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The modification of decaying homogeneous turbulence due to its interaction with dispersed 
small solid particles (d/v < l), at a volumetric loading ratio $,<5 X lo-“, is studied using direct 
numerical simulation. The results show that the particles increase the fluid turbulence energy at 
high wave numbers. This increase of energy is accompanied by an increase of the viscous 
dissipation rate, and, hence, an increase in the rate of energy transfer T(k) from the large-scale 
motion. Thus, depending on the conditions at particle injection, the fluid turbulence kinetic 
energy may increase initially. But, in the absence of external sources [shear or buoyancy), the 
turbulence energy eventually decays faster than in the particle-free turbulence. In gravitational 
environment, particles transfer their momentum to the small-scale motion but in an anisotropic 
manner. The pressure-strain correlation acts to remove this anisotropy by transferring energy 
from the direction of gravity to the other two directions, but at the same wave number, i.e., to 
the small-scale motion in directions normal to gravity. This input of energy in the two directions 
with lowest energy content causes a reverse cascade. This reverse cascade tends to build up the 
energy level at lower wave numbers, thus reducing the decay rate of energy as compared to that 
of either the particle-free turbulence or the zero-gravity particle-laden flow. 

1. INTRODUCTION 

It has been known for more than three decades that the 
addition of solid or liquid particles, at volume fraction as 
low as 10e5, to a turbulent flow modifies the structure of 
turbulence, thus altering the transport rates of momentum 
and mass. This modification, in turn, affects particle dis- 
persion, hence the two-way interaction. Available experi- 
mental data show that the addition of particles may in- 
crease or decrease the turbulence kinetic energy of the 
carrier fluid. However, there is a lack of understanding of 
the mechanisms responsible for this increase or decrease. 

The few experimental data on particle-laden turbulent 
flows are valid only for the conditions of the experiment 
and cannot be generalized. In some experiments, the injec- 
tion of fine droplets or solid particles (diameter d<250p) 
into a free turbulent jet reduces the turbulence intensity, 
thus lowering the spreading rate of the half-width of the 
jet. l-5 However, other experiments6 show that the addition 
of large particles (d)5OOp) increases the turbulence inten- 
sity in a free jet, whereas smaller particles (d(250p) sup- 
press turbulence in the jet. Recently, Hardalupas et a1.’ 
measured the velocities of the particles and fluid in turbu- 
lent particle-laden jets. They showed that the rate of spread 
of the half width of the jet increased with increasing the 
volume fraction of 80~ glass beads, whereas it decreased 
with increasing the volume fraction of 40~ beads. 
Hetsron? suggested that particles with low Reynolds num- 
ber, R,, cause turbulence suppression, while particles with 
higher Reynolds number enhance turbulence due to wake 
shedding. However, as will be shown later, the present 
study indicates that particles with low-Reynolds number, 
RP < 1, can also increase the turbulence energy. 

Gore and Croweg reviewed the available experimental 
data on turbulence modulation in particle-laden flows and 

proposed that the critical parameter that predicts whether 
the turbulence will be augmented or suppressed with the 
addition of particles is d/l, where d is the particle diameter 
and 2 is the Eulerian integral length scale of turbulence. 
They concluded that the critical value is d/Z=:O.l, above 
which turbulence intensity is increased and below which it 
is suppressed. While it is interesting to attempt to describe 
the effect of dispersed particles on turbulence via a single 
parameter, the study9 leaves the fundamental questions un- 
answered. For example, in that study,g the augmentation of 
turbulence energy by the particles is attributed to the pres- 
ence of their wakes. However, experimental evidence indi- 
cates that particles without wakes (small RP) may also 
increase the turbulence energy.’ Furthermore, in highly 
anisotropic flows (e.g., in the neighborhood of solid walls) 
the length scale I depends strongly on the direction relative 
to the wall, and thus the parameter d/Z would have 
d@erent values at the same location. In addition, our 
present results show that turbulence intensity increases for 
d/Zz10-3, thus contradicting the proposal of Gore and 
Crowe. 

The purpose of this paper is to examine in some detail 
the two-way interaction between the particles and turbu- 
lence in a much simpler flow than the inhomogeneous 
flows reviewed above. In particular, the paper is concerned 
with the physics of interaction between a decaying homo- 
geneous isotropic turbulence (or simply grid turbulence) 
and a large number of solid spherical particles dispersed 
within. We aim to answer the questions of how and why 
the turbulence modification takes place. Grid turbulence 
was selected for the study because of its spatial homogene- 
ity and the independence of its properties on the mean flow 
velocity. We use the method of direct numerical simulation 
to solve the three-dimensional, time-dependent Navier- 
Stokes equations which include all the forces exerted by the 
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particles on the fluid. The volume fraction of the particles 
is large enough to modulate the turbulence, but small 
enough to avoid collisions between the particles. We exam- 
ine the effects of the particles on the time development of 
turbulence energy and dissipation and their spatial spectra. 
Discussion of the effects of the modified turbulence on the 
dispersion of particles and the various Lagrangian statistics 
is the subject of another paper.” 

Only one other direct numerical simulation study” has 
been reported concerning the two-way interaction of par- 
ticles with homogeneous turbulence. However, that study 
considered only stationary turbulence by forcing the flow 
at the low wave numbers. Stationarity of turbulence was 
achieved by the addition of energy, at each time step, at a 
rate equal to that of the energy dissipation. Clearly, the 
results obtained from a forced simulation are questionable 
when the goal is to quantify the changes in the fluid tur- 
bulence energy spectrum caused by the particles. As will be 
discussed later in Sec. III, the addition of particles may 
increase or decrease the turbulence energy, a result that 
cannot be obtained from a stationary turbulence simula- 
tion. Furthermore, the particle motion equation used in 
that study” included only the drag force. The present 
study shows that neglecting the effects of gravity on parti- 
cle motion results in a significantly different behavior of the 
turbulence in the carrier fluid. 

II. MATHEMATICAL DESCRIPTION 

The exact time-dependent, three-dimensional Navier- 
Stokes and continuity equations are solved in a cubical 
domain with periodic boundary conditions. Gravity acts 
downward in the negative x3 direction. The two other co- 
ordinates x1 and x2 are in the horizontal plane. The fluid is 
incompressible and has a constant kinematic viscosity, Y. 
The dimensionless governing equations are 

aui a i a22di ap 
--g+z (upi) =- 

i Re &?-~-fi' 3 i (1) 

&j 
--=o 
c3Xj *  

(2) 

The last term in Eq. ( 1) is the force, in the x1 direction, 
exerted per unit mass of fluid by iV particles and calculated 
from 

fi= 5 f&i, (3) 
tl=l 

where f,,i is the instantaneous local sum, in the Xi direc- 
tion, of the first four forces on the right-hand side (rhs) of 
Eq. (5) below acting on one particle IZ. Nondimensional- 
ization of fi is consistent with that of other terms in Eq. 
( 1). Also, N is the instantaneous number of particles, 
[N=N(xt,xz,x3,t)], within the control volume at which 
Eq. (1) is integrated. When we study the dispersion of 
particles without effects on the fluid (i.e., one-way coupling 
or equivalently particle-free flow) we set fi equal to zero. 
The direct effect of the particles presence on the continuity 

equation of the fluid, Eq. (2), is assumed negligible since 
the volume fraction of the particles in our study is less than 
10-3. 

The equations are discretized in an Eulerian frame- 
work using a second-order finite-difference technique on a 
staggered grid containing 963 points. This grid permits an 
initial microscale Reynolds number Rn,o=35. The Adams- 
Bashforth scheme is used to integrate the equations in 
time. Pressure is treated implicitly, and is obtained by solv- 
ing the Poisson equation in finite-difference form using a 
fast Poisson solver. More details about the numerical 
method and its accuracy are discussed by Elghobashi and 
Truesdellt2 and Gerz et al. l3 

The initialization algorithm insures, for a prescribed 
energy spectrum, that the initial random velocity field is 
isotropic, periodic in the three spatial directions, and di- 
vergence free with respect to the discretized form of the 
continuity equation. It also ensures that the velocity cross- 
correlation spectra, RU (k) 9 satisfy the realizability 
constraints. l4 

The energy spectrum E(k,O) at dimensionless time 
T=O is prescribed by 

(4) 

where u. is the dimensionless rms velocity, k is the wave 
number, and kp is the wave number of peak energy. All the 
wave numbers appearing in Eq. (4) are normalized by the 
lowest nonzero wave number, kmin, which equals 2rr since 
the size of the computational domain L= 1. The two in- 
puts no and kp are sufficient to specify E( k,O) . The dimen- 
sionless kinematic viscosity Y is calculated from the pre- 
scribed initial microscale Reynolds number, R,+,, and the 
computed initial energy dissipation rate eo. The values of 
the dimensionless parameters used in the present simula- 
tion at T=O are R,+, = 35, (kdk,i,)=4, ~0=0.0508, 
il,=O.O348, e,=O.O0162, ~=5.05~ lo-“. The initial inte- 
gral length scale 1,=0.0715 and Kolmogorov length scale 
~o=0.0029. The values of the reference length and time 
scales used in normalizing these quantities are, respec- 
tively, Lref=0.1859 m and T,,r=O.1068 sec. 

The ability of the simulation to resolve the motion at 
the smallest turbulence scales is measured by the dimen- 
sionless quantity qkmax, where km, is the highest resolved 
wave number [=2rr(iVJ2)]. Here, Na is the number of 
grid points in each coordinate direction (iV,=96). In our 
simulations l<$k,,c;1.7 for 0.75<T<6. 

The solid particles are added to the flow at time 
T =0.75 when the magnitude of the skewness of the veloc- 
ity derivative reaches about 0.47, indicating an established 
rate of energy transfer across the energy spectrum. 

The instantaneous velocity of each particle, ui, in the xI 
direction, is obtained by time integration of the Lagrangian 
equation of particle motion: 
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mp(ui-vi) 

7P 

+6a2(7rpp)‘” s ‘p d/d7( ui-vi) 

f& (tp-rP dr 

-t Cm,--mf)gi. (5) 

Equation (5) describes the balance of forces acting on the 
particle as it moves along its trajectory. The term on the 
left-hand side (lhs) is the inertia force acting on the par- 
ticle due to its acceleration. The terms on the right side are, 
respectively, the forces due to viscous and pressure drag, 
fluid pressure gradient and viscous stresses, inertia of vir- 
tual mass, viscous drag due to unsteady relative accelera- 
tion (Basset), and buoyancy. The response time, rp , is the 
time for momentum transfer due to drag and is calculated 
from 

(6) 

The quantities a, mp, pP are, respectively, the particle ra- 
dius, mass and material density. Here, C, is the total drag 
coefficient, which is assumed a function of the Reynolds 
number of the particle, R, = 2ap 1 Ui- Ui 1 /p. The fluid den- 
sity and viscosity are p and ~1. The derivative d/dt, is, with 
respect to time, following the moving particle, whereas 
DuJDt is the total acceleration of the fluid as seen by the 
particle, DUJDt= [(&,/at> + Ui( &i/ax,)], evaluated at 
the particle position xp. It should be pointed out that Eq. 
(5) is strictly valid for an isolated particle, where there are 
no effects of other particles on either the fluid or the par- 
ticle of interest. In particular, the derivation of the term 
(DuJDt), which accounts for the force on the particle due 
to the fluid pressure gradient and viscous stresses, was 
based on the assumption that there is no two-way coupling. 
However, the computed magnitude of this term is of the 
order of 10B3 times that of the drag term and thus has 
negligible effect on the present results. In fact, there is no 
known exact Lagrangian equation that governs the motion 
of a particle in a turbulent flow with two-way coupling. The 
only alternative at present is to solve numerically the 
Navier-Stokes equations around individual particles. For 
example, a recent study15 examines the laminar flow 
around two neighboring particles. Details of integrating 
Eq. (5) to obtain the instantaneous particle velocity and 
position are given by Elghobashi and Truesdell.12 In addi- 
tion to insuring the resolution of the small scale motion as 
discussed earlier (T k,,, > 1 ), it is necessary that the in- 
stantaneous fluid velocity Ui(xp,t) at the location of the 
particle be accurately calculated. We  compute this velocity 
via a fourth-order accurate, two-dimensional, four-point 
Hermitian cubic polynomial interpolation scheme between 
the adjacent Eulerian fluid velocity values. This scheme is 
applied in the three coordinate directions at the particle 
location. We  have compared the accuracy of this scheme 
with 12 others including linear interpolation, Lagrange 
with 36 points, midpoint with 21 points, midplane with 24 
points, and third-order Taylor series with 13 pointsI It 

TABLE I. Particle properties for the study of the effects of $. 

Case d P/P 9” An 

A . . . . . . . . . 0.0 0.0 
B 0.25 5.0x 10-4 909 2.5 lo-’ x 0.23 
C 0.50 5.0x 1o-4 1818 2.5x 1O-4 0.45 
D 1.00 5.0x 10-4 3636 2.5 1O-4 x 0.91 

was concluded that the fourth-order accurate Hermitian 
scheme is superior to the other schemes regarding the com- 
bination of accuracy and computational economy. Bal- 
achandar and Maxey17 used a fourth-order Hermitian 
scheme in two directions followed by a Fourier interpola- 
tion in the third direction. The accuracy of our scheme 
compares well with theirs. Furthermore, the number of 
computational particles should be large enough to obtain 
an ensemble average of the independent realizations of the 
random dispersion process. Truesdellt8 investigated the ef- 
fect of the ratio of the number of actual (for a given 4,) to 
computational particles on the time development of all the 
statistical quantities presented here and concluded that one 
computational particle representing 100 actual particles 
provides results within 2% of those obtained with half this 
number. A typical simulation requires about 65 CPU hours 
on the Convex C-240 computer or about 35 CPU h on the 
Cray-Y-MP8/864. 

111. RESULTS 

A. Effects of particles inertia 

We  study the modification of turbulence due to the 
two-way interaction between the fluid and particles by 
varying particles inertia in the absence of gravity. We  vary 
three parameters, the particle response time, rp, the parti- 
cle diameter, d, and the volumetric fraction, #,, one> at a 
time, to examine their effects. 

1. Effects of particle response time 

Here, we compare the results of three two-way cou- 
pling cases (B, C, and D) with those of case A in which 
the particles are not allowed to influence the fluid motion 
ri=O in Eq. (l)]. The particle properties are listed in 
Table I. The particles in the three cases have the same 
volumetric fraction, $,, and diameter d, but different par- 
ticle response time at injection, $. All quantities in this 
and other tables throughout the paper are dimensionless 
via normalization by L,, and Tref unless stated otherwise. 
We  increase rp* from 0.25 for case B by factors of 2 and 4 
for cases C and D, respectively. This is achieved by increas- 
ing the particle material density, pp, in C and D, by the 
same factors, relative to that of B. The mass loading ratio, 
4 increases accordingly. The fluid density, p, is kept 
zstant ( = 1 kg/m3> throughout. Table II lists the parti- 
cle properties normalized by the relevant turbulence length 
or time scale. The l?rst two columns contain the time-scale 
ratios rz/rf and G/r R, where the value to the left of 3 is 
at the time of particle injection (T=0.75), and that to the 
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TABLE II. Particle properties normalized by relevant scales of turbu- 
lence. 

Case rpf $/TK d/P d/r]* $ww. 

B 0.144jo.043 1.263j0.391 0.007 0.158 0.18 
C 0.289+0.079 2.25230.764 0.007 0.158 0.27 
D 0.578jO.129 5.051j1.510 0.007 0.158 0.36 

right is at the end of the simulation ( T = 6). The turnover 
time of the large eddies is rf = I/u,, , and the Kolmogorov 
time scale is rK= (v/e) I”, where 

1 
Z(t)= 

E(M) 
2u&,w 

7 dk, (7) 

and 

e(t) =2v 
s 

#E( k,t)dk. (8) 

It is seen that the two ratios decrease with time due to the 
increase of the time scales of the decaying turbulence. The 
time T=6 is about 4.3 times the initial eddy turnover time, 
rf,o. Continuing the simulation of case D beyond this time 
may result in lowering the value of Rk below 14 and, hence, 
weak turbulence. The values of RA at T = 6 for cases A, B, 
and C are, respectively, 19.5, 18, and 16.5. The third and 
fourth columns list the particle diameter, normalized by 
the integral length scale, P, and the Kolmogorov scale, v*, 
at the time of particle injection. Also listed is the maximum 
value of the particle Reynolds number, Rp,maa, which is 
seen to be less than 0.4 throughout the simulations. Figure 
1 shows the time development of the turbulence kinetic 
energy E(t), normalized by its initial value, for cases A, B, 
C, and D. The particles are injected, at dimensionless time 
T=0.75, with their instantaneous velocity equal to that of 
their surrounding fluid, thus the four curves coincide up to 
a time T~l.5 after which the two-way coupling effects 
start to be noticeable. In case A, the particles do not influ- 

FIG. 1. Effect of varying rp (Table I) on the time development of tur- 
bulence kinetic energy E(t) normalized by its initial value E(0) for case 
A. ---, B: -, fJ _._. -, D: _._. 

PIG. 2. Effect of varying rp (Table I) on the time development of the 
dissipation rate of turbulence kinetic energy e(t) normalized by its initial 
value e(0) for case A: ---, B: -, C: - * -. -, D: -. -. 

ence the flow, and thus the dashed curve ri follows the 
standard decay rate of grid turbulence. It is seen that the 
higher r; the lower is the value of E(t). This is also evi- 
denced in Fig. 2 by the corresponding increase with r; of 
the energy dissipation rate e(t) shown normalized by its 
initial value for the same cases. In order to examine 
whether the reduction of E(t) and the augmentation of 
e(t) are uniformly or preferentially distributed over the 
scales of turbulence we display the three-dimensional en- 
ergy and dissipation spectra E( k,t) and D( k,t) of the four 
cases at time T=4 in Figs. 3 and 4. It is seen that for k 
larger than about 18 the values of both E(k) and D(k) for 
B, C, and D exceed those of A, and for k < 18 the values for 
B, C, and D are less than that of A. Also, the higher $ the 
larger is the deviation from A. The behavior of E(k) and 
D(k) displayed in Figs. 3 and 4, i.e., the crossover at 
kz 18, is typical throughout our simulation. Now, since 
the values of E( t) for B, C, and D are lower than that of A 
(Fig. 1 ), it is obvious that the reduction of E( k) in the low 
wave-number range (k < 18) outweighs its increase at 
higher wave numbers since E(t) = j’gE(k,t)dk. On the 
other hand, the augmentation of e( t) for B, C, and D (Fig. 
2) is mainly due to the enhancement by the particles of 
D( k, t) in the high wave-number range (k > 18 ) . 

It is clear that the modulation of E(k,t) and D( k,t) by 
the particles follows a pattern of selective spectral redistri- 
bution rather than a uniform attenuation or augmentation 
over the entire spectrum. Since the particles are small 
(d<q and rp- -rK) it is expected, at least intuitively, that 
they act as randomly distributed disturbances within the 
small-scale (high wave number) motion, providing a 
source (or sink) of energy proportional to the correlation 
(UJi), where ( ) denotes ensemble averaging. It is 
straightforward to show, by starting from Eq. ( 1 ), that this 
correlation appears as a source (sink) in the transport 
equation of the kinetic energy of turbulence in the physical 
space. 
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E(k) 

10’ 
k 

FIG. 3. Effect of varying T* (Table I) on the three-dimensional spatial 
spectrum of energy E(k) at time T=4 for case A: ---, B:-, C: - * - * -, 
D: -*-. 

Now, since it is not expected that the small particles 
influence the large-scale (small wave number) motion di- 
rectly, we need to understand the mechanisms leading to 
the modulation of E(k,t) and D(k,t) at small values of k 
(Figs. 3 and 4). Thus it is instructive to examine the spec- 
tral distribution of T(k,t), the rate of energy transfer to 
wave numbers of magnitude k. In particle-free homoge- 
neous turbulence, the time rate of change of energy E(k,t) 
at wave number k is related to the net rate of energy trans- 
fer T(k,t) (Batchelor”) according to 

dE(kt) 
-= T(k,t) - D(k,t), 

dt 

l&l-b 

L’(k) 

1s’ 

,,L- % A 1 I I I I I 
rff Id 

k 

FIG. 4. Effect of varying ~~ (Table I) on the three-dimensional spatial 
spectrum of energy dissipation D(k) at time T=4 for case A: --, B: -, 
C: _-m-s, D: -.-. 

where the viscous dissipation rate D(k,t) =2v@E(k,t). 
Also, the total spectral flux of energy from wave number k 
to all higher wave numbers is 

F(k,t) = 
s 

m T(k’,t)dk’, ( 10) 
k 

and thus 

s 

k 
-F(k,t) = T(k’,t)dk’. (11) 

0 

Explicit reference to the time dependence of E( k,t), 
D(k,t), and T(k,t) will be omitted hereinafter for conve- 
nience. Mathematically, T(k) originates from the nonlin- 
ear (inertia) terms of the Navier-Stokes equation in the 
Fourier space. Detailed derivation of (9) from the trans- 
port equation of the two-velocity two-point correlation is 
given by Hinze.20 The multiplication of two-velocity Fou- 
rier components with wave numbers 4 and (k-q) forms a 
component with wave number k, i.e., the three wave vec- 
tors form a triad with zero sum. Thus T(k) represents an 
integrated effect of the interactions of all triads with one 
leg fixed as k, the second leg is any other wave number in 
the spectrum, and the third satisfies the condition of van- 
ishing sum of the three wave vectors. This means that the 
nonlinear inertia force transports E(k) between different 
wave numbers for the same velocity component. The need 
to understand the physics of local (when the ratio of two 
wave numbers, or legs, in the triad does not exceed 2) and 
nonlocal triadic interactions in homogeneous isotropic tur- 
bulence resulted in a number of recent studies.21-23 We 
compute T(k) from the Fourier transform of the two- 
point third-order velocity-correlation tensor 
(ui(x)ul(x)uj(x+r>) following the procedure outlined by 
Van Atta and Chen.24 

Now, in particle-laden turbulence with two-way cou- 
pling, the derivation of Eq. (9) from the Fourier transform 
of the transport equation of the two-velocity two-point cor- 
relation results in additional terms originating from the 
correIation (uifi). As was mentioned earlier, we compute 
fj from the sum of the forces exerted by the particles on 
the fluid. However, since the drag force dominates the 
other forces12 contributing to fi, and only to facilitate the 
discussion we assume here that (Uifi) =: (~“Ui(Ui-Ui)/7p), 
where Qp, is the local volume fraction of the particles. We 
denote the Fourier transform of this second-order correla- 
tion as VP(k) which represents a local source or sink of 
energy depending on the sign of the correlation in the 
physical space, thus modifying E(k), D(k), and T(k). 
Accordingly, Eq. (9) becomes 

dE(k) 
-= T(k) -2vk?E(k) +YJk). 

dt (12) 

It is seen from Eq. (12) that T(k) is the only term that 
affects dE(k)/dt at small k directly due to disturbances at 
much higher wave numbers, i.e., due to nonIoca1 triadic 
interactions. Figure 5 displays the computed T(k,), the 
component of T(k) in the x1 direction, for cases A and D 
at time T=2. The other two components, T(k,) and 
T(k,), are nearly identical to T(k,), as expected in iso- 
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FIG. 5. EfTect of varying rP (Table I) on the spectral distribution of 
T(k,) at time T=2 for case A: --, D: -. 

tropic turbulence, and thus are not shown here. It is noted 
that T(k,) vanishes at kz40, i.e., well below the maxi- 
mum value of k in our simulation ( =48), indicating suf- 
ficient resolution of the motion at the smallest scales. The 
shape of T (k, ) for case A, the dashed line, is as expected 
for homogeneous turbulence.22’24 The effects of the two- 
way coupling are manifested in the positive transfer region 
( kl > 8) by the increase of T(k,) of case D (solid line) 
relative to tlist of A for k, > 18 and its reduction relative to 
A for k, < 18. A similar behavior is seen in the negative 
transfer region, with an increase in the magnitude of T (k, ) 
of D relative to A for 6<k1<8, and its reduction for 
2<k,<5. As was mentioned earlier in the discussion of 
Figs. 3 and 4, both E(k) and D(k) displayed a crossover 
behavior for cases B, C, and D relative to A at kz 18, the 
same crossover wave number of T(k,) in Fig. 5. 

In order to examine further the effects of the two-way 
coupling on both T(k) and D(k) we display the time 
distribution of the skewness, S(t), of the velocity deriva- 
tive for cases A, B, C, and D in Fig. 6. The skewness S(t) 
is defined as 

s(t)=-f j, ((g$‘, & j* ((gj’,)‘“? 
(13) 

and is related to D(k) and T(k), according to25 

s(t)=($)( j-; k”T(k,t)dk) / 

(J ‘m k2E(k,t)dk 
3/2 

. (14) 
0 

Thus the skewness is proportional to the ratio of T(k) in 
the high wave-number range to D3’2(k) in that range. Fig- 
ure 6 shows that the larger I-~ the smaller is S(t) . In order 
to see whether the reduction of S’(t) is mainly due to the 
J/2 exponent of D(k), or that the increase of D(k) is 

1: 
B .5 I.@ 1.5 2.1 2.5 3,s 3.5 4.I 4.5 5.1 55 6.1 6,5 

FIG. 6. Effect of varying T,, (Table I) on the time development of the 
skewness of the fluid velocity derivative S’(t) for case A: ---, B: -, C: 
-. -. -, D: -. - and the integral length scale L(t) normalized by its initial 
value, Z(0) for case A: ---, B: -, C: -. -. -, D: - ’ -. 

higher than that of T(k), we found that the latter is the 
case. The increase of s,” k2E(k,t)dk of cases B, C, and D 
relative to A is about 10% to 30% higher than the relative 
increase of T(k), the larger difference being for case D. 
Also shown in Fig. 6 is the time development of the inte- 
gral length scale Z(t) [see Eq. (8)]. It is seen that the larger 
7P the higher is the rate of growth of I. This indicates that 
the augmentation of e(t) (Fig. 2) by the particles causes 

2 u,, , or the total energy, to decay at a rate faster than that 
of E( k) of the smallest wave numbers [see EQ. (8) and Fig. 
31. In particular, the energy of the intermediate wave num- 
bers (5<k<15) (Fig. 3) decays faster than that of k<5. 
On the other hand, the larger rP the smaller is il, as seen 
from 

A(t) = [15vU2,,(t)/E(t)]1’2, (15) 

since the particles reduce u2,, and increase E simulta- 
neously. Similarly, the particles reduce the Kolmogorov 
scale, r](t) = [4/e( t)]“4, as they augment E. 

Thus the physical picture that emerges from the above 
analysis is that the particles, due to their inertia and being 
smaller than the Kolmogorov length scale, impart their 
energy to the turbulent motion at high wave numbers (Fig. 
3) with a corresponding increase in the dissipation (Fig. 
4). This enhanced dissipation signals the smaller wave 
numbers (larger scales), via the nonlocal triadic interac- 
tions of T(k) (Fig. 5), to supply more energy to the highly 
active small scales, at a rate higher than that of the 
particle-free case A. This results in the reduction of E(k) 
of the energy-containing small-wave-number motion. 

Figure 7 shows the time distribution of the correlation 
( u1 ( u1 - ul)/rP) for cases B, C, and D. As mentioned ear- 
lier, the velocity of the particles at injection is equal to that 
of their surrounding fluid. Thus, for a small time period 
thereafter, the correlation is positive and provides a source 
of energy, though not substantial, to the decaying turbu- 
lence. It is interesting to note that in all three cases, the 
particle diameter is much smaller than the integral length 
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FIG. 7. Effect of varying TV (Table I) on the time development of the 
correlation (u, (u, - u,)/T& for case B: --, C: -, D: -. - * -. 

scale [d/r*=O.O07 (Table II)], yet they provide a source of 
energy during the time T < 1. Had they been injected at a 
velocity larger than that of the surrounding fluid, the mag- 
nitude of that source would have been even greater and 
with longer lasting effects. This finding contrasts the sug- 
gestion of Gore and Crowe’ that the critical value is d/l 
ZO.1. 

For T > 1, the crossing trajectories effect, due to the 
inertia of the particles, tends to decorrelate the velocities of 
particles and fluid and thus reduce the magnitude of 
(uiui). The result is a negative (ui(ur-ui)/rJ, as seen in 
Fig. 7. In fact, the effect of the decorrelation (large nega- 
tive numerator) outweighs the effect of the relative mag- 
nitude of rp among B, C, and D, as shown. As time in- 

T 

FIG. 8. Effect of varying TV (Table I) on the time development of mean- 
square relative velocity in the lateral direction x1 of the particles for case 
A: ---, B:--,C: v.-.-, D:-.-, 
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TABLE III. Particle properties for the study of the effects of particle 
diameter. 

Case 

C 
E 
F 

q d P/P 4” 4m 

0.50 5.0x 10-4 1818 2.5 x 1O-4 0.45 
0.50 7.5 x 10-4 808 2.5 x 1O-4 0.20 
0.50 1.0x lO-3 455 2.5 x 1O-4 0.11 

creases, the magnitude of the correlation diminishes 
because of the decay of the relative velocity of the particles, 
as seen in Fig. 8, which displays the time development of 
(r&i) = (( u1 - ul)‘) for the four cases. It should be noted 
that the time T=O in Fig. 8 is the time of particle injection. 
The particles with the smallest rp, case B, have the smallest 
relative velocity as expected, and thus for T > 2.5 we see 
(in Fig. 7) a positive (ulul) whose magnitude is greater 
than the energy component (utur) of the decaying turbu- 
lence. Case D, with the largest rp, experiences the highest 
relative velocity fluctuations. The dashed curve, A, in Fig. 
8 is for particles identical to those in case C but without 
effect on the fluid. Comparing the curves A and C indicates 
clearly that two-way coupling reduces the relative velocity 
fluctuations, hence decreases R, and increases the dissipa- 
tion of energy. 

2. Effects of particle diameter 
The objective here is to examine the effects on the 

turbulence properties of varying the particle diameter 
while fixing the volumetric loading and the response time. 
This is equivalent to examining the effects of varying the 
total surface area of the particles by &ring their response 
time and total volumetric fraction but changing their num- 
ber. Table III lists the properties of the particles in cases C, 
E, and F. The diameters in E and F are, respectively, 1.5 
and 2 times that of C. This is achieved by reducing the 
particle material density, pp, in E and F, by the square of 
these factors, relative to that of C, thus keeping r: the 
same. The mass loading ratio, #,, decreases accordingly. 
Table IV lists the particle properties normalized by the 
relevant turbulence length or time scale. It should be em- 
phasized that the range of diameter variation is limited by 
two considerations. First, if the diameter is reduced con- 
siderably below that of case C, the number of particles 
increases and the costs of computer memory and CPU 
increase accordingly. For example, a reduction of the di- 
ameter by a factor of 2 increases the number of particles by 
a factor of 8. Second, we should insure that d < 77 (Table 
IV) throughout the simulation in order to remain within 
the limits of validity of Eq. (5). Figure 9 displays the time 
development of E(r) of cases A, C, E, and F. Doubling the 

TABLE IV. Particle properties normal&d by relevant scales of turbu- 
lence. 

Case d/TX d/n* R,,, 

E 0.289aO.083 2.525qO.780 0.010 0.237 0.35 
F 0.289jO.085 2.52530.770 0.013 0.316 0.45 
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FIG. 9. Effect of varying particle diameter (Table III) on the time de- 
velopment of turbulence kinetic energy E(r) normalized by its initial 
value E(0) for case A: ---, C: -, E: -. -. -, F: - * -. 

particle diameter (case k relative to C) while fixing the 
volumetric fraction, reduces the number of particles by a 
factor of 8 and the total surface area by a factor of 2, and 
hence reduces the two-way coupling effects. It is clear from 
the figure, as expected, that doubling the particle diameter, 
while fixing rP and 4” has insignificant effects on the tur- 
bulence, as compared to doubling rP. Our results indicate 
also negligible effects on E(k), D(k), and the correlation 
OMY-~l)~~p)* 

3. Effects of volumetric fraction 

Here, we compare two cases, C and I, where 4, of the 
latter is double that of the former, as seen in Table V, all 
other properties being the same. This is achieved by simply 
doubling the number of particles. Figure 10 shows E(k) at 
T=4 for of cases A, C, and I. It is clear from the figure, as 
expected, that doubling 4” enhances the two-way coupling 
effects. The behavior of D(k) and E(t) (not shown) also 
supports this result. 

B. Effects of gravity 

Here, we compare three cases, C, G, and II, with iden- 
tical particle properties, as seen in Table VI, but differ in 
the magnitude of the applied gravitational acceleration. In 
case C the gravity is zero, whereas in H the gravity is 
double that in G, as indicated by the ratio of the terminal 
velocity, nt = gr*, to the rms velocity of the fluid at the 

5: injection time, u. , where g is the gravitational accelera- 
tion. The maximum value of q/z@ is limited in our simu- 

TABLE V. Particle properties for the study of the effects of the volumet- 
ric fraction. 

Case c d P/P 4” 4m 

C 0.50 5.0x 10-4 1818 2.5~ 1O-4 0.45 
I 0.50 5.0x 10-4 1818 5.0x 1o-4 0.91 

E(k) IS-’ 

b___I-.I 1- ~ 
1s 19 

k 

18. 
\ 

‘. 

FIG. 10. Effect of varying 4” (Table V) on the three-dimensional spatial 
spectrum of energy E(k) at time T=4 for case A: --, C: -, I: - * - 1 -. 

lation because the higher it is the higher the dissipation, as 
will be discussed below, and thus lower Rn. For cases G 
and H, Rn decays, respectively, to 14.5 and 13 at T =6. 
Figures 11 (a) and 11 (b) display, respectively, the time 
development of E(t) and e(t) for cases A, C, G, and H. It 
is seen that, as time increases, the higher (u/z& the lower 
is the rate of decay of E(t) and e(t). In fact, for T)5, we 
see that E(t) for case H exceeds that of A, the particle-free 
case, and that as time increases the turbulence approaches 
a state of pseudostationarity, where there is a balance be- 
tween the rate of energy addition (by the particles) and 
e(t). In order to understand the mechanisms leading to 
this behavior, we examine the distributions of E(k) , D(k) , 
T(k), S(t) and other relevant properties of turbulence. 

Figure 12 shows E(k) at T=6 for cases A, C, G, and 
H, and Fig. 13 shows the corresponding D(k) . Instead of 
having one crossover wave number, kc, relative to case A, 
as in Fig. 3 (kc== 18>, we see in Fig: 12 that the larger the 
gravity the smaller is the crossover wave number. Further- 
more, the crossover wave numbers of the gravity cases 
continue to decrease with time, whereas it remains un- 
changed for case C; k,zz 18, 11, and 9 for cases C, G, and 
H, at T=6, whereas at the earlier time T=4, the corre- 
sponding values are k,z 18, 15, and 11 (not shown). Also, 
D(k) shows a similar behavior in Fig. 13. This indicates 
that the energy transfer from the particles to the turbu- 
lence starts, as expected, at high wave numbers, and as 
these become “saturated,” the excess energy is transferred 

TABLE VI. Particle properties for the study of the effects of gravity. 

Case 5$ d P/P 4” $m w4T 

C 0.50 5.0x 10-4 1818 2.5~iO-~ 0.45 0.0 
G  0.50 5.0x 1o-4 1818 2.5x 1o-4 0.45 0.25 
H 0.50 5.0x 1o-4 1818 2.5 x 1O-4 0.45 0.50 
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TABLE VII. Particle properties normalized by relevant scales of turbu- 
lence. 

Case $/TK d/P d/v* R,m 

C 0.289jO.079 2.25230.764 0.007 0.158 0.27 
G 0.289=$0.088 2.525 30.955 0.007 0.158 0.28 
H 0.289jO.104 2.5253 1.242 0.007 0.158 0.30 

to lower wave numbers. In effect, a reverse cascade takes 
place involving nonlocal triads of T(k), due to forcing by 
the particles at high wave numbers. 

We study this mechanism further by examining the 
time development of the three components of the skewness 
S’(t) for cases A, C, G, and H in Fig. 14. The components 
of S(t), rather than their sum, would shed more light on 
the transfer process since gravity acts in one direction, x3. 
The anisotropy of the three components of S(t) is evident 
for the gravity cases G and H, whereas those for cases A 
and C show no significant directional sensitivity, and are 
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FIG. 12. Effect of varying gravitational acceleration (Table VI) on the 
three-dimensional spatial spectrum of energy E(k) at time T= 6 for case 
A: ---, C:-,G:-- -.-, H: _._. 

nearly time independent for T > 1. We see a nearly mono- 
tonic increase with time (for T 5 1.5) of the magnitude of 
the components in the gravity direction for cases G and H, 
and a monotonic decrease of their two lateral (x1 ,x2) com- 
ponents. Also, the higher the gravity the larger is the an- 
isotropy. Furthermore, it is seen that the lateral compo- 
nents of case H change sign at Tz5.5. Equation ( 14) 
indicates that a change of sign of S(t) occurs only when 
T(k) changes sign since all other quantities in this equa- 
tion are always positive. This is verified next by comparing 
the components of T(k) for cases C and H. 

Figures 15 and 16 compare, at T =4, the spectral dis- 
tributions of T( k,) and T( k3), respectively, for cases C 

(b) 

B .s 1.s 1.5 *.a 2.5 3,s 3 5 4.1 4.5 5s 6.5 b.B 6.5 

T 

FIG. 11. (a) Effect of varying gravitational acceleration (Table VI) on 
the time development of turbulence kinetic energy E(t) normalized by its 
initial value E(0) for case A: ---, C: -, G: -. -. -, H: - * -. (b) Effect of 
varying gravitational acceleration (Table VI) on the time development of 
the dissipation rate of turbulence kinetic energy e(t) normalized by its 
initial value e(0) for case A: ---, C: -, G: -. - . -, H: - --. 
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FIG. 13. Effect of varying gravitational acceleration (Table VI) on the 
three-dimensional spatial spectrum of energy dissipation D(k) at time 
T=6 for case A: --, C: -, G: -.-.-, H: -.-. 
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FIG. 14. Effect of varying gravitational acceleration (Table VI) on the 
time development of the three components (labeled 1, 2, and 3) of the 
skewness of the fluid velocity derivative S(t) for case A: ---, C: -, G: 
-.-.-, H: -a-. 

FIG. 16. Effect of varying gravitational acceleration (Table VI) on the 
spectral distribution of T(k,) at time T=4 for case C: ---, H: -. 

and H. The anisotropy of T(k) in case H is evident in the 
higher magnitudes of T( kf) relative to those of T(k,). 
The augmentation of T(k3) due to gravity is seen in Fig. 
16. This behavior is consistent with that of the components 
of S( t) displayed in Fig. 14 for these two cases. The reverse 
cascade at T74 is seen in Fig. 15 by the change of sign of 
T( kl) of case H at high wave numbers, as compared to the 
zero value for case C. This behavior persists at later times. 
The wave number at which T (k,) changes sign decreases 
with time, occurring at (k)32) for T=4, and at (k)26) 
for T= 6. This indicates that the energy added, at high 
wave numbers, by the particles due to the buoyancy force 
in the x3 direction, is being gradually received by lower 

wave numbers in the other two directions. The spectral 
distribution of T (k,) is quite similar to that of T (k,), and 
thus is not shown. 

A direct measure of the anisotropy of the high wave 
number motion is the trace of the dissipation anisotropy 
tensor Dij defined as 

2Y(ui,j”j,i) 1 
Dij= E 6. -3 rj* (16) 

A measure of the anisotropy of the low wave-number mo- 
tion is the trace of the energy anisotropy tensor Bij defined 
as 

5 35 II 45 58 

FIG. 15. Effect of varying gravitational acceleration (Table VI) on the 
spectral distribution of T(k,) at time T=4 for case C: ---, H: -. 

The time development of D, for cases A, C, 6, and H (not 
shown) indicates that the deviation from isotropy, D,=O, 
is greatest for case H, followed by case G, whereas it is 
negligible for the other cases. The behavior of Bii is qual- 
itatively similar to that of Dii but with smaller magnitudes. 
The dominant contribution of ( u$, in the direction of 
gravity, to the energy E is always larger than the other two 
components, and it increases monotonically with time. 
Thus, the higher values of E(t) in case H relative to the 
other cases is due only to the increase of (~3). 

The role of the pressure-strain correlation (pUi,i) in 
redistributing the energy of the x3 direction to the other 
two directions is shown in Fig. 17 which displays the time 
development of the three components of (pUi,i) for case H. 
It is seen that (p~~,~) is always negative for T> 1 and its 
magnitude increases monotonically, indicating the contin- 
uous transfer of energy from the gravity direction to the 
other two. On the other hand, in case C (not shown) the 
three components diminish in time for T > 2. It should be 
noted that the pressure-strain correlation (PzQ~) transfers 
energy locally, i.e., at the same wave number to the other 
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FIG. 17. Tie development of the components of the pressure-strain 
tensor for case H (Table VI); (pu,,,): A, (PzQ: B, (pu,,,): C. 

two directions x1 and, x2, where the energy is, otherwise, 
negligible. This contrasts the role of T(k) which transfers 
energy in the same direction but to different wave numbers, 
according to the triadic interactions. 

Finally, we show the source of the anisotropy dis- 
cussed above by displaying the time development of the x1 
and x3 components of the correlation (~“Ui( vi-Ui)/7p), 
respectively in Figs. 18 (a) and 18 (b) for cases C, G, and 
H. The x3 component of G and H increases monotonically 
with time, while that of C is negative for T < 4.5 and van- 
ishes thereafter. The x1 component for G and H remains 
negative for T > 1, while that of C behaves nearly as its x3 
component due to isotropy. It is clear that the buoyancy 
force provides a continuous source of energy in the direc- 
tion of the gravitational acceleration. 

It is evident from the above discussion that the most 
important effect of gravity is the anisotropy of the small- 
scale motion (large wave numbers) of the carrier fluid, as 
indicated in the time behavior of the trace D/i(t) of the 
dissipation anisotropy tensor. This anisotropy is caused by 
the directionality of the correlation (~~i( Ui-Ui)/cTp) [Figs. 
18 (a) and 18 (b)] which in turn causes the anisotropy of 
Yp( ki) . Consequently, the pressure-strain correlation 
(JW~,~) transfers energy locally to the other two directions 
x1 and x2, where the energy is, otherwise, negligible. Ya- 
khot and Pelz26 used direct numerical simulation of homo- 
geneous turbulence in which anisotropic forcing was ap- 
plied to the large wave-number region. They showed that 
small-scale anisotropy is the determining factor in the pro- 
cess of reverse cascading the energy to the large-scale mo- 
tion. 

IV. CONCLUDING REMARKS 

The paper examines the turbulence modification due to 
the two-way interaction between decaying turbulence and 
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FIG. 18. (a) Effect of varying gravitational acceleration (Table VI) on 
the time development of the correlation ( u1 ( v1 -u,)/T& for case C: “--, 
G: ---; H: -. -. -. (b) Effect of varying gravitational acceleration (Table 
VI) on the time development of the correlation ( ug (v, - u3)/7J for case 
c: ---, G: -, H: - . - . _. 

small solid particles (d < r] and T~z=~& dispersed within. 
It has been demonstrated that the particles, in the absence 
of gravity, transfer their momentum to the high wave- 
number motion of the carrier fluid, thus increasing the 
energy content of the small scales. This increase of energy 
is accompanied by an increase of the viscous dissipation 
rate, and, hence, an increase in the rate of energy transfer 
T(k) from the large-scale motion. Thus, depending on the 
conditions at particle injection, the fluid turbulence kinetic 
energy may increase initially. But, in the absence of exter- 
nal sources (shear or buoyancy), the turbulence energy 
will eventually decay faster than in the particle-free turbu- 
lence. This enhanced decay of energy increases the growth 
rate of the integral length scale and reduces the Kolmog- 
orov length scale. 

In gravitational environment, particles also transfer 
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their momentum to the small-scale motion but in an an- 
isotropic manner. The pressure-strain correlation acts to 
remove this anisotropy by transferring energy from the 
direction of gravity to the other two directions, but at the 
same wave number, i.e., to the small-scale motion in direc- 
tions normal to gravity. This input of energy in the two 
directions with lowest energy content causes a reverse cas- 
cade. This reverse cascade tends to build up the energy 
level at lower wave numbers, thus reducing the decay rate 
of energy as compared to that of particle-free turbulence. 
This reduction of the energy decay rate slows down the 
rate of growth of the integral length scale. The associated 
augmentation of the dissipation rate reduces the Kolmog- 
orov length scale. 
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