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4.9. Flow due to a moving body at small Reynolds number

When a body with representative linear dimension d is in steady trans-
lational motion, with speed U, through fluid which is otherwise undisturbed,
dand U are a representative length and velocity for the flow field as a whole.
The inertia forces on the fluid are therefore likely to be of order pU?/d and
the viscous forces of order uU/d2. The ratio of these two estimates is
pdU/u, = R, so that when R < 1 the inertia forces may be negligible. We
propose to examine the flow field with this assumption, on the understanding
that the solution so obtained must be tested for consistency with the initial
assumption. Motion of a body through fluid with a value of R which is small,
usually because of the very small size of the body, is a flow problem which is
important in a variety of physical contexts, such as the settling of sediment in
liquid, and the fall of mist droplets in air. The quantity of greatest practical
interest is the drag force exerted by the fluid on the body, since from this the
terminal velocity for free fall under the action of gravity ean be calculated.
The velocity of the body is not always steady in these practical problems,
but unless either the body or the ambient fluid is caused to move with an
acceleration much greater than U?/d (as might happen if a sound wave of
high frequency passes through the fluid) the above estimate of the relative
magnitude of inertia and viscous forces will stand.

The equations to be solved are (4.8.1) and (4.8.2), which we rewrite as

v (1—’—;&’) =Vu=-Vxw, (4.9.1)

Viu=o, (4.9.2)

where p, is the uniform pressure far from the body. It is a consequence of
these equations that V=0 and Viw =o.
We choose a co-ordinate system relative to which the fluid at infinity is
stationary. The boundary conditions for a rigid body moving with velocity

U are then u=U at the body surface, }

u->o0 and p—p,~>o0 as |x|-> . (493)

We recognize, from the general result obtained at the end of the preceding
section, that not more than one solution of (4.9.1) and (4.9.2) can satisfy
the boundary conditions (4.9.3).

We shall make explicit use here of the fact that the equations (4.9.1) and
(4.9.2), and the boundary conditions (4.9.3), are linear and homogeneous in
u, (p—p,)/ ¢ and U. The expressions for u and (p —p,)/# must therefore be
linear and homogeneous in U. (A similar argument was used for irrotational
flow in §2.9—see (2.9.23).)
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A rigid sphere

The case of a spherical body is important, and is one of the few that are
tractable. The flow field due to a rigid sphere in translational motion was
first determined by Stokes (1851).

We choose the origin of the co-ordinate system to be at the instantaneous
position of the centre of the sphere, which has radius a. The distributions of
u and (p —p,)/# must be symmetrical about the axis passing through the
centre of the sphere and parallel to U, and the vector u lies in a plane through
that axis. The differential operators in (4.9.1) and (4.9.2) are independent
of the choice of co-ordinate system, so that (p —p,)/# and u depend on the
vector x and not on any other combination of the components of x. The
parameters U and a complete the list of quantities on which (p —p,)/x and
u can depend (although if the body had been of any shape other than
spherical, vectors specifying orientation of the body and scalar shape para-
meters would have had to be included).

It follows that (p—po)/# must be of the form U.xF, where a?F is a
dimensionless function of x.x/a®(=72/a?) alone. Since p—p, satisfies
Laplace’s equation, and vanishes at infinity, it can be represented as a series
of spherical solid harmonics of negative degree in r (see (2.9.19)); and the
only term of the series which is compatible with this form is the one of
degree —2 (the ‘dipole’ term). Thus

k- & (494
where C is a constant.

Exactly the same kind of argument applies to the harmonic function w,
which is a vector in the azimuthal direction and must be proportional to
U x x/r%. The constant of proportionality is found from (4.9.1) to be C,

so that CUx x
w=—F. (4-9-5)

The velocity corresponding to this vorticity distribution is most con-
veniently found in terms of the stream function 3. With a spherical polar
co-ordinate system (and @ = o in the direction of U), the azimuthal (or ¢-)
component of w is defined as

and on replacing %,, u, by the expressions (2.2.14) we find from (4.9.5) that
0% sinf o ( 1 3;#) _ CUsin?@

- .

r

a7t 72 %6\sin6 %6

The particular integral for ¥ is clearly proportional to sin®@; and the inner
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boundary condition also requires ¥ to depend on ¢ in this way at 7 = a. We

therefore put ¥ = Usin®6f(r), (4:9.6)
which may be seen to be equivalent to a velocity vector of the form
(14 x.U/(zof 1df
w=U(; )% (51 ). (497)
The equation for the unknown function f is
af of  C
r e (4-98)
of which the general solution is
f(r) =43Cr+Lr1+Mr. (4-9.9)

The terms containing the new constants L and M represent an irrotational

motion.
v

Figure 4.9.1. Streamlines, in an axial plane, for flow due to a moving sphere
at R <€ 1 (with complete neglect of inertia forces).

Now the outer boundary condition demands that f/r* - o0 as r—» o0; and
the kinematical condition #, = U cos § at the surface of the sphere requires
f(a) = 34 Hence

M=o, L=4%a*-3Ca (4.9.10)
There remains the no-slip condition at the surface of the sphere, viz.
uo=—giln—9%=—Usin0 atr = a,
which is satisfied if C=%a, L=-}d (4.9.11)
The stream function representing the motion is thus
—~ Urtsin20 (391 a_‘?)
¥ = Urtsin?6@ (4 7 an) (4.9.12)

A sketch of the streamlines is shown in figure 4.9.1. The streamlines are
symmetrical about a plane normal to U, as is of course implied by the
linearity of u in U; reversing the direction of U merely leads to a change of
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the sign of u everywhere. It will also be noticed that the disturbance due to
the sphere extends to a considerable distance from the sphere, the velocity
approaching zero as r~! at large values of 7. As a consequence, the presence
of an outer rigid boundary, for example in the form of a cylinder with
generators parallel to U, can modify the fluid motion appreciably, even
when it is at a distance of many diameters from the sphere; likewise the
interaction between two moving spheres many diameters apart can be
appreciable.

These features of the solution are consequences of the neglect of the
inertia term in the equation of motion. The equation for the vorticity, viz.
V2w = o, shows that the flow represented by (4.9.12) is effectively due solely
to steady molecular diffusion of vorticity to infinity in all directions, the
sphere being a source of vorticity as a consequence of the no-slip condition.
The term dw/dt which is present in the full equation for w, and which repre-
sents the effect of the continual change in the position of the sphere relative
to the axes, has been neglected here, and molecular diffusion spreads the
vorticity as far ahead of the sphere as behind it; it is as if the sphere were
stationary and acted purely as a source of vorticity. The vorticity distribution
shows the decrease as 72 to be expected for the diffusion of each component
of w from a stationary steady source of dipole character (equal positive and
negative quantities of each component of w being generated at the surface
of the sphere).

It remains for us to verify that the solution found on the assumption that
inertia forces can be neglected is actually consistent with that assumption.
According to the solution (4.9.12), an estimate of the magnitude of the
viscous force #V2u is uUa/r3. If the sphere velocity is exactly steady, and the
rate of change of u at a fixed point is due simply to the sphere changing its
position relative to the point concerned, the operator 9/t is equivalent to
—U.V and the inertia force is

p(-U.Vu+u.Vu), (4.9-13)

For the first of these two terms the order-of-magnitude estimate using
(4.9.12) is pU?%a/r?, whereas for the second it is p U?a?/7%. These two terms are
of the same order near the sphere, but the first is dominant far from the
sphere. Thus the ratio of the order of magnitude of the neglected inertia
forces to that of the retained viscous forces is

pU?a [pUa paUr

o | =t iR (4.9.14)

At positions near the sphere our solution is indeed self-consistent when
R < 1, but it seems that the inertia forces corresponding to the solution
become comparable with viscous forces at distances from the sphere of order
a/R. The solution (4.9.12) is evidently not valid at these large distances from
the sphere, although this by itself may not be of consequence since the fluid
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velocity and the inertia and viscous forces are all small there. We shall in fact
see in § 4.10 that it is possible to find a velocity distribution which is a valid
approximation to the solution of the complete equation of motion everywhere
in the fluid when R < 1, and which coincides with the above solution, to a
consistent approximation, when r/a is of order unity.

In order to find the force exerted by the fluid on the sphere, we now
evaluate the stress tensor at r = 4. The #-component of the force per unit
area exerted on the sphere at a position denoted by x = an is

- (L7 %)}
(O ij)rma = "1{ pOy+u ( ox, +-6xi i
and for a velocity of the form (4.9.7) this may be found with a little working
to become
L. 1 £, }
{ —png+ un;U. n(— tg—a )t »U; g
(4-9.15)
where f’ denotes df/dr. Substitution for p and f from (4.9.4) and (4.9.9), and
the use of (4.9.10), then gives

U.n (2C U,
1O oheea = 1 2+ B2 (=342 (1-5), (910
and, with the value of C required by the no-slip condition,
U,
= —pom— 21, (49.17)t

It seems that the force per unit area on the sphere due to the motion has the
same vectorial value — 34U/2a at all points on the sphere—a striking result,
which however is not true of bodies of different shape nor of a sphere with
anon-rigid surface. The first term on the right-hand side of (4.9.17) is simply
the same uniform normal stress as in the fluid at infinity, and makes no
contribution to the total force on the sphere, which is a retarding or drag
force parallel to U of magnitude

D = 6mapU. (4.9.18)

The expression (4.9.18) is usually known as Stokes’s law for the resistance
to a moving sphere. It is common practice to express the forces exerted on
moving bodies by the fluid in terms of a dimensionless coefficient obtained
by dividing the force by $pU? and by the area of the body projected on to a
plane normal to U; thus the drag coefficient is here

D
Cp= U = 31%' (where R= 2a/€7p ) . (4.9.19)

+ This result can also be obtained readily from the expression for the stress at a rigid
boundary given in the second exercise at the end of §4.1.
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It is now a simple matter to calculate the terminal velocity which a sphere
would have when falling freely under gravity through fluid, according to
Stokes’s law. On taking into account the buoyancy force exerted on the
sphere (§4.1), we find for the terminal velocity V of a sphere of density p

61auV = $na¥p—p)g,
that is, = 3 ag(p (; - ) (49.20)

where v = ufp. The correspondmg value of the Reynolds number for a
sphere falling with its terminal velocity is

(4.9-21)

3 \
2 \ Second
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Figure 4.9.2. Comparison of measured values of the drag on a sphere (taken from Castleman
1925) and two theoretical estimates, Stokes’s law Cp = 24/R, and a second approximation
Cp = 24R(x +R), where R = 2apU/u.

For a particle of sand falling through water at 20 °C, we have p/p ~ 2 and
v = o'or0 cm?/sec, making the Reynolds number 44 x 10%%, @ being in
centimetres; and for a water droplet (assumed to be rigid) falling through
air, we have p/p ~ 780 and v = o-15 cm?/sec, making the Reynolds number
1°5 x 10°a%. The assumption on which neglect of the inertia force was based,
namely, that R < 1, is satisfied in the case of the sand particle in water pro-
vided @ < 0-006cm and in the case of the water droplet in air provided
a < 0-004.cm. The conditions under which the analysis may be applied are
thus restricted to extremely small spheres. However, it seems, from a com-
parison of the observed and calculated terminal velocities of spheres of
known size (see figure 4.9.2), that Stokes’s law for the drag is tolerably
accurate for most purposes when R < 1; and there is no detectable error
when R < 0'5. Thus the theoretical requirement ‘small compared with’
used above may usually in practice be replaced, so far as the drag force is
concerned, by simply ‘smaller than’.
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It will be noticed from figure 4.9.2 that the curve representing Stokes’s
law lies below the measured values of the drag and below the other theor-
etical estimate (which will be referred to in the next section). This was to be
expected from the general result established at the end of § 4.8; the velocity
field obtained by neglecting inertia forces is accompanied by a smaller total
rate of dissipation than that for any other solenoidal velocity distribution
with the same value of the velocity vector everywhere on the boundary of
the fluid, and hence is accompanied by a smaller rate of working by the
sphere against fluid forces at a given speed U.

A spherical drop of a different fluid

In a number of cases of practical interest, the sphere in translational
motion at small Reynolds number is itself composed of fluid in which
differential motion may occur, and it is desirable to see if this internal
circulation affects the drag significantly (Hadamard 1911). We shall suppose
that the two fluids are immiscible, and that surface tension at the interface
is sufficiently strong to keep the ‘drop’ approximately spherical against any
deforming effect of viscous forces. The condition for this is that y/a (where
v is the coefficient of surface tension) should be large compared with the
normal stress due to the motion, of order x£U/a, that is, that

Y > uU; (4-9.22)

we shall refer again to this requirement at the end of the section. It will also
be assumed that the Reynolds number of the motion within the drop is small
compared with unity, like that of the motion outside the drop.

The argument used to determine the velocity and pressure distributions
for the case of a rigid sphere can be modified without difficulty. The motions
both inside and outside the sphere are axisymmetric and satisfy the equations
(4.9.1) and (4.9.2) (although with different values of the viscosity). u and
b —p, must vanish at infinity, as before, and U and p — p, (Where the overbar
indicates a quantity relating to the internal fluid and its motion) are finite
everywhere within the sphere. The common kinematical condition at the
interface is =
nu=nu=nU atr=a. (4.9.23)
In place of the no-slip condition at the surface of a rigid sphere there are
certain dynamical matching conditions. No relative motion of the two
fluids can occur at the interface, and the tangential stress exerted at the
interface by the external fluid must be equal and opposite to that exerted by
the internal fluid.t No information can be obtained from considerations of
the normal stress at the interface, since we have supposed that any dis-
continuity in the normal stress there which cannot be eliminated by an

1 We are assu'ming. here that the only mechanical property of the interface is a uniform
gurface tension; in practice it appears that contaminant molecules may collect at the
interface and give rise to other properties (§1.9).
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appropriate choice of p, is balanced by surface tension acting at a slightly
deformed interface. Thus

XXu=xxu atr=aq, (4.9.24)

Empi e N(Cy—~Ty) =0 atr=a. (4-9.25)

The equations and boundary conditions are linear and homogeneous in

u,p—pg, B, p—p, and U, so that the relations (4.9.4) to (4.9.10) still stand,

and are supplemented by analogous relations for the internal motion. p
satisfies Laplace’s equation, like p, and the appropriate solution, analogous

t0 (4.9-4), is (#-p)/E = CU.x,

where C is a constant. The stream function and velocity within the sphere
have the forms (4.9.6) and (4.9.7), but the internal vorticity is

w=-3}CUxx
and so the right-hand side of the differential equation for f, analogous to
. ~ 2 _
(4.9.8), is $C72. Hence Fr) = 2Cr+ L4 T, (4-9.26)
The need to avoid a singularity at r = 0 and the kinematical condition at
7 = arequire L=o, H=3}-%Ca
The velocity within the sphere is thus
u =U-,C{U(a® - 2r*) + xU. x}. (4.927)

It remains to determine C and C from the dynamical matching conditions.
From (4.9.24) we have ~ ~_ }a = %Cad+a.
Only the term containing U, in the general expression (4.9.15) for the stress

across the interface contributes to the tangential component, and matching
of this tangential component gives

a?
_1g2TE o5 P
Hence C=ia PEeR C= Bt (4-9-28)

The resultant force exerted on the interface by the external fluid is now
obtained by integrating the force per unit area (4.9.16) over the interface 4:

I"j(aij)r-a d4 = —4mpU;C
- pt+iE 9.2
= —4mapU; Py (4-9-29)
The terminal velocity V of a fluid sphere of density 7 and viscosity Z moving
freely under gravity is thus

_lag(p |\ A+E
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The case of a rigid sphere is recovered by putting z/# - co. The case of a
spherical gas bubble moving through liquid corresponds (approximately)
to the other extreme, fi/u = o, together with p/p = 0. The speed of a
spherical gas bubble rising steadily under gravity is thus given as 4a2/v.
However, observation of the terminal speed V' of very small gas bubbles
suggests that the drag is often closer to the value 67rax V than to the expected
value 4mauV; this is believed to be because surface-active impurities
present in the liquid collect at the bubble surface, with larger
concentration at the rear, thereby setting up a gradient of surface
tension which resists the surface movement.}

‘Theoretical Observed

Figure 4.9.3. Comparison of the theoretical and observed pattern of streamlines in a
spherical drop of glycerine falling through castor oil (from Spells 1952).

Observations of the general form of the flow inside liquid drops falling
under gravity through a second liquid have been made, although measure-
ments of the velocity distribution are difficult. Figure 4.9.3 shows a sketch
of the streamlines observed in a spherical liquid drop, relative to axes moving
with the drop. The theoretical streamlines corresponding to (4.9.27),
relative to these same axes, are lines on which

¥ oc $Ur%(a®—r?)sin?0 (4.9.31)

is constant, and these are also shown; the agreement is satisfactory.
Finally we note an interesting point about the normal component of stress
at the surface of the fluid sphere, on which no restrictions have been placed.
It will be recalled that the pressure represented in the equations of this
section is the modified pressure, and that to obtain the absolute pressure
(or a quantity differing from it only by a constant) we should add to the
modified pressure a term pg.x for the flow field outside the sphere and a
term 5g. x for the flow field within the sphere. The difference between the
values of the normal component of the absolute stress at the surface of the
1 A general discussion of the effect of adsorbed material at the surface of a small gas

bubble rising through liquid will be found in Physico-chemical Hydrodynamics, by
V. G. Levich (Prentice-Hall, 1962).
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sphere as approached from the outer and inner sides is then found from the
general expression (4.9.15) to be

W5~ Fa)rma = oo~ galp~7)+ 2.0 (3 (C - 20)+ 3auc]

=po—po—n.ga(p—p) _n-U% %‘,
apart from any contribution due to surface tension. The notable feature of
the expression (4.9.32) is that when the sphere is moving steadily under
gravity, with the velocity of translation then being given by (4.9.30), the
normal components of stress differ only by a constant quantity p,—p,. Thus
there is no tendency for the stresses at the interface to deform the sphere and
it is not in fact necessary to suppose that the effect of surface tension is so
strong as to keep the drop or bubble spherical; surface tension enters only
through the relation p,—p, = 27y/a (see (1.9.2)) determining p,. Provided
the viscosities and densities of the two fluids are such as to make the Reynolds
number of the flow so small that inertia forces are negligible, we now see
that there is no restriction on the size of the fluid sphere. Air bubbles rising
through very viscous liquids such as treacle have been observed to be
spherical, even when their radius is so large that the effect of surface tension
could not be dominant.

(4.932)

A body of arbitrary shape

Although it is difficult to work out the details of the flow due to a moving
body at small Reynolds number for any shape other than spherical,} some
general results are available. The following remarks refer only to circum-
stances in which inertia forces may be neglected completely.

Arguments like those used at the beginning of this section show that, for
a body of arbitrary shape in translational motion with velocity U, both u and
(p — o)/ 1 are linear and homogeneous in U. Furthermore, a change of size
of the body without change of its shape simply changes the length scale of
the whole flow field, so that for a body of given shape u/U and (p —p,) d/nU
are (dimensionless) functions of x/d, where d is a representative linear
dimension of the body.

Both the tangential and excess normal stresses in the fluid are linear in U,
so that the resultant (vector) force exerted by the body, given by the integral

F =~ [oyndA (4.9:33)
taken over the body surface, is proportional to xUd. The equation (4.9.1)
governing flow with negligible inertia forces is equivalent to
004/ 0%; = o,
and it follows from an application of the divergence theorem that the integral

+ The solution for the case of a rigid ellipsoid is given in Hydrodynamics, by H. Lamb,
6th ed. (Cambridge University Press, 1932).
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in (4.9.33) has the same value for any surface in the fluid enclosing the body
and in particular for a sphere of large radius centred on the origin. Hence

Fy = — [ lim (roy;,)dQ(x), (4.9:34)

where 8Q(x) is an element of solid angle at the direction of x. This relation
shows that in the case of flow due to a moving body exerting a finite force on
the fluid p —p, and the rate-of-strain tensor must both decrease at least as
rapidly as 7% as 7 > oo,

We know also that p — p, is a harmonic function and can be represented as
a series like (2.9.19). The first non-zero term of this series is evidently of
degree —2 in 7, so that p=po _ P, U,dx, (€035

“ s -9-35

is the asymptotic form as 7 - oo, where P,; is a numerical tensor coefficient
dependent only on the body shape. The vorticity w also satisfies Laplace’s
equation, and may be written as a similar series (with allowance for its axial
vectorial character). Terms of the same degree in the series for (p — p,)/# and
for w are related by the governing equation (4.9.1), and it may be seen that
if the leading term of the series for (p — p,)/# is a. Vr—1, that for w isa x Vr=1.
Consequently we have P, U,dx,

Wy~ €y

(4-9-36)

as 7 - o0. Finally we may obtain the asymptotic form for the velocity, which
is determined by (4.9.36) (apart from an irrotational contribution which
cannot be of larger magnitude than 2 when the flux of volume across the
body surface is zero) and the requirement that u is solenoidal. We find

d d
w, ~ 3P, U, (; dure+ il xk) ’ (49:37)
as r - oo.
It is now possible to relate the coefficient P,; to the force F by evaluating
the stress at a spherical surface of large radius (see (4.9.34)). The working is
straight-forward, and leads to the result

Fy = 4npFy; U;d. (4-9-38)

It appears that the single numerical tensor P,; is sufficient for the specifica-
tion of the total force on the fluid and the asymptotic expressions for the
pressure and velocity, when a body of given shape moves with translational

velocity U; and in the case of a spherical body of radius 3d composed of
fluid of viscosity Z we know from the preceding calculation that

137
Py= %31:1/:‘_*_%;-

The flow at large distances from the body has axisymmetry about the
direction of the vector P,; U;. Consequently we may represent the flow in
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this region in terms of a stream function. With spherical polar co-ordinates
(r,0, $) and the axis # = o in the direction of the vector P;; U;—which is also
the direction of the force F—we find from (4.9.37) and (4.9.38) that

= F L ne
= g S0%0 (4-9-39)

in this region, where F is the magnitude of F. Now (4.9.38) shows that
F/pv? is of the same order as Ud/v, which has been assumed to be small
compared with unity. It is therefore not surprising that we should have
recovered the flow field (4.6.18) due to a force of magnitude small compared
with pv? applied to the fluid at the origin. When a body of arbitrary shape
moves through fluid at small Reynolds number, the distant flow field depends
only on the resultant force exerted on the fluid and is not affected by the
continual change of position of the body.

These general results have a convenient form for application to the case
of a small particle, either solid or fluid, falling freely under gravity. If the
volume 7 and density 5 of the particle are known, the distributions of velocity
and pressure far from the particle are immediately obtained from the above

formulae by putting F = (p—p)78;

details of the shape of the particle are irrelevant, and it presumably also does
not matter whether the particle continually turns over and changes its
orientation relative to the direction of gravity or whether it moves on a path
which is not vertical.

The flow field represented by (4.9.39) is sometimes referred to as being
due to the existence of a ‘Stokeslet’ at the origin.

Exercises
1. Prove that U.F’ = U’.F, where F and F’ are the forces exerted by a body
moving at velocities U and U’ respectively (at small Reynolds number in both
cases), and thence that the coefficient Py in (4.9.38) is a symmetrical tensor.
2. Arigid sphere of radius a is rotating with angular velocity & in fluid which is
at rest at infinity. Show that when pa?Q/u < 1 the couple exerted on the fluid by
the sphere is 8mua®Q.

4,10. Oseen’s improvement of the equation for flow due to moving
bodies at small Reynolds number

It has been seen that, with complete neglect of inertia forces in the flow
due to a body of arbitrary shape and linear dimension d moving with speed
U, the fluid velocity is of order Ud|r at large values of the distance 7 from the
body. But the first term in the expression (4.9.13) for the inertia force involves
a first-order spatial derivative, whereas the viscous force involves a second-
order derivative, and it follows that the local inertia force calculated from
this solution is in fact comparable in magnitude with the viscous force when
ris of order d/R (where R = pUd/p), as seen earlier in the case of a sphere.
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This criticism of the use of equation (4.9.1) to represent flow due to bodies
moving through fluid of infinite extent which is otherwise undisturbed was
made by Oseen (1910), who also showed how it is possible to improve
the equation and thereby to remove the inconsistency. Oseen’s improve-
ment applies to cases in which the body is moving with steady velocity U and
in which the flow relative to the body is steady, in which event the local
inertia force is as given in (4.9.13), namely,

p(-U.Vu+u.Vu), (4.10.1)

where u is the fluid velocity relative to a co-ordinate system fixed in the
fluid at infinity as before. Since the first of these two terms becomes
dominant at large 7, and is responsible for inertia forces being comparable
with viscous forces at sufficiently large 7, Oseen suggested that it, alone of
the two contributions to the inertia force, be retained in the equation of
motion. The second term, which presents the greater mathematical difficulty
in view of its non-linearity in u, is again neglected on the assumption that
R € 1; provided |u| falls off at least as rapidly as 7! as 7 increases, this
second term remains small relative to the viscous force however large r may
be. Near the body the two terms in (4.10.1) are of the same order and will
both be small compared with the viscous force, provided R < 1, so that in
this region the suggested equation is neither more nor less accurate than
(4.9-1).

The Oseen equations for flow due to a moving body at small Reynolds

number are therefore

ou

P = -pU.Vu = —Vp+,uV2u,} (4.102)

V.au=o,

with the boundary conditions, for a rigid body,
u="U at the surface of the body,
u—>o0 and p—p,—>0 as r—> o,

Although these equations are still linear in the dependent variables u and p,
they are no longer linear in u, p and U, and are more difficult to solve than

(4.9.1) and (4.9.2).

A rigid sphere

The solution of these new equations for the case of a moving sphere is not
known in closed form, but an approximate solution which is consistent with
the degree of approximation used in the equations themselves has been
found (Lamb 1911). In terms of the stream function, this approximate
solution, which will simply be quoted here, is

—exp{—1R(1 +cos §) r/a}
R

U= Uaz[—i :—zsin’6+3(1 —cos¢9)I ] (4.10.3)
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at the instant at which the centre of the sphere coincides with the origin,
where R = 2aUp/u as before. This expression is readily seen to satisfy the
equations (4.10.2) exactly, and it also makes u — oasr — co. Near the sphere,
where r/a is of order unity and Rr/a < 1, it becomes
= Ussin2g] _ 12,37 r

¥ = Ua®sin 0{ 4r+4a+O(Ra)}’ (4.10.4)
and therefore coincides with Stokes’s solution (4.9.12)—and in particular
satisfies the inner boundary condition—with a relative error of order R.
This is just the degree of approximation to which (4.10.2) represents the
equations of motion, so that (4.10.3) is as accurate a solution of (4.10.2) as is
wanted.

Figure 4.10.1. Streamlines in an axial plane for the outer part of the flow field due to 2
moving sphere, according to the Oseen equations. ¥ is equal to some constant times the
numbers shown on the streamlines,

Figure 4.10.1shows the streamlines corresponding to the solution(4.10.3),
with neglect of the first term within square brackets which is significant
only near the sphere when R < 1. The qualitative differences between the
Oseen and Stokes solutions in the outer part of the flow field are evident.
The streamlines are no longer symmetrical about the plane § = 4, as was
to be expected from the fact that the governing equation does not remain
satisfied after a change in the signs of u and U. Far from the sphere the flow
tends to become radial, as if from a source of fluid at the sphere, except within
a ‘wake’ directly behind the sphere. Analytically, we see from (4.10.3) that
when Rr/a > 1 the flow has different forms according to whether 1 +cos@
is small compared with unity. At positions where 1 + cos € is not small, the

stream function becomes 3
¥ ~ Ua® —R-(I —cos?), (4.10.5)

which describes the outward radial flow from a source at the origin emitting
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127a2U/R units of volume per second. On the other hand, within the wake,
where I+ cos@ is of the same order of magnitude as 4a/7R (that is, where
7 —0 is small and of order (8a/rR)}), we have

¥~ Ua’% {x—-exp{—gg(ﬂ—ﬁ)z}], (4.10.6)
which describes a compensating flow towards the sphere, the inflow velocity
being 3Ua/2r on the axis 6 = 7.

Fav from the sphere, the vorticity is zero in the source-flow region and is
confined to the wake, which may be regarded as bounded by a paraboloid of
revolution on which (7 —6)2r/a is of order R~'. Whereas in the Stokes
approximation the vorticity diffuses out in all directions from an effectively
stationary sphere, here the motion of the sphere is allowed for, as may be
seen from the equation for w obtained from (4.10.2):

ow

ot
This equation for each componentof wis of the same formasthat satisfied by
temperature in a stationary conducting medium through which a steady
source (which in this case has a dipole character) of heat is moving with
steady velocity U. The vorticity generated at the sphere is left behind as the
sphere moves on, in a wake which becomes narrower as R increases.

We may now confirm that the solution (4.10.3) is self-consistent in the
way that Stokes’s solution was not; that is, we show that the neglected term
pu.Vu, evaluated by means of (4.10.3), is small compared with any term
retained in the equation of motion, when R < 1. In the region near the
sphere, where r/a is of order unity, (4.10.3) reduces to Stokes’s solution
(with an error of order R), for which p|u.Vu| is already known to be small
compared with x|V2u|, the ratio of these terms being of order R. Far from
the sphere, in the region where Rr/ais of order unity, which is where (4.10.3)
first differs significantly from the Stokes solution, the magnitude of u as
given by (4.10.3) is of order Ua/fr, or UR; hence the ratio of the neglected
term p |u. Vu| to the retained term p |[U.Vul is of order R and is again small.
Still further from the sphere, where r/a > R, |u| is even smaller by com-
parison with U.

It appears then that the approximate form of the equation of motion
suggested by Oseen has a solution such that the approximation is self-
consistent over the whole of the flow field when R < 1. Near the sphere this
solution has the same form as Stokes’s solution—and so leads to the same
expression, 67rauU, for the resistance experienced by the spheret—with a

= -U.Vw = V2. (4.10.7)

1 It will be noticed that the resistance is pU times the inward flux.of volume in the wake
far downstream. This relation follows from general considerations of momentum (see
§5.12, on wakes), and holds for any body, at any Reynolds number, provided the body
moves steadily and leaves behind it a wake of non-zero vorticity whose width increases
less rapidly than its length.
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relative error of order R, which is the degree of error involved in the replace-
ment of the equation of motion by the Oseen equation. Since (4.10.3) is
evidently an approximation to the solution of the complete equations of
motion which is valid for R < 1 over the whole of the flow field, it is natural
to consider making (4.10.3) the starting point of a process of successive
approximation to the solution of these equations. This has been done
(Kaplun and Lagerstrom 1957; Proudman and Pearson 1957), and the
second approximation to the drag coeflicient has been found to be

Cp= —21%' (1+7%5R). (4.10.8)

(This expression for Cp, to order R also follows from the Oseen equations,
which at first sight is surprising; the explanation is that the term of order R
in the difference between the solution of the Oseen equations for u and the
second approximation to the solution of the complete equations makes zero
contribution to the drag for bodies with fore-and-aft symmetry.) As in-
dicated in figure 4.9.2, the formula (4.10.8) agrees with the measured
drag for a slightly larger range of Reynolds number than does Stokes’s law.

A rigid circular cylinder

The difficulties associated with the use of the equations (4.9.1) and (4.9.2),
and the overcoming of these difficulties by the use of the Oseen equations
(4.10.2), have been explored for a few other cases of bodies moving steadily
through fluid. We shall mention here the case of a circular cylinder of radius
a moving with velocity U normal to its axis, since this case exhibits marked
differences, typical of two-dimensional flow at small Reynolds number, from
the case of a sphere.

A solution of the equations (4.9.1) and (4.9.2) may be sought in exactly
the same way as for a moving sphere, making use of the linearity of the
solution in U and of the dependence on x, U and a alone. In place of the
relations (4.9.4) and (4.9.5) we find

p—po _CU.x w_CUxx
o TR
where C is a constant and (r,6) are the polar co-ordinates of the two-
dimensional vector x. The vorticity may also be expressed in terms of a
stream function ¥. The analogue of (4.9.6) is

¥ = Usin6f(r), (4.10.10)
and the equation satisfied by the function f is

a@f 1df f C

art rdr r’

H (4' I0'9)

The general solution is
f(r)=—3%Crlogr+Lr+Mr?, (4.10.11)
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and there arises the difficulty that the particular integral associated with the
vorticity distribution gives a divergent velocity at infinity. If for the moment
we ignore the outer boundary condition on u, we find that the required
conditions at the inner boundary, viz.

flr=1, dfldr=1 atr=a,
are satisfied when
L=1+}C+}Cloga, M = ~}a®C.

The velocity distribution is then

r 1 14 U.x{1 14 \

u= U+CU(—§logE-—Z+Z ;—2-) + C"",Tx' (——— ——) . (4.10.12)

The normal and tangential stresses at the surface of the cylinder, as derived

from the expressions (4.10.9) and (4.10.12), exert a force on the cylinder
which is found to be a drag of magnitude

D = 27pUC (4.10.13)

per unit length of the cylinder.

The expressions (4.10.9) and (4.10.12) for (p —p,)/¢ and u satisfy the
equations (4.9.1) and (4.9.2), the inner boundary condition, and the condi-
tions of linearity in U and symmetry about 8 = o, but the expression for u
diverges as logr when 7 is large and no choice of the remaining arbitrary
constant C will make u — o as r > co. However, the solution (4.10.12) is
not useless. According to (4.10.12), the two contributions to the neglected
inertia force (see (4.9.13)) have the following magnitudes when 7 is large:

| pUC pUC?
pati’v r ’ Ipu'vul~ r

r
log;. (4.10.14)

On the other hand, the retained viscous force has the magnitude
nuc

r?

|nViuf ~

Both contributions to the inertia force become comparable with the viscous
force at sufficiently large distances from the cylinder, the first when 7/a is of
order R-1 (where R = 2apU/u) and the second when (Cr/a)log(r/a) is of
order R-1. The solution (4.10.12) is thus in any case not a self-consistent
approximation to the flow field at large values of 7, and its failure to satisfy
the outer boundary condition might not therefore be a fatal defect in itself.
Evidently some other approximation to the equation of motion at large r
is needed, and (4.10.12) must match with the solution of this approximate
€quation as 7 = 0.

Detailed calculation shows that the Oseen approximate form of the
equation of motion does in fact have a solution (Lamb 1911) which is self-
consistent over the whole field in the sense that the neglected term pu.Vu,
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evaluated according to the solution obtained, proves to be small everywhere
by comparison with terms retained in the equation when R < 1. Near the
cylinder this solution for u/U approximates, with an absolute error of order
R, to the form (4.10.12) provided the constant in (4.10.12) is chosen as

2
C= Tog(7-4/R)" (4.10.15)

We note that, with this value of C, the magnitude of pu. Vu, according to the
the ‘inner’ solution (4.10.12), does not become comparable with | xVu| until
r/ais of order R-1, which is also the value of /a at which the Oseen improve-
ment to equation (4.9.1) is necessary and at which the solution of the Oseen
equation has begun to differ from (4.10.12).

The general features of the flow far from the cylinder as obtained from the
Oseen equation are similar to those for a sphere, and in particular there is a
parabolic wake of finite vorticity behind the cylinder.

Since the solution of the Oseen equation is given approximately by
(4-10.12) near the cylinder, with an error of the same order as is involved in
the replacement of the equation of motion by the Oseen equation (viz. O(R)),
the estimate (4.10.13) for the drag is still appropriate. Substituting from
(4-10.15), we have for the drag coefficient of unit length of the cylinder

D 8w
CD = 3pU%a = Rlog(7-4/R)' (4-10.16)

It is more difficult to make measurements of the drag on a cylinder at low
Reynolds number than for a sphere, owing largely to the unwanted effect
of the ends of a cylinder of finite length, but the relation (4.10.16) gives
values near R = o-5 which are consistent with observation (see figure 4.12.7).
In some recent research a procedure for obtaining higher-order approxi-
mations to the flow past a circular cylinder and to the drag coefficient has
been devised.t It appears from these investigations that (4.10.12) (With
(4-10.15)) represents the true (non-dimensional) velocity distribution in the
neighbourhood of the cylinder with an absolute error of order (log R)~2.

4.11. The viscosity of a dilute suspension of small particles

Mixtures consisting of one material in the form of small particles, either
solid, liquid, or gaseous, dispersed randomly throughout another fluid
material are quite common in nature and in industry. The term ‘suspension’
usually refers to a system of small solid particles in liquid, but the nature of
the two media is not of particular significance from the dynamical point of
view and our use of the word here will include also systems of solid particles
in a gas, systems of drops of one liquid dispersed either in another liquid
+ For a general account of the procedure, which may be applied to some other problems

in fluid dynamics, see Perturbation Methods in Fluid Mechanics, by M. D. Van Dyke
(Academic Press, 1964).



