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The forces on a small rigid sphere in a nonuniform flow are considered from first prinicples in
order to resolve the errors in Tchen’s equation and the subsequent modified versions that have
since appeared. Forces from the undisturbed flow and the disturbance flow created by the
presence of the sphere are treated separately. Proper account is taken of the effect of spatial
variations of the undisturbed flow on both forces. In particular the appropriate Faxen correction
for unsteady Stokes flow is derived and included as part of the consistent approximation for the

equation of motion.
I. INTRODUCTION

Since Tchen' first proposed an equation for the motion
of a rigid sphere in a nonuniform flow, several papers have
appeared correcting or modifying terms in the equation. Ori-
ginally Basset” and later Boussinesq® and Oseen* examined
the motion of a sphere settling out under gravity in a fluid
that was otherwise at rest. The disturbance flow produced by
the motion of the sphere was assumed to be at sufficiently
low Reynolds number that the fluid force on the sphere
could be calculated from the results of unsteady Stokes flow.
Tchen extended this work first to a sphere settling under
gravity in a fluid with an unsteady but uniform flow and then
second to an unsteady and nonuniform flow, with a view to
application to turbulent flows. Unfortunately Tchen’s sec-
ond extension was somewhat ad hoc and contained several
errors.

Corrsin and Lumley® pointed out some of the inconsis-
tencies in Tchen’s equation, and, in particular, emphasized
the role of the pressure gradient of the basic flow in contrib-
uting also to the net fluid force on the particle. For a small
rigid sphere of radius @ and mass m, instantaneously cen-
tered at Y(¢ ) and moving with velocity V(¢ ), the equation pro-
posed by Corrsin and Lumley is
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The undisturbed flow field is u;(x, t), m is the mass of fluid
displaced by the sphere, and dynamic viscosity and kinemat-
ic viscosity are i and v, respectively. In the equation above it
is important to note the distinction between the two different
time derivatives. The derivative d /dt is used here to denote a
time derivative following the moving sphere, so that
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is the time derivative of the fluid velocity. The derivative D /
Dt is used by contrast to denote the time derivative following
a fluid element, and

Du; Jdu; du,
SH =SS 3)
Dt |y ot 9x; / — v

is the fluid acceleration as observed at the instantaneous cen-
ter of the sphere. The terms on the right-hand side of Eq. (1)
then correspond in turn to the effects of pressure gradient of
the undisturbed flow, added mass, viscous Stokes drag, aug-
mented viscous drag from the Basset history term, and buoy-
ancy. The pressure gradient term in (1) was written in this
form on the assumption that the undisturbed flow is incom-
pressible and satisfies

Du.;
___lil_z — _I_QL_*. gi+VV2ui' (4)
Dt p Ox,

The equation of Corrsin and Lumley is still not consis-
tent in that the effects of pressure gradient of the undisturbed
flow have been singled out over the effects of viscous shear
stress when in fact the two may well be comparable. This
point was noted by Buevich.® Buevich went back to the origi-
nal Basset-Boussinesq—Oseen equation and used a change of
reference frame to a coordinate system moving with the par-
ticle to derive a new equation of motion. He concluded that
the first term on the right-hand side of (1) should be replaced
by a term

- 5; {w,[¥(t), 1 1}. (5)

Riley’ on the other hand used a similar analysis and conclud-
ed that the term should be

Du;

Dt |x=vyi ).
This latter result is physically more realistic. For a small
sphere, small compared to the scale of the spatial variations
of the undisturbed flow, the effect of the undisturbed fluid

stresses both from pressure and viscosity is to produce the
same net force as would act on a fluid sphere of the same size.

(6)
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This force must equal the product of fluid mass and local
fluid acceleration as given by (6). The expression (5) has no
such dynamical significance.

Other papers have appeared on the subject of Tchen’s
equation, e.g., Soo® and Gitterman and Steinberg,® giving
different modifications. Our aim in this paper is to give a
rational derivation for the equation of motion of a small
sphere with relative motion of low Reynolds number, and to
resolve the appropriate form it should take. In particular the
forces due to nonuniform flow will be re-examined. It is well
known'® that velocity curvature will modify the drag force
on a sphere at low Reynolds number. For steady Stokes flow
this correction is given by the Faxen'' relations so that the
force on the sphere produced by the disturbance flow around
the sphere is

F = 6rap{u[Y(t), 1] — Vit)} +pra(Vou)ye, (1)

to first approximation. If pressure gradient forces and simi-
lar effects are to be included then the modified Stokes flow
should also be considered since its contribution is of the same
magnitude. In the Stokes flow regime velocity shear does not
produce a resultant force, and there is no “lift” or side
force."?

In Sec. II the problem for the disturbance flow around a
rigid Stokes sphere in a nonuniform undisturbed flow is for-
mulated and the equation of motion for the sphere set up
following the approach of Riley.” In Sec. III the force pro-
duced by the disturbance flow is calculated for unsteady
Stokes flow generalizing the results of Basset” and extending
the work of Burgers.'? Finally in Sec. IV the significance of
the various effects included is discussed and compared with
some others that are neglected. It is important to appreciate
the limitations on the validity of Tchen’s equation especially
in turbulent flows, since errors may accumulate with time
before a statistically asymptotic state is reached.

Il. EQUATIONS OF MOTION

The problem considered then is that of a small rigid
sphere of radius a located at Y(¢) in a fluid flow which in the
absence of the particle is u(x, ¢ ). The presence of the particle
and its motion through the fluid will modify the flow locally
and lead to a new flow field v(x, ¢ ). This modified flow must
satisfy the conditions:

p(% + V°VV) = pg — Vp + uV?, (8a)
Vv =0, (8b)
v=V + QX [x — Y(¢)] on the sphere, (8¢c)
v(x, 1) =u(x, t)as |x — Y(t)| — oo, (8d)

for an incompressible flow of uniform density. The no-slip
condition (8c) is applied on the sphere so that locally the fluid
velocity matches the particle velocity V(¢ ) and angular veloc-
ity Q(¢ ). If o, is the fluid stress tensor

dv a;

J
then the equation of motion for the spherical particle is
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dv,
m, e =m,g + f o;n;dS, (10)
where the surface integral is over the surface of the sphere
and n is the unit outward normal. The problem is to evaluate
the fluid stress tensor on the sphere.

To solve the fluid mechanical problem it is convenient
to made a change of coordinates to a frame moving with the
center of the sphere. The changes of variable are

z=x—Y(t), t=1, {11a)
w(z, 1) =v(x, t)— V(). (11b)
The conditions (8} now become
(aw,» + dw; ) ( dv, ) Ip N Pw,
——— w, — 1= g o— e | e el _—
P\ ar oz P& dt dz; # 9z,0z
(12a)
dw,
=0, {12b)
dz;
w=0Xz for |z| =a, (12¢)
w=u—V as |z} > . (12d)
The stress tensor can be expressed similarly as
dw; ow;
o’i. = — 61” —-’— ——L N 13
j p’+”(azj+az,.) (13)

In order to take advantage of small parameters in this

problem it is further convenient to separate the flow field
into two parts w® and w'"; w” being the undisturbed flow
without application of the boundary condition (12c),

(0 (1)

wl=w—_wl=u-—V,

and w'" the disturbance flow set up by the particle. The two
component flows satisfy the equations of motion

ow? o oW dv, p Fw?
p( ar +w’(')_éZ)=p(g"' dt )_ oz, Hazar
(14)
Jw'\V duw'! uw® dut!
Ao v G G )
m EL)
- f?Pz,. e (1)

and each separately satisfies incompressibility (12b). If W, is
taken as a representative velocity scale for (V — uj, the veloc-
ity of the sphere relative to that of the surrounding fluid, and
a Reynolds number is defined by a W,/v, then a scale analy-
sis of (15) shows that for low Reynolds number the advective
terms may be neglected leading to a problem in unsteady
Stokes flow. The equation for the disturbance flow reduces
to

duwi! apV Fwih
po=— T tu—, (16)
ot az; 0z,0z;
provided that
aWy/v <1 and (@*/v)(Uy/L) € 1, (17)

where L is a representative differential length scale of the
undisturbed flow, and U,/L is the scale for the correspond-
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ing velocity gradient. The boundary conditions on the dis-

turbance flow w'" are
wV= —(u—V)+ 02Xz on |z| =g, (18)
|wm] —0 as |z| — 0. (19)

The estimation of the fluid force on the sphere now rests
on finding the surface stress produced by the unsteady
Stokes flow governed by (16), (18), and (19). An estimate is
only sought to a first approximation in the limit of zero
Reynolds number. No attempt is made to evaluate Oseen
corrections which will be an order of magnitude smaller, and
so only the inner Stokes flow problem will be treated in the
following section. The time derivative is retained in (16) as
there are several examples, e.g., a particle falling from rest
under gravity, where the unsteady term is important.

Besides the disturbance flow there is also a contribution
to the fluid force from the undisturbed flow w'®, which may
be found quite generally and without specific assumptions
about low Reynolds number such as condition (17) used to
derive (16). From (13) and (10) the contribution to the fluid
force on the particle from w is F®

FO— § [ P96, + (é:;u(m (Zw}o))] 20
iz Z,

This may be converted to a volume integral and approxi-
mately evaluated as

) Fuw®
b= 21 T,
3 dz; Jz,0z;
on the assumption that the terms in parentheses are nearly

uniform over the sphere, provided the sphere is sufficiently
small. This implies that the pressure gradient is approxi-

(21)

mately uniform over the sphere and that the velocity w{” can
be expressed as
w® 1 Fuw
Oz, t)= w0, )+ 2, — +—2; 2, ———
w; (Z ) w; ( )+ j aZj 2 j “k azjaZk
+0(a@®/L3), (22)

in the neighborhood of the sphere. This assumption is valid if
the size of the sphere is small composed to the length scale of
variations in the undisturbed flow so that

a/L < 1. (23)

In this manner linear variations in ¢f) are included. The

result (21) may be simplified by use of the momentum equa-
tion (14) for the undisturbed flow

dv, w® auw®

i + W; w}o) w; ), (24)

dt ot dz;

FP = —mng+mF(

or in terms of the undisturbed flow u(x, ¢) in the original
frame of reference

du; du;
F8i F\ o +u; ox,
This is the result first given by Riley.”
In summary then the equation for particle motion (10} is

(25)

Y(r)

my 2 (m, — el +me 24| EW, (26)
L d Dt vy
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assuming the condition (23). The fluid force F*" from the
disturbance flow w'" around the sphere is determined here
for the particular limit of low Reynolds number for the dis-
turbance flow (17) and found by solving Egs. (16), (18), and
(19) to evaluate

dwd  Gul
o[- e s
s i

The important point to note though is that the consistent
inclusion of pressure gradient terms and forces from the un-
disturbed flow requires the approximate expansion (22) for

w® close to the sphere. To the same degree of approximation
this representation must be used in evaluating the boundary
conditions (18) on the surface of the sphere and this will alter
the usual Basset-Boussinesq—Oseen results.

Ill. FORCE FROM THE UNSTEADY STOKES FLOW

A detailed solution of the disturbance flow w'" is not
necessary to evaluate the force on the sphere. Following
Pérés,'* who gave a derivation for the Faxen relation for
steady Stokes flow, a symmetry relationship for unsteady
Stokes flow will be obtained and used in conjunction with the
fundamental point force flow of Burgers' to evaluate the
disturbance flow force F*". The analysis will be in terms of
Laplace transforms with respect to time and the notation

715 =f0°° =)t (28)

will be used.

Consider two unsteady Stokes flow fields u(x, ¢) and
u'(x, ¢) in some volume ¥ bounded by a surface S, and each
satisfying

du, d

S 9 45—, 29a)
P o ox, " (
du; du;

— s el e 295
oy P"+”(a,+ 6xi) (29b)
% o, (29¢)
ax;

Consideration then of the volume integral of the Laplace
transforms

. 0 . A, O .
i, — 0, — ] — o, |dV, 30
fv( ox, s ax; a’) (30)

leads to the following result

§dS(u,o,, — @]G,)m;
- f aV p [ (x,001(%5) — u(x,0)8,(x5)], 1)

where m is the outward unit normal. This symmetry rela-
tionship can be applied to the disturbance flow around the
sphere. Provided both u and u’ tend to zero far from the
sphere the integral over the surface at infinity will make no
contribution and the surface integral reduces to an integral
over the surface of the sphere. The flow field u’ is required to
satisfy the boundary conditions
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ln'| -0 as |x|— «, {32a)
i'(x,s) = (1,0,0) (32b)
u'(x, t<0) =0, (32¢)
the origin being at the center of the sphere. The flow u’ corre-
sponds to the fluid motion resulting from the sphere starting
from rest and having an impulsive velocity [ (¢),0,0]. The

symmetry relationship (31) then gives a method for evaluat-
ing the force on the sphere from the u flow field

on |x| =a,

F = § Gyn; dS = § i,Gn; dS + J pux,0);(x,5)dV,
5 s | 4
{33)
where n is now the unit normal out of the sphere. Similar
results hold for the other components.

The flow u' can be found by adapting the unsteady
Stokes flow solution of Burgers.'? If ¢! denotes the unit vec-
tor (1,0,0)

i’ = (e V)Vy — eV, (34)

Birs) = Qu/psr + (Qo/rlexp( — Ar), (35)

where A 2 = ps/u, Re(4 ) is taken to be positive, and r is the
radial disturbance from the origin. The boundary conditions
give

0, =3 au(l + Aa) + a’ps, (36)

J
dav, ( i, + Dy, 1 d
m —=im,—m i m —_—— M —
?dr £ F F Dty 2 F dt

Q, = — 3jlau/psiexp(da), (37)
and on the surface of the sphere (r = a)

&yn; = — Lapsx,x;el"/a* — 3 u/a(l + Aajel’. (38)
For a flow field u that is initially zero everywhere, and on the

sphere has the form

2,(x,5) = A, +x; B, + 1%, x¢ Cye (39)
Fy= — A, [6mau(l + Aa) + mp s] — a*[(Cy; + 2C;)
Xmpua(l + Aa) + 3o mp sCy; |- (40)

This Laplace transform can be readily inverted to give the
force as a function of time. The term in (Aa) leads to the usual
Basset history integral.

IV. EQUATION OF MOTION FOR THE SPHERE

The resultant force due to the disturbance flow derived
above may now be included in the equation of particle mo-
tion (26). Comparison of the boundary conditions (18) and
(39) shows that

A, =Vi(t)—u[Y(t)t], (41)
Fu,
Cp = — , (42)
axjaxk Y{r)

so that the final form of the equation of particle motion after
inversion of the transforms is

(Vilt) —w, [Y(e), t] — §a®V?u,lyy) ) — 6mau{Vi(t) —u, [Y(e), 1)

t
—1a*Vu, |y, } — 6ma’u j dr(
o

The initial conditions are that the sphere is introduced at
¢ = 0 and that there is no disturbance flow w'"’ prior to this.
The restrictions on scales are given by (17) and (23).

The derivation of (43) is based on a consistent treatment
of the inertia and pressure gradient terms for a sphere in a
nonuniform flow field. The inclusion of velocity gradients
leads to modifications of the added mass terms, the Stokes
drag, and the Basset history term due to curvature in the
velocity profile; while in the low Reynolds number limit
there is no force due to shear or particle spin. Besides the
Faxen terms, the equation of motion differs from previous
versions in the form of the fluid acceleration term m Du;/
Dt as opposed to my du,/dt given by Buevich.® In general
the values of these two derivatives, one following a fluid ele-
ment and the other following the particle can differ substan-
tially. However in the context of the low Reynolds number
approximation made here the two derivatives are approxi-
mately the same. Specifically the difference between the two
terms is equal to

mp w® ——, (44)

which compared to the dominant Stokes drag term is
0 (a*U,/Lv) and small by condition (17). This difference is
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d/dT{Vi(T) —u, [Y(r)7] — éazvzui IY(T]} )

[z —7)

]l/2 (43)

also the same order of magnitude as one of the terms neglect-
ed in deriving Eq. (16) from (15).

It should also be remarked that a similar question arises
over the form of the added mass term in (43). For potential
flow about a spherical bubble when the ambient flow is irro-
tational and nonuniform Auton'>!¢ has shown that the usu-
al added mass form

1 d
- mr E{V,-(t)—u,-[Y(t),t]}, (45)

is incorrect and should be
1 ( dv; Du, ) (46)

—mp| — — .

2 \ar Dt |y

Again there is no distinction here between these two results
because of the low Reynolds number approximation used in
evaluating the disturbance flow field force F.

The restrictions (17) and (23} do constrain the impor-
tance of many of the terms retained in Eq. (43). In general the
Stokes drag term is the most important and (43) often re-
duces to the statement that the particle velocity is approxi-
mately equal to the local fluid velocity, or, if the buoyancy
forces are significant, to a balance of Stokes drag force with
gravitational forces. There are specific examples though
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where other terms in (43} are important. For an aerosol the
particle density is much greater than the fluid density so
that, even if local fluid inertia is a negligible effect, the parti-
cle inertia term can be significant. The Basset history term
and added mass term result from retaining the time deriva-
" tive in the equation (16) for the disturbance flow. These are
both important in the motion of a particle falling under gra-
vity through still fluid from an initial state of rest as shown
by Boggio'” and Hjemfelt and Mockros,'® and for a particle
suspended in a fluid oscillating uniformly at high frequency.
In the latter example the fluid oscillations limit the diffusion
of vorticity away from the surface of the sphere, confining it
to a thin Stokes layer. The Basset term then gives an aug-
mented drag force. However the Reynolds number condi-
tion necessarily requires that the displacement amplitude of
the relative motion of the particle in the fluid be small com-
pared to the particle radius. For a particle falling from rest
there is initially little relative motion and only a weak Stokes

J

drag. The effects of gravity are balanced by inertia and his-
tory terms. Eventually the vorticity generated by the relative
motion diffuses away from the sphere, but not until the vorti-
city has diffused several radii does the Stokes drag reach an
equilibrium value. These points are reviewed by Clift et al.'°

Significant time dependent effects can also be intro-
duced through inhomogeneities of the underlying flow field,
but again the conditions of low Reynolds number and small
particle radius limit their effect. Some estimate of the magni-
tude of various terms in (43) can be made using the velocity
and length scales given previously. The equation of particle
motion is best viewed as providing the relative velocity of the
particle in the fluid, and it is useful to define

Wi(z)=V(t) —u[Y(), ¢]. (47)

In terms of the relative velocity W the equation of particle
motion is then

m +-1—m dW"+61ra2 ‘drdm[ﬁv(t—r)]‘l/2+6ﬂa W,
P FI7 [ A (2244

2 t

du, Du
= —mp -T+m,,-

dr

D¢
X [mv(t — 7))~ 1/2

The terms on the right of Eq. (48) may be regarded as source
terms for the relative velocity. Approximate results for W(z )
may be derived depending on the accuracy required by the
physical problem under consideration. In some instances an
estimate of particle velocity is only required to within some
percentage of the fluid velocity scale U, in which case many
terms are negligible. In other instances the longer term drift
of the particle is required and the relative velocity has to be
estimated to within a certain fraction of itself, or if the parti-
cle is settling under gravity, to within a fraction of the mean
settling velocity. In this case many of the terms in (48), such
as fluid acceleration, are important. The accuracy to which
W(z) is estimated will also determine the time scale over
which the equation of motion can be applied, as errors accu-
mulate in time and in an inhomogeneous flow the particle
can eventually drift into regions of very different flow char-
acteristics.

Many effects are neglected in deriving the equation of
motion. The sphere is assumed to be isolated and far from
any boundary so that particle-particle interactions and par-
ticle-boundary interactions are excluded. This requires that
the distance from the nearest particle or boundary is very
much greater than the sphere radius. Effects of nonzero
Reynolds number for the relative motion are also neglected.
For steady motion these may be categorized as the Oseen
correction to Stokes drag, the modified drag due to particle
rotation, and the Saffman effect or side force due to the shear
of the undisturbed flow. These effects though are all small
compared to the basic Stokes drag term [6muaW(¢ )] with the
assumptions of low Reynolds number. Specifically the
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: + (mp —~mg) g + 0377'.UV2”i + L asz !‘(Vzui lY(r)) + 7/‘“4f dr i(vzui ’Y(t))
20 dt o dr

(48)

Oseen correction for rectilinear motion is O (aW,/v). Ru-
binow and Keller*® have calculated the side force on a sphere
rotating with angular velocity £ while translating with ve-
locity W and shown the side force to be O (a°(2 /v), this being
due to the modified outer flow around the sphere. In shear
flow the particle will tend to rotate with the surrounding
fluid and the angular velocity should be comparable to the
local velocity gradient U,/L. So this correction is O (a*U,/
Ly). The most critical effect is the side force due to shear.
Saffman®' showed that a sphere subjected to a uniform shear
and rotating with the fluid while translating with velocity W
experiences a side force of relative magnitude O (a>U,/Lv)'/>.
This result depends on the shear being uniform not only in
the immediate vicinity of the sphere but also throughout the
outer region.

These estimates lead us to expect that the relative veloc-
ity W(z) can be evaluated from the particle motion equation
to an accuracy of

Wit~ Woll + O@Wy/v) + 0(a?U,/Luv)'?]
+ 0 Uja*/LY)]. (49)

The latter term comes from the next higher approximation
for the local fluid velocity on the surface of the sphere. These
conditions now allow us to gauge the relative importance of
velocity gradients in the undisturbed flow on the relative
motion of the particle. Referring back to (48) the fluid accel-
eration terms

du; Duy,

—~0(U3/L)~ — 0

a O/l Dt (50
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so that the scale of relative motion W, due to particle inertia
is

O [(m,/mg)a’Uy/vL)U,],
while that due to fluid inertia is
O [(@®Uy/vL)U,].

Unless the particle is much denser than the surrounding flu-
id both of these estimates for W, are a small fraction of the
local fluid velocity because of the shear Reynolds number
condition. However for details of the relative motion they
may be important, especially for long term considerations.
The Faxen term gives a relative motion scale of O (a*U,/L ?).
Again this may be a small fraction of the local finid velocity,
but also it can be important to the details of relative motion.

In gauging these effects the inertia and history terms on
the left of (48) were ignored. Both are significant at the initial
instance that the particle starts to move relative to the fluid,
much as for a particle falling through still fluid. But once the
motion is established the acceleration of relative motion as
the particle moves through the velocity gradient is O [(Uy/
L )W,] and these terms are generally small. The added mass
term is O (a*Uy/Lv) compared to the Stokes drag while the
history term is O (a*U,/Lv)"'%. Both are small from the shear
Reynolds number condition, with the history term slightly
more significant. The particle inertia term is again important
if the particle is much denser than the surrounding fluid.
Throughout this analysis it is apparent that the shear Reyn-
olds number condition of (17) restricting the fluid velocity
gradient eliminates many of the possible effects.

The equation of particle motion has also been applied to
turbulent flows, as by Hjelmfelt and Mockros,? to estimate
how well particle tracers follow the local fluid motion. How-
ever for a turbulent flow there is no single set of scales but
rather a continuous spectrum of velocity and length scales
which must be considered in any application of the equation
of particle motion. The larger scale, more energetic, motions
may be characterized by a root mean square (rms) velocity
fluctuation scale ' and an integral length scale L; while the
smaller scale, dissipative motions may be characterized in
terms of the Kolmogorov microscales v, and 7,.>* The ra-
tios of these scales are

v /U =0R Y, n,/L=0R;¥, (51)

based on the Reynolds number R ; from the Taylor micros-
cale A, u’A /v. The velocity gradients are dominated by the
small scale motions and v, /7, or equivalently u'/A may be
taken as a representative scale. The condition (23) on the size
of the particle then necessitates

a/m €1, (52}
while the Reynolds number conditions {17) require, respec-
tively, that

aWy/v =0 [(a/n)(Wo/v,)] < 1, (53)

a*v, /0= 0@ /) € 1, (54)
the possible side force due to the Saffman effect is O (a/7,)
compared to the Stokes drag force.

These restrictions again limit the importance of several
terms in (43) especially the added mass and history terms.
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For turbulent diffusion the advection of the particle by the
larger scale eddies is the most important feature. It is only
necessary to calculate the particle velocity to within some
small fraction of #’ and for sufficient time for the statistically
asymptotic long term behavior to be reached. The equation
(43) then reduces to a balance of Stokes drag, buoyancy
forces, and possibly particle inertia. For more detailed stu-
dies, such as the velocity spectrum of the particle, other
terms may be significant, especially for the small scale mo-
tions at higher frequency. Hjelmfelt and Mockros®? in their
analysis of velocity spectrum took a very high frequency as
the upper limit of the spectrum based on measurements of
the Eulerian frequency spectrum. While the particles may
not move perfectly with the fluid it is more appropriate to use
the Lagrangian frequency spectrum cutoff of v, /7, if the
scale of relative motion W, is smaller than v, , or to use W,/
1, if the relative motion is larger. The Lagrangian frequency
spectrum cutoff is much fower than the corresponding Eu-
lerian cutoff as has been shown by Tennekes.”* The Reyn-
olds number conditions (53) and (54) ensure that the Stokes
numbers based on these cutoff frequencies are large. For a
cutoff of v, /7, the Stokes number N, is

N, = (Vnk/vka2)l/2 = (n./a),

or for a cutoff of W/,
N, = v/ Woa)'? = [(mi/a@ o/ Wol 2.

The equation of particle motion (43) further can be
modified to flows in which the undisturbed flow field is com-
pressible, provided that we can still assume that the distur-
bance flow around the sphere is locally incompressible and
of uniform density so that (16) still applies. The extra terms
from compressible undisturbed flow are givenby C;; ,, etc., in
Eq. (40) and can then be included in (43).
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