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“Equation of Motion of a small rigid spherical particle in a non-
uniform flow”. Maxey, M. and Riley, J., Physics of Fluids, 1983

Particle dynamics in non-uniform flow: the 
modified Basset-Boussinesq-Oseen equation 

Two	Fluid	Equations	(Eulerian-Eulerian)	vs
Particle	Tracking	Equations	(Eulerian-

Lagrangian)

u is the unpertubed fluid velocity
v is the actual fluid velocity influenced by the presence of the spherical particle
Y(t) is the position of the center of the sphere

u(x,y,z,t)

V(t)

v(x,y,z,t)
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When	we	group	the	added	mass	together	with	the	left	hand-side	(for	
the	particle	acceleration)	and	the	fluid	stresses	(for	the	fluid	
acceleration)	and	divide	the	MR	eq by	the	mass	of	the	sphere,	
ρpπd3/6,	plus	the	fluid	added	mass,	1/2ρfπd3/6,	we	get:

Particle dynamics in non-uniform flow: the 
modified Basset-Boussinesq-Oseen equation 
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A note about the scales of turbulence

λ:	Taylor’s	microscale

η:	Kolmogorov’s	
microscale

Richardson’s	1921	poem:
“Big	whirls	have	little	whirls
That	feed	on	their	velocity
and	little	whirls	have	littler	whirls
and	so	on	to	viscosity”
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FIGURE 17. Longitudinal one-dimensional energy spectrum : 0, x / M  = 15; 
0, 30; 0 ,  45; V, 60; 0 ,  75; H, 90. 

The longitudinal and lateral power spectra plotted in Kolmogoroff coordinates are 
shown in figures 17 and 18 respectively. The coordinates are non-dimensionalized 
using Eo = (eV5)k, k = 27cf/u and 7 = ($/€)a, where e and f are the turbulent eddy 
dissipation and frequency respectively. In the region of high wavenumber the spectral 
profiles were found to collapse to a single curve. 

A check of the spectral estimates was made by comparing the results of two 
methods of calculating the eddy dissipation per unit mass. First assuming homogeneous 
turbulence and a constant mean velocity, the turbulent kinetic-energy equation 
reduces to (Hinze 1959, p. 75) 

dq2 
2 dt 
_- - - -€, 

then making the transformation 
d - - d  
-- - u- 
dt dx 

gives odp 
2 dx €=- - - -  

By assuming q2 = 3,d2, where pf2 = ur2 = d2 = wT2,  e may be calculated by fitting q2 
versus x- xo and differentiating. The dissipation may also be calculated directly from 
the measured spectral-energy function (Hinze 1959) 
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Settling velocity and concentration distribution of particles 35 
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FIGURE 2. The one-dimensional energy spectra for the simulated flows at various Re, under 
Kolmogorov scaling: 0, 323, Re, = 21; ., 483, Re, = 31; 0, 643, Re, = 43; e, 963, Re, = 62; A, 483 
and use of the second forcing scheme, Re, = 30. The line is a curvefit for all the measured data taken 
from Comte-Bellot & Corrsin (1971) for a flow behind a 2-in grid. 

Wells & Stock (1983), both of which studied the dispersion of heavy particles in a grid- 
generated turbulence, and found that all the experimental curves agree very well for 
ky 2 0.01. Such universality of the energy spectrum is reproduced by the simulations, 
although this is somewhat surprising as the flow Reynolds numbers are not high. The 
flow Reynolds numbers for all the above experimental measurements are comparable 
to those in our simulations. As a side note, George (1992) recently suggested a different 
scaling using h and u' for the energy spectrum rather than Kolmogorov scaling for self- 
preserving decaying turbulence. For our forced stationary turbulence, we found, 
however, the Kolmogorov scaling collapses data much better than the suggested 
Taylor scaling. 

Finally, the velocity derivative skewness and flatness are shown in table 1.  The 
velocity derivative skewness in our simulations is in the range -0.55 to -0.40, which 
compares very well with the experimental range -0.5 to - 0.3 for Re, < 100 (Van Atta 
& Antonia 1980). The flatness also agrees with the experimental value of about 4. In 
summary, although the simulated flows are contaminated by the artificial forcing and 

A note about the scales of turbulence

L:	integral	
length	scale

η:	Kolmogorov’s	
microscale



A note about the scales of turbulence
The	ratio	of	L	(integral	length	scale)	to	η
(Kolmogorov’s	microscale)	depends	on	the	Reynolds	
number:	L/η ≈	Reλ3/4

The	results	from	Maxey	and	Riley	are	valid	when
D/η <<	1	and	

Rep=DVt/νf <1



The dynamics of heavy particles 
in a homogeneous and isotropic turbulence

depends on :
- the droplet inertia, characterized by the 
Stokes number:

where:

- the terminal velocity, characterized by the 
ratio: 

where: 

VStokes
UKolmogorov

VSt = τ p.g€ 

St =
τp
τk

τ p =
(ρp ρair).dp
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Governing	parameters

= 1.2 ms

= 12 ms

= 1.2 cm/s

= 3.5 cm/s

For a 10 micron 
particle in 0.1 m2/s3

air turbulence



Heavy Particles Bubbles

Particle dynamics in non-uniform 
flow: a model for the interaction of 

particles with turbulence

g
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dV
dt

=
u(Y ,t) −V (t)( )

τ p
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ρ p

ρ f
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Heavy particles are centrifuged away from the 
vortex core, and thus tend to accumulate on the 
outer zone of the eddies, in regions of low 
vorticity and high strain. 

The inertial bias mechanism

Turbulence-induced	inertial	dynamics:	
Preferential	accumulation	



Preferential	accumulation	by	the	
inertial	bias	mechanism

1!c"# suggests that the regions with little or no particles are
on the order of 1/10 the box length, making the size of these

regions on the order of 10$.

III. MODELING CONSIDERATIONS

A. Radial distribution function

Consider a canonical ensemble of systems, each of vol-

ume V , containing N indistinguishable particles of diameter,

%, and density, &p . For such an ensemble, the joint probabil-
ity that each of the N particles lie within volumes dx1 cen-

tered at x1 ,. . . , through dxN centered at xN is defined as

P !N "!x1 ,. . . ,xN"dx1 .. .dxN , !7"

where the standard normalization applies, i.e.,

!
V

¯!
V

P !N "!x1 ,. . . ,xN"dx1¯dxN!1. !8"

The two-particle distribution function is then obtained by

integrating out the dependence on the remaining particles

P !2 "!x1 ,x2"' !
V

¯!
V

P !N "!x1 ,. . . ,xN"dx3¯dxN . !9"

The two-particle radial distribution function is then defined

as32,33

g!x1 ,x2"!
N!N"1 "

n2
P !2 "!x1 ,x2", !10"

where n' N/V . For a statistically homogeneous and isotro-

pic volume, particle positions can be expressed in terms of a

relative separation distance, r' "x1"x2", and P (2)(x1 ,x2) re-
duces to P (2)(r)/V to give the working definition of g(r)

used in this study

g!r "!
N!N"1 "

n2V
P !2 "!r ". !11"

As the rdf is near unity for a uniformly distributed system, it

is convenient to define a residual rdf !rrdf" as

h!r "' g!r ""1. !12"

A physical interpretation of g(r) is the number of par-

ticle centers located in a spherical shell between r and r

#dr about a central particle divided by the expected number

of particles given a uniformly distributed particle field.

Based on the definition of the rdf shown in Eq. !11" and the
integral relationship given in Eq. !8", it is easy to show that
the rrdf must satisfy the following integral constraint34

n!
V

h!r "dr!"1. !13"

B. Parametric dependence

Isotropic turbulence is characterized by the fluid density,

&, kinematic viscosity, v , turbulence intensity U!, and ki-
netic energy dissipation rate, (. In dimensionless terms, this
reduces to the turbulent Reynolds number, defined here in

terms of the Taylor microscale

Re)' U!2!15

v(
. !14"

For a monodisperse suspension, the particle phase introduces

three additional variables, viz., the particle density &p , diam-
eter %, and total number N. In terms of dimensionless vari-
ables, these can be expressed as the volumetric loading *
' +%3N/6V , nondimensional size parameter %̂' %/$ and

particle Stokes number St ,see Eq. !1"#. This implies that the
most general form of the rdf in isotropic turbulence can be

expressed functionally as

g! r̂;Re) ,* ,%̂ ,St", !15"

where r̂' r/$ is the dimensionless independent variable and

the variables after the semicolon are the dimensionless pa-

rameters.

C. Simplifying assumptions

The large parameter space shown in Eq. !15" would
make it difficult to interpret and correlate the results from the

numerical simulations. It is, therefore, advantageous to con-

sider the sensitivity of the rdf to each of the parameters, and

search for simplifications where applicable.

FIG. 1. 2d slices of ghost-particle simulations at: !a" St!0.0; !b" St!0.2;
!c" St!0.7; !d" St!1.0; !e" St!2.0; and, !f" St!4.0. Dots correspond to
particle center locations.
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Alternative	view	on	the	inertial	bias	mechanism:
preferential	accumulation	in	high	strain	regions	

Eddies,  stream^, and Convergence Zones 203 

FIGURE 1 ~ .  
or E zones for slow reactions. 

Showing how reacting species (A,B) tend to react in C zones for fast 

FIGURE 1B. Showing how particles tend to concentrate in the streaming S zones. 



“Demixing”	of	heavy	particles	in	a	planar	mixing	layer	

Wang,	L.P.	Maxey,	M.	Burton,	T.D.	and	Stock,	D.E.	(1992)	Chaotic	
Dynamics	of	Particle	Dispersion	in	Fluids.	Physics	of	Fluids	A	4	(8)	
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FIG. 21. Evolution of vorticity distribution for the shear layer and material lines for fluids and heavy particles. 



Chaotic	trajectories	in	a	simple	cellular	flow	

Wang,	L.P.	Maxey,	M.	Burton,	T.D.	and	Stock,	D.E.	(1992)	Chaotic	
Dynamics	of	Particle	Dispersion	in	Fluids.	Physics	of	Fluids	A	4	(8)	
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FIG. 5. (a) A typica trajectory of a particle in the chaos region with 
St=5 and R=0.3. Initial particle location is (1.6,1.6). Dashed lines mark 
the cell boundaries. (b) The power spectra for the particle velocities in 
the x, and x2 directions for the same condition. 

almost all the points have a positive average exponential 
growth rate. We expect that all the points will have a sim- 
ilar, single asymptotic growth rate when t-t CO, indicating 
that the long-term behavior is unique and independent of 
the initial location. Further evidence is presented later 
when the ergodicity of the system is discussed. 

and u2 spectrum as expected. The broadband frequency 
contribution indicates the motion is chaotic. The power 
spectrum was obtained by taking a long time series of par- 
ticle velocity (with 2048X50 data points) at a sampling 
rate of 2.5 samples per time unit. The VFFTPK library on 
Cray-YMP at the Pittsburgh Supercomputing Center 
(PSC) was used to derive the Fourier coefficients. 

A typical trajectory for the chaotic motion is shown in Figure 6 shows a typical particle trajectory when the 
Fig. 5. The parameters used in this calculation are shown motion is periodic. It will be referred to as case II and the 
in Fig. 3 as point I. This set of parameters will be referred parameters are shown as point II in the parameter space of 
to as case I in later discussions. The initial particle location Fig. 3. In this case the particle travels along a 45” zigzag 
( 1.6,1.6) is near the center of the cell. The particle moves curve. The power spectrum has a strong peak at the fun- 
along an outward spiral curve for some initial time due to damental frequency and its harmonics. The period is about 
inertial (centrifugal) force. The long-time motion is very 8.64 time units. In contrast with the periodic motion of 
irregular. The centrifugal effect does not allow the particle fluid elements where the orbit is closed streamlines, the 
to stay in any cell for long. Actually the particle seldom periodic motion of the aerosol particles follows an open 
visits the center of the cell where the vorticity is strong. At trajectory. In other words, the particle inertia destroys 
times the particle cuts through the cell boundary and en- closed periodic orbits and in turn can generate open peri- 
ters a new cell. This process repeats nonperiodically. Also odic orbits. It is noted that by open periodic orbits we do 
shown are the power spectra of the particle’s velocity at not distinguish (y, +2m7~, y,+2nr) from (y,, y2), where 
long time. There is no difference between the u1 spectrum m and n are arbitrary integers. 

(a) 
by------- x1 

5-5 
2 4 6 

lb) f 
FIG. 6. (a) A typical periodic trajectory of a particle with St=5 and 
R=O.l. Initial particle location is (1.6,1.6). (b) The power spectra for 
the particle velocities in the x1 and x2 directions for the same condition. 
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computed and the spatial complexity of the ABC flow, no 
relation between diffusivity and fractal dimension was 
found. 

Some preliminary effort has been made to study La- 
grangian motion of particles in fully turbulent flows and 
shear mixing layers using dynamical systems tools. Wang 
et a1.9 used a finite number of random Fourier modes to 
represent unsteady, three-dimensional turbulent flow and 
computed the fractal dimension for the attractor of heavy 
particles. They found that the fractal dimension increased 
linearly with increasing particle diffusivity for a wide range 
of particle inertia and settling velocities. This suggests that 
the notion of chaos may be useful for studying particle 
dispersion and mixing in real turbulence. GaiZin-Calvo and 
Lasheras” used a steady Stuart vortex solution of the Eul- 
erian equations to represent a plane, free-shear layer and 
showed that heavy particles can be suspended in the layer 
and have periodic, quasiperiodic, or chaotic orbits. When 
the motion is chaotic, the attractor in physical space has a 
finite height, indicating some degree of transverse disper- 
sion. 

Most of the above studies are still of a preliminary 
nature. They raise many issues that need further, detailed 
investigation. Questions that come to mind include the fol- 
lowing: Why does the appearance of chaos give rise to 
dispersion’? Does the occurrence of chaos guarantee disper- 
sion? What measure based on chaotic dynamics is corre- 
lated to the dispersion coefficient? In this paper we address 
these issues by examining the Lagrangian motion of small, 
heavy particles in the steady two-dimensional cellular flow. 
Chaotic orbits are shown to exist and the resulting disper- 
sion of particle clouds are found to have many of the fea- 
tures of turbulent dispersion. Correlations between the 
fractal dimension, the effective dispersion rate, and the ef- 
fective mixing efficiency are explored. Finally particle dis- 
persion and mixing in an evolving free-shear layer is briefly 
discussed in a similar context. 

II. AEROSOL PARTICLES IN A CELLULAR FLOW 

In this section we examine the Lagrangian motion of 
aerosol particles in a cellular flow. Such a flow arises in 
thermal convection with free-slip boundaries and has also 
been used to represent the transport effects of small-scale 
turbulent eddies on a passive scalar field.” Although the 
same flow was considered by C&anti et a1.,5 the equation 
of motion for particles adopted here is more general than in 
their work and a different particle parameter range is con- 
sidered. Maxey and his co-workers, in a series of 
papers,W2,13 have studied the motion of small spherical 
and nonspherical particles in the same flow. Their main 
focus was on particle suspension and possible change in the 
particle mean settling rate. Our focus is on the chaotic 
motion of small spherical particles and the relationship 
between chaos, dispersion, and mixing. 

A. Dynamical system 

The steady, two-dimensional, and incompressible cel- 
lular flow is given in terms of streamfunction $ in fixed 
coordinates by 

b.0000 3.i416 6.: 

x1 

FIG. 1. Streamlines in the cellular flow field. The increment in the values 
of streamfunction is 0.1. 

4= sin x1 sin x2. (1) 
All the variables are assumed to be normalized by a char- 
acteristic length scale L and a velocity scale Ua of the 
flow.12 Typical streamlines are shown in Fig. 1. The flow 
extends with periodic repetition in both the x1 and x2 di- 
rections. The maximum flow velocity occurs on the cell 
boundaries, and there are stagnation points at the center of 
each cell and at the corners. The orbits for fluid elements 
are streamlines, thus the fluid motion for almost all initial 
conditions is periodic and regular with a period changing 
from 2~ near the center to infinity near cell boundaries. 
Equation ( 1) is a solution to the inviscid Euler equation 
for steady flow. The pressure is minimum at the center of 
the cell and maximum at the corners. The pressure gradi- 
ent provides the force for the rotational motion of the fluid. 

We restrict our study to small spherical particles in the 
aerosol range as defined by Maxey,12 that is, the ratio of the 
particle density to the fluid density is larger than 2, 
pdpf> 2. The particle equation of motion in a steady flow 
is given in a nondimensional form by12 

dv u[Y(t),tl --v 
dt St +Ru*Vu+; RveVu. (2) 

In these equations, v(t) and y(t) are particle velocity and 
location; u(x,t) is Eulerian flow velocity field, and, for the 
cellular flow, it is independent oft. The terms on the right- 
hand side of Eq. (2) represent Stokes drag, the pressure 
gradient force on the particle (more generally, the fluid 
force on an equivalent element from the undisturbed flow 
field), and the added mass effect. The effect of gravitational 
settling is not considered in the present paper. (One may 
assume that gravity is aligned in the direction normal to 
the two-dimensional plane and thus does not affect the 
motion in the plane.) Equation (2) is a simplified version 
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Experimental Setup. 
Heavy particles in isotropic turbulence.

Volume Fraction ranging 
from 8.10-6 to 8.10-5
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Effect	of	preferential	concentration	on	the	settling	velocity	of	heavy	particles	
in	homogeneous	isotropic	turbulence.	J.	Fluid	Mech.	468:	77-105





Quantifying the Deviation from Randomness
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In the presence of gravity, settling particles are 
preferentially swept to the downward side of 
eddies, and thus spent more time in regions where 
the vertical velocity of the fluid is negative. 

The preferential sweeping mechanism

g
€ 

dV
dt

=
u(Y ,t)−V (t)+VSt( )

τ p

Turbulence-induced	inertial	dynamics:	
Enhanced	settling
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Enhanced	settling	preferential	
sweeping	mechanism
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Enhanced	settling	preferential	in	Direct	Numerical	
Simulation	of	Homogeneous	Isotropic	TurbulenceSettling velocity and concentration distribution of particles 45 
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@Vl> o.3 
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%/rk 

FIGURE 7. The increase (<AV,)) in the particle mean settling velocity as a function of r,/rk for a fixed 
terminal velocity, W = u,. The error bar represents the statistical uncertainty. (a) Normalized by 
Kolmogorov velocity scale uk;  (b) normalized by r.m.s. fluid velocity u'. 0, 323, Re, = 21; ., 483, 
Re, = 31 ; 0, 648, Re, = 43; 0,  963, Re, = 62; a, 4g8 and use of the second forcing scheme, Re, = 
30. For the 323 simulations, the size of the symbol is made the same as the error bar. 

value of 7,/7k at which (AY,)/v, is greatest is consistently within the interval of 
0.5 < 7,/7, < 1 and is centred around 0.8 as the Reynolds number Re, is varied. By 
contrast, the ratio of T,/7,  varies from 5.3 to 15.8, so that if the data were presented 
in terms of the ratio of 7, to T,, which is also representative of Lagrangian integral 
timescales, then there would be a much greater variation in the location of the peak 
increase with changing Re,. 

These results are also shown in figure 7 where <A 4)  is normalized by u'. We see that 
the quantitative difference among the simulated resulted for different Re, with the first 

Wang,	L.P.	Maxey,	M.	(1993)	Settling	velocity	and	concentration	
distribution	of	heavy	particles	in	homogeneous	isotropic	
turbulence.	J.	Fluid	Mech.	256:	27-68

42 L.-P. Wang and M .  R.  Maxey 

FIGURE 5. Normalized particle concentration (left-hand side) and flow scalar-vorticity field (right- 
hand side) on an (xl, x,)-slice (x, = 27L/48) at the 5 consecutive time frames. The first frame is at 
t = 0 when the concentration is uniform. The time interval is 0.018 or about twice the Kolmogorov 
timescale. The mesh size is 483, Re, = 31, and particle parameters are 7, = 7k, W = vk. 
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Interaction of inertial droplets with 
turbulence leads to:
• Increased settling velocity 

(preferential sweeping and 
collective 
behaviour/clustering)

• Increased local 
concentration (preferential 
accumulation)

Enhanced	Settling	Results
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• The settling velocity of a particle inside a cluster can be up to 30% of u’ higher 
than outside a cluster (for a particle of St~1 that represents 200% of VSt).
• The settling velocity increases linearly with the local concentration, independent 
of the St number. 

Settling	velocity enhanced	by	clustering
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Bubble dynamics

Preferential accumulation and sweeping also occur when bubbles 
interact with the vorticity field of a turbulent flow.

Because bubbles are less dense than the surrounding fluid, they are 
attracted to the vortex cores, where pressure is minimum. 

BBO equation for bubbles:

dV
dt

=
u(Y, t)−V (t)+VSt( )

τ B
+3Du

Dt

ρp
ρ f

<<1



Preferential	sweeping	for	bubbles:	
stable	equilibrium	point
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Preferential	sweeping:	
comparison	of	bubble	and	particle	behaviour

“H. K. Moffat, “Transport effects associated with turbulence with par- 
ticular attention to the influence of helicity,” Rep. Prog. Phys. 46, 621 
(1983). 

‘*M. R. Maxey,, “The motion of small spherical particles in a cellular 
flow field,” Phys. Fluids 30, 1915 (1987). 

I’M. R. Maxey and S. Corrsin, “Gravitational settling of aerosol particles 
in randomly oriented cellular flow fields,” J. Atmos. Sci. 43, 1112 
(1986). 

14M. W. Reeks, “Eulerian direct interaction applied to the statistical 
motion of particles in a turbulent field,” J. Fluid Mech. 97, 569 (1980). 

“L. P. Wang and D. E. Stock, “Numerical simulation of heavy particle 
dispersion--Tie step and nonlinear drag considerations,” ASME J. 
Fluids Eng. 114, 100 (1992). 

16J. R. Rice, Numerical Methods, Softiare and Analysis (McGraw-Hill, 
New York, 1983). 

“A. Wolf, J. B Swift, H. L. Swinney, and J. A. Vastano, “Determining 
Lyapunov exponents from a time series,” Physica D 16, 285 (1985). 

‘sF. Varosi, T. M. Antonsen, and E. Ott, “The spectrum of fractal di- 
mensions of passively convected scalar gradients in chaotic fluid flows,” 
Phys. Fluids A 3, 1017 (1991). 

19G. I. Taylor, “Diffusion by continuous movements,” Proc. R. Sot. Lon- 
don Ser. A 151, 421 (1921). 

“G. K. Batchelor and A. A. Townsend, “Turbulent diffusion,” Surveys in 
Mechanics, edited by G. K. Batchelor and R. M. Davies (Cambridge 
U.P., Cambridge, 1956), pp. 352-399. 

“5 D Farmer, E. Ott, and J. A. Yorke, “The dimension of chaotic 
attractors,” Physica D 7, 153 (1983). 

“‘J. Kaplan and J. Yorke, Lecture Notes in Mathematics (Springer- 
Verlag, New York, 1979), Vol. 730, p. 204. 

s3H. Aref, “Stochastic particle motion in laminar flows,” Phys. Fluids A 
3, 1009 (1991). 

24C. T. Crowe, R. A. Gore, and T. R. Troutt, “Particle dispersion by 
coherent structures in free shear flows,” Part. Sci. Technol. 3, 149 
(1985). 

ssB. J. Lazaro and J. C. Lasheras, “Particle dispersion in a turbulent, 
plane shear layer,” Phys. Fluids A 1, 1035 (1989). 

%J. N. Chung and T. R Trout& “Simulations of particle dispersion in an 
axisymmetric jet,” J. Fluid Mech. 186, 199 (1988). 

*‘R. Chein and J. N. Chung, “Simulation of particle dispersion in a 
two-dimensional mixing layer,” AIChE J. 34, 946 (1988). 

“L. P. Wang, M. R. Maxey, and R. Mallier, “Structure of stratified shear 
layer at high Reynolds numbers,” submitted to Geophys. Astrophys. 
Fluid Dyn. 

29S. Balachandar and M. R. Maxey, “Methods for evaluating fluid veloc- 
ities in spectral simulations of turbulence,” J. Comput. Phys. 83, 96 
(1989). 

30G. M. Corcos and F. S. Sherman, “The mixing layer: Deterministic 
models of a turbulent flow. Part 1. Introduction and the two- 
dimensional flow,” J. Fluid Mech. 139, 29 (1984). 

“Z. Warhaft, “The interference of thermal fields from line sources in grid 
turbulence,” J. Fluid Mech. 144, 363 ( 1984). 

“B. L. Sawford and J. C. R. Hunt, “Effects of turbulent structure, mo- 
lecular diffusion and source size on scalar fluctuations in homogeneous 
turbulence,” J. Fluid Mech. 165, 373 (1986). 

33D. J. Thomson, “A stochastic model for the motion of particle pairs in 
isotropic high-Reynolds-number turbulence, and its application to the 
problem of concentration variance,” J. Fluid Mech. 210, 113 ( 1990). 

j4G. I. Taylor, “Dispersion of soluble matter in solvent flowing slowly 
through a tube,” Proc. R. Sot. London Ser. A 219, 186 (1953). 

1804 Phys. Fluids A, Vol. 4, No. 8, August 1992 Wang et al. 1804 

Bubbles	accumulate	near	their	
equilibrium	point	(high	vorticity)

Heavy	Particles	are	centrifuged	away	
from	vortex	cores	and	concentrate	in	
regions	of	high	strain)



Experimental Setup

Re1 m = 2- 6 105

Req = 0.7- 2 103

Initial Bubble 
Void fraction 

F= 1 - 5 %

Reλ = 200
Bubble Stokes 

number 
St = 0.1 – 3 



Preferential accumulation of bubbles

The instantaneous 
concentration of 
bubbles was found to be 
highly non-random.

The deviation from 
randomness was 
maximum at a length 
scale equal to 20 times 
the Kolmogorov length 
scale of the turbulence.

DC = (P(c)−PPoisson(c))2
c=1

Nb
∑

0																10												20													30													40
Size	of	the	measuring	window	(in	Kolmogorov lengths)



Rise velocity of the bubbles
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Flow Visualization. 
Horizontal Cut.

• Horizontal cuts show large inhomogeneities in the bubble concentration.
• Significant vertical vorticity created by the mean horizontal shear is apparent.



Bubble clustering due to the turbulent structures 

The preferred length scale for accumulation is of the 
order of 100 wall units (d+ = n / ut )

324 A. Aliseda and J. C. Lasheras
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Figure 19. Bubble accumulation as a function of the length scale. Indicators defined in
equations (3.2) and (3.3). (i) Dsigma = (σ − σpoisson)/λ; (ii) Dsum = Σ(P − Ppoisson)2.

the turbulent structures present in the flow. The algorithm used to identify bubble
clustering by the turbulence consists of the following steps. First, each image is divided
into square windows of a certain size. The number of bubbles within each of these non-
overlapping windows is counted and recorded. With the information corresponding
to all the windows covering every image taken under a given condition, we can
compute the density function for the probability of finding a number of bubbles
P (nb) in each one of these windows. If the bubbles were passive scalars, their spatial
concentration due to the random stirring of the turbulence would correspond to a
Poisson distribution.

Ppoisson(n) =
e−λ λn

n!
, (3.1)

where λ is the mean number of particles per window, Nb/Nw . By comparing the
observed probability density function with the theoretical Poisson PDF resulting from
a purely random process, it is then possible to quantify how the bubble concentration
field deviates from randomness. By repeating this algorithm for different window
sizes, the dependency of this deviation on the length scale can be determined. Two
different ways of comparing the PDFs were employed to quantify the extent of bubble
clustering in the boundary layer. Their definitions, due to Wang & Maxey (1993a)
and Fessler, Kulick & Eaton (1994) respectively, are as follows:

Dsum =
Nb∑

n=1

(P (nb) − Ppoisson(nb))
2, (3.2)

Dsigma =
σ − σpoisson

λ
, (3.3)

where P (n) is the probability of finding n bubbles in a window, and σpoisson is the
standard deviation of the Poisson distribution.

The values of these quantities, computed for many different window sizes are
plotted in figure 19. Both indicators of preferential accumulation reach a maximum



Velocity field.
PIV and Particle tracking measurements.

Two sets of measurements:  
- 1. Streamwise Horizontal laser plane: U, V velocity components.
- 2. Streamwise Vertical laser plane: U, W velocity components.

1 2



Streamwise and Spanwise Velocity Profiles  
Re = 1920

The streamwise velocity profile U 
is typical of a turbulent boundary 

layer.

The spanwise velocity profile V 
is that of a convergent flow.



Bubble rise velocity vs diameter
Inner sublayer Intermediate (rising) sublayer

Outer sublayer


