
Navier-Stokes equation can be written:

DU�
i

Dt�
¼ �@p�

@x�i
þ 1

ReL

@2 U�
i

@x�j@x�j
� �

St Re2L

�
L

�

�
3
f�Sti ; (12)

where the Stokes number is defined as St � �p=�f.

Based on the dimensional analysis above, we define a
nondimensional parameter called the particle momentum
number, Pa, to simplify the carrier-phase Navier-Stokes
equation in the presence of particles. The dimensionless
Navier-Stokes equation is

DU�
i

Dt�
¼ @p�

@x�i
þ 1

ReL

@2U�
i

@x�j@x�j
� �

Pay
f�yi ; (13)

where the dagger, y, is either Re or St.

Pa Re ¼ 1

18

Re2L
Rep

�p

�f

�
dp
L

�
3
; (14)

Pa St ¼ StRe2L

�
�

L

�
3 ¼ 1

54
ffiffiffi
2

p Re2L
St1=2

�3=2
p

�3=2
f

�
dp
L

�
3
: (15)

For the same flow conditions, PaSt is proportional to St,
since ReL, � and L depend only on the unladen flow
conditions. The right-hand side of Eq. (15) shows another
form of PaSt that was derived by eliminating �.

In Eq. (13), there are three dimensionless parameters in
the carrier-phase momentum equations: large scale
Reynolds number, ReL, mass loading ratio, �, and particle
momentum number, Pa. The mass loading ratio can be
considered to be only related to the magnitude of the
modification, since there are no experiments in which
both attenuation and augmentation occur by simply chang-

ing the mass loading. Therefore, the critical parameters,
which determine if turbulence is augmented or attenuated,
are inferred to be ReL and Pa.
A set of turbulence modification measurements [2–11] is

examined. In the present study, the level of turbulence
modification, �, is defined using the fluctuating fluid ve-
locities, �, as

� ¼ ð�pl
st=�

ul
st Þ2; (16)

where the subscript, st, denotes the streamwise direction
and the superscripts, pl and ul, denote particle-laden and
unladen cases, respectively. Thirty different combinations
of Pa and Re out of the 80 measurements are plotted in
Fig. 1 as a function of ReL and (a): PaSt and (b): PaRe. The
particle Reynolds number is estimated by assuming the slip
velocity can be approximated by the terminal velocity,
since Rep was difficult to obtain for most of the previous

experiments. We mapped only cases with modification
levels larger than 5%. We rejected the small modification
cases because in most cases the mass loading was small,
and the measurements might be contaminated by measure-

(a)

(b)

FIG. 1. Mapping of the previous turbulence modification ex-
periments based on (a) PaSt and ReL, and (b) PaRe and ReL. The
circle and square symbols represent air and water turbulence,
respectively. The open symbols represent TKE augmentation and
filled symbols show TKE attenuation.
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ment errors. The circle and square symbols represent air
and water turbulence, respectively. The open symbols rep-
resent TKE augmentation and filled symbols show TKE
attenuation.

The variables used in Fig. 1(a) separate the cases into
augmentation and attenuation groups. Several important
observations can be made about Fig. 1(a). First, the clas-
sification mainly depends on the particle momentum num-
ber, Pa. The Reynolds number appears to have little effect.
However, it is important to note that the Reynolds number
for these laboratory scale experiments all fell into the same
range. Second, the classification of the turbulence modifi-
cation is not monotonic, as we see the turbulence attenu-
ation region is between the augmentation regions with two
critical particle momentum numbers, PaCSt as: Pa

CW
St � 103

and PaCASt � 105. This indicates an interesting feature of

particle-laden flows; particles with large Pa augment the
TKE, while particles with smaller Pa attenuate TKE, and
particles with much smaller Pa (much smaller St) again
augment TKE. For even smaller Pa, particles eventually
become tracers and cannot modify the turbulence. Though
this consideration is counterintuitive, similar results are
reported by Druzhinin and Elghobashi [15] and
Druzhinin [14]. They obtained larger turbulence augmen-
tation for smaller Stokes number. The small Stokes number
might correspond to the large Pa region of the water
augmentation. Though homogeneous and isotropic turbu-
lence used in their studies cannot simply be compared to
the current internal flow mappings, we expect a similar
trend.

Figure 1(b) shows a similar trend to Fig. 1(a). Turbu-
lence attenuation occurs in the range 3< PaCRe < 200.
Since there is apparently some dependence onReL, another
modification regime boundary might be considered. The

dotted line in Fig. 1(b) follows the relation ReCL ¼ 1:5�

103ðPaCReÞ1=2. Thus, the classification can be described as

ReL < 1:5� 103Pa1=2Re or PaRe < 3 for the augmentation

cases, and ReL > 1:5� 103Pa1=2Re and PaRe > 3 for the
attenuation cases.
For comparison, a mapping using ReL and St, which is

one of the most important parameters to describe turbu-
lence modification, is shown in Fig. 2. The two parameters
plotted in these figures are almost independent, and these
figures do make it clear that St is not the parameter which
controls turbulence modification.
In summary, the Navier-Stokes equation in the presence

of particles was normalized to obtain a novel dimension-
less parameter, the particle momentum number, Pa.
Previous experiments of the turbulence modification by
particles were successfully categorized into three groups
based on Pa. The turbulence attenuation region is between
the augmentation regions with two critical particle mo-
mentum numbers. It can be concluded that the particle
momentum number, Pa, is an essential parameter to de-
scribe turbulence modification by particles. The maps clas-
sifying particle-laden flows can be used to help choose
parameters for future experimental investigations.
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