Bubble Growth and Collapse

4.1 Introduction

Unlike solid particles or liquid droplets, gas/vapor bubbles can grow or collapse in a
flow and in doing so manifest a host of phenomena with technological importance. We
devote this chapter to the fundamental dynamics of a growing or collapsing bubble in
an infinite domain of liquid that is at rest far from the bubble. Although the assumption
of spherical symmetry Is violated in several important processes, it is necessary to
first develop this baseline. The dynamics of clouds of bubbles or of bubbly flows are
treated in later chapters.

4.2 Bubble Growth and CoHapse

4.2,1 Rayleigh—Plesset Equation

Consider a spherical bubble of radius, R(z) (where ¢ iz time), in an infinite domain
of liquid whose temperature and pressure far from the bubble are T.. and p.o(t)
respectively. The temperature, T, 15 assumed to be a simple constant because tem-
perature gradients are not considered. Conversely, the pressure, p..(t), is assumed to
be a known (and perhaps controlled) input that regulates the growth or collapse of the
bubhle. '

Though compressibility of the liquid can be important in the context of bubble
collapse, it will, for the present, be assumed that the liquid density, o, is a constant.
Furthermore, the dynamic viscosity, (1, is assumed constant and uniform. It will also
be assumed that the contents of the bubble are homogeneous and that the temperature,
Ti(¢), and pressure, pg(f), within the bubble are always uniform. These assumptions
may not be justified in circumstances that will be identified as the analysis proceeds.

The radius of the bubble, R(r), will be one of the primary results of the analysis.
As indicated in Figure 4.1, radial position within the liquid will be denoted by the
distance, », from the center of the bubble; the pressure, p(#, t), radial outward velocity,
w(r. 1), and temperature, T'(r, t), within the liquid will be so designated. Conservation
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Figurc 4.1, Schematic of a spherical bubble in an infinite liguid.

of mass requires that
F(t)

u(r,t) = T (4.1)

where F(r) is related to R(f) by a kinematic boundary condition at the bubble sur-
face. In the idealized case of zero mass transport across this interface, it is clear that
u(R, 1) = dR/dt and hence
dR
I
This is often a good approximation even when evaporation or condensation is occurring
at the interface (Brennen 1995) provided the vapor density is much smaller than the
liquid density.

Assuming a Newtonian liguid, the Navier-Stokes equation for motion in the 7

direction,
13p du du 1 3 ( ,o0u 2u
_— = — — —_— — )= 43
oL or Ot +u8r vL{rzar (r Br) r2} (43)

F(ty=R? (4.2)

yields, after substituting for » from v = F(z)/ rZ, the following:

139 1 dF 2F*
& __r0 = (4.4)
pLdr  ride e
Note that the viscous terms vanish; indeed, the only viscous contribution to the
Rayleigh-Plesset Eq. (4.8) comes from the dynamic boundary condition at the bubble
surface. Equation (4.4) can be integrated to give the following:
p—pe 1dF 1F° |

——— 4.5
o y di 2 }“4 ( )

after application of the condition p — po asr — o,
To complete this part of the analysis, a dynamic boundary condition on the bubble
surface must be constructed. For this purpose consider a control volume consisting of
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a small, infinitely thin lamina containing a segment of interface (Figure 4.2). The net
force on this lamina in the radially outward direction per unit area is as follows:

28
(G:'r)r=R +pe— E (46)
or, because a,, = —p -+ 2,81 /dr, the force per unit area is as follows:
(Pl — == — = 4.7
pp—(Ph=k~ TR (4.7)

In the absence of mass transport across the boundary (evaporation or condensation)
this force must be zero, and substitution of the value for (p),—z from Eq. (4.5) with
F = RXR/d! yields the following generalized Rayleigh—Plesset equation for bubble
dynamics:

Pe(t) = poolt) _ @R N (dR)2 v dR | 2§ 45

o arr 2 \dt R dt m )
Given poo(f) this represents an equation that can be solved to find R(z) provided pe()
is known. In the absence of the surface tension and viscous terms, it was first derived
and used by Rayleigh (1917). Plesset (1949) first applied the equation to the problem
of traveling cavitation bubbles. o - '

4.2.2 Bubble Contents

In addition to the Rayleigh—Plesset equation, considerations of the bubble contents are
necessary, To be fairly general, it is assumed that the bubble contains some quantity
of noncondensable gas whose partial pressure is pgo at some reference size, R, and
(empetature, T, Then, if there is no appreciable mass ransfer of gas to or from the
liguid, it follows that

R,

T 3
pult) = pu(Te) + Pos (TPE”) (E) . (4.9)
Ao

In some cases this last assumption is not justified, and it is necessary to solve a mass
trunsport problem for the liquid in a manner similar to that used for heat diffusion (see
seetion 3.4}
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It remains to determmine 7(7). This is not always necessary because, under some
conditions, the difference between the unknown Ty and the known T, is negligible.
But there are also circumstances in which the temperature difference, (Tg(r) — T),
is important and the effects caused by this difference dominate the bubble dynamics.
Clearly the temperature difference, (7g{z) — T, leads to a different VapOr pressure,
pv(T), than would occur in the absence of such thermal effects, and this alters the
growth or collapse rate of the bubble. It is therefore instructive to substitute Eq. (4.9)
into Eq. (4.8) and thereby write the Rayleigh-—Plesset equation in the following general
form:

(1) ) (3) .
Pv(Teo) — poo(t) L v(Tp) — pv(Tes) 4 Foe (E) (&)
o fo i e VT R
d*R 3 fdR\? 4u dR 28 |
~ror () TR (.10
(4) (5) (6)

The first term, (1), is the instantaneous tension or dtiving term determined by the
conditions far from the bubble. The second term, (2), is referred to as the #hermal term,
and it will be seen that very different bubble dynamics can be expected depending on
the magnitude of this term., When the temperature difference is small, it is convenient
to use a Taylor expansion in which only the first derivative is retained to evaluate

pviTe) ~ pv(Ti)
AL

= A(Ts — Too) (4.11)

where the quantity 4 may be evaluated from the following:

py _ Ldv _ pv(Te)L(To0)
oL dT Pl

4.12)

using the Clausius—Clapeyron relation, £(7T,,) being the latent heat of vaporization
at the temperature T, It is consistent with the Taylor expansion approximation to
evalnate oy and £ at the known temperature 7y, Jt follows that, for small temperature
differences, term (2) in Eq. (4.10) is given by A{Tg — T).

The degree to which the bubble temperature, Ta, departs from the remote liguid
temperature, T, can have émajof effect on the bubble dynamics, and it is necessary
to discuss how this departire might be evaluated. The determination of (Tf — Te)
requires two steps. First, it requires the solution of the heat diffusion equation,

aT dR (R\N" AT D.d [ ,aT

— o (D) ol (22 4

5 | dr (r) ar o or (r Br) @13
to determine the temperature distribution, T(r, t), within the liquid (7, is the thermal
diffusivity of the liquid). Second, it requires an enerpy balance for the bubble. The
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heat supplied to the interface from the Jiguid is

am Rk, (E) , (4.14)
07 /R

where ki is the thermal conductivity of the liquid. Assuming that all of this is used

for vaporization of the liquid (this neglects the heat used for heating of cooling the

cxisting bubble contents, which is negligible in many cases), one can ¢valuate the mass

rate of production of vapor and relatc it to the known rate of increase of the volume

of the bubble. This vields
dR ¢
LS £ : (4.15)
dt  pyL\ar /. p

where k.. oy, and £ should be evaluated at 7 = Tg. If, however, Tg — T is small. it
is consistent with the linear analysis described earlier to evaluate these properties at
T =1 .

The nature of the thermal cffect problem is now ¢lear. The thermal term in the
Rayleigh—Plessct Eq. (4.10) requires a relation between (7p(7) — Tie) and R(£). The

nal relation between (37 /80 p and (Tg(t) - Ti;) requires the solution of the heat
diffusion equation. It is this last step that causes considerable difficulty due to the
evident nonlinearities in the heat diffusion equarion; no exact analviic solution exists,
However, the solution of Plesset and Zwick (1952) provides a useful approximation
for many purposes. This solution is confined to cases in which the thickness of the
thermal boundary laver, 51, surrounding the bubble is small compared with the radius
of the bubble, a resiriction that can be roughly represented by the identity

AT
R sT:s(TW—TE)/(,.—) d (4.16)
(]‘f" el
The Plesset—Zwick result is that
DL\ [ IREP (), g, i
ﬂx—TB(t):(_L)f : ) R (4.17)
. T { TRy

0

where x and y are dummy time vaniables, Using Ea. (4.13) this can be written as
follows:
[ o
L SN IR RixiVindy -
prer Dy

T

this can be direetly substituted into the Rayleigh—Plesset equation to geperate a com-
vlicaied integro-differential cquation for Ri#). However, for present purposes it is
ot ipstructive to confine our attention o regimes of bubble gresth ar collapse that
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can be approximated by the following relation:

R =R*t", (4.19)
where R* and » are constants. Then Eq. (4.18) reduces to the following:
L I
Too — Ta(t) = —2Y  R*"=1C(n) (4.20)
prepLDy
where the constant
g
z dn—] d
C(n) =n (4”“) ] T (421
n (1 _ z4n+l)i

0

and is of the order unity for most values of # of practical interest (0 < n < 1 in the case
of bubble growth). Under these conditions the linearized form of the thermal term,
(2), in the Rayleigh-Plesset Eq. (4,10) as given by Egs. (4.11) and (4.12) becomes the
following: ‘

L 1
(Ts — Too) £2= = —E(Tw)C)R™S, (4.22)
PLT
where the thermodynamic parameser is defined as follows:
2.2
ST = PV (4.23)
preeToDf

In Section 4.3.1 it will be seen that this parameter, ¥, whose units are meters per
second to the 3/2 power, is crucially important in determining the bubble dynamic
behavior.

4.2.3 In the Absence of Thermal Effects; Bubble Growth

First we consider some of the characteristics of bubble dynamies in the absence of any
significant thermal effects. This kind of bubble dynamic behavior is termed inertially
controlled to distinguish it from the thermally controlled behavior discussed later,
Under these circumstances the temperature in the liquid is assumned uniform and term
{2) in the Rayleigh—Plesset Eq. (4.10) is zero.

For simplicity, it is assumed that the behavior of the gas in the bubble is polytropic
so that

R kT
PG = Pco (f) , (4.24)

where £ is approximately constant. Clearly & = 1 implies a constant bubble tempera-
ture and & = y would mode] adiabatic behavior. It should be understood that accurate
evaluation of the behavior of the gas in the bubble requires the solution of the mass,
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Figure 4.3. Typical solution of the Rayleigh—Plesset equation for a spherical bubble, The nucleus of
radius, R, enters a low-pressure tegion at a dimensionless time of  and is convected back to the original
pressure at a dimensionless time of 500. The low-pressure region is sinusoidal and symmetric about 250.

momentum, and energy equations for the bubble contents combined with appropriate
boundary conditions that will include a thermal boundary condition at the bubble
wall.

With these assumptions the Rayleigh-Plesset equation becomes

polTie) = Polt) _ PGo (&)3"_ (R D (dR)z 4w dR 2§

o 7 \R 2 t\F) TR T ar
(4.25)

Egquation (4.25) without the viscous term was first derived and nsed by Noltingk and
Neppiras (1950, 1951); the viscous term was investigated first by Poritsky (1952).

Equation (4.25) can be readily integrated numerically to find R(z) given the input
Poo(1), the temperature 7', and the other constants. Initial conditions are also required
and, in the context of cavitating flows, it is appropriate to assume that the bubble begins
as a microbubble of radius R, in equilibrium at ¢ = 0 at a pressure pa.(0) so that

28
Poe = Poo(0) = pylToo) + == (4.26)
4]

and that dR/dt};—g = 0. A typical solution for Eq. (4.25) under these conditions is
shown in Figure 4.3; the bubble in this case experiences a pressure, pu(f), that first
decreases below p..(0) and then recovers to its original value. The general features
of this solution are characteristic of the response of a bubble as it passes through
any low pressure region; they also reflect the strong nonlinearity of Eq. (4.23). The
growth is fairly smooth and the maximum size occurs after the minimum pressure.
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The collapse process is quite different. The bubble collapses catastrophically, and
this is followed by successive rebounds and collapses. In the absence of dissipation
mechanisms such as viscosity these rebounds would continue indefinitely without
attenuation.

Analytic solutions to Eq. (4.25) are limited to the case of a step function change in
Poo. Nevertheless, these solutions reveal some of the characteristics of more general
pressure histories, p.(r), and are therefore valuable to document. With a constant value
of pealt = 0) = pli., Eq. (4.25) is integrated by multiplying through by 2R*dR /dr
and forming time derivatives. Only the viscous term cannot be integrated in this way,
and what follows is confined to the inviscid case. After mtegration, application of the
initial condition (d R /d1 )= = ( yields the following:

ﬂ’R)z_M R, _2Pe _fic?_"_R_i}_ﬂ R
de ) 3L R3 Aol — k) | R¥*  R? LR R?
(4.27)

where, in the case of isothermal gas behavior, the term involving pg, becomes

G Rn
2£%0 °R3 n(ﬁ). (4.28)

By rearranging Eq. (4.27) it follows that

1

R/Rs - 3 T _ =2y E
IEROf lz(pV P) (1=x7%) | 2pao (a7 -x ) 28(l-x )} ix,

] 3pm 3(1-F)p PLRox
(4.29)
where, in the case k& = 1, the gas term is replaced by the following:
2
P8 inx. (4.30)
x?

This integral can be evaluated numerically to find R(z), albeit indirectly.

Consider first the characteristic behavior for bubble growth that this solution ex-
hibits when ch; = Puo(0). Equation (4.27) shows that the: asymptotic gmwth rate for
R » R, is given by the following:

dR E(Pv—P;;)%
E"}{:; o } (4.31)

Thus, following an initial period of acceleration, the velocity of the interface is rela-
tively constant. It should be emphasized that Eq. (4.31) implics explosive growth of
the bubble, in whick the volume displacement is increasing like £
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4.2.4 In the Absence of Thermal Effects: Bubble Collapse

Now contrast the behavior of a bubble caused to collapse by an increase in p., to Ph..
In thus case when R < R, Eq. (4.27) yiclds the following:

3 . %-1) 1
dR_}_(ﬁ) lz(pm p) 25 2pg (R.:.) } @32

dr R e PR, 3(k— Do \ R

where, in the case of k =1, the gas term is replaced by 2 pg;, In(R>/R)/pr. However,
most bubble collapse motions become so rapid that the gas behavior is much closer
to adiabatic than isothcrmal, and we will therefore assume k =],

For a bubble with a substantial gas content the asympiotic collapse velocity given
by Eq. (4.32) will not be reached and the bubble will simply oscillate about a new,
but smaller, equilibrium radius. Conversely, when the bubble containg very little gas,
the inward velocity will continually increase (like R=%/2) until the last term within
the curly brackets reaches a magnitude comparable with the other terms. The collapse
velocity will then decrease and a minimum size given by the following:

1 o Hk=]}y
Rmin = Ro { Fe ) ] (4.33)

(k—1) (pt — pv — pow + 35/B,

will be reached, following which the bubble will rebound. Note that, if pg, is small,
Rinin could be very small indeed. The pressurc and temperature of the gas in the bubble
at the minimum radius are then given by p and Ty, where

P = P60 {(k ~ 1) (Pl = pv — pao +38/Ra) /pao} ™ (4.34)
Tn = To {0k ~ 1) (P2 — Pv ~ Poo +35/Ra) /o) (4.35)

We comment later on the magnitudes of these temperatures and pressures (see
Sections 5.2.2 and 5.3.3),

The case of zero gas content presents a special albeit somewhat hypothetical prob-
lem, because apparently the bubble will reach zero size and at that time have an infinjte
inward velocity, In the absence of both surface tension and gas content, Rayleigh (1917)
was able to integrate Eq. (4.29) to obtain the time, 4., required for total collapse from
R= R, toR=0:

2 N1
——f’ﬁ) . (4.36)
Py — PV

It is important at this point to emphasize that although the results for bubble
growth in Section 4.2.3 are quite practical, the results for bubbje collapse may be
quite misleading. Apart from the neglect of thermal effects, the analysis was based
on two other assurnptions that may be violated during collapse. Later it is shown that
the final stages of coilapse may involve such high velocities (and pressures) that the

assumption of lquid incompressibility is no longer appropriate. But, perhaps more
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important, it transpires (see Section 3.2.3) that a collapsing bubble loses its spheneal
symmeétry in ways that can have important engincering consequences. \

4.2.5 Stability of Vapor/Gas Bubbles

Apart from the characteristic bubble growth and collapse processes discussed in the
Jast section, it is also important to recognize that the following equilibrium conditivg -
28

pv—poot poe— 5 =0 @45

may not always tepresent a stable equilibrium state at R = R, with a partial pressuee
of gas pee. ‘ :

Consider a small perturbation in the size of the bubble from R = R to R w
Re(1+€), € < 1, and the response tesulting from the Rayleigh-—Plesset cquatis
Care must be taken to distinguish two possible cases:

(1) The partial pressure of the gas remains the same af pge.
(2) The mass of gas in the bubble and its temperature, T, remain the same.

From a practical point of view the Case (1} perturbation is generated over a length v
tirne sufficient to allow adequate mass diffusion in the liquid so that the partial pressury
of gas is maintained at the value appropriate to the concentration of gas dissolved ¢
the liquid. Conversely, Case (2) is considered to take place too rapidly for significs
gas diffusion, It follows that in Casc (1) the gas term in the Rayleigh-Plesset Eq.(4.7%
is pae/ oL, whereas in Case (2) itis pa. R/ p; R¥  1f n is defined as zero for Case (1
and n = 1 for Case (2) then substitution of R = R.(1 + €} mnto the Rayleigh—Plesw
equation yields the following:

d2R 3 {dR\® 4w dR € [28 .
e = — —_— = —y——3 . 4.3

Rdt2+2(dt)+R dr pL{ nkPGe] (438
Note that the right-hand side bas the same sign as € if .

%8; = 3nkpc. {43
and a different sign if the reverse holds. Therefore, if the above inequality holds, lMi
left-hand side of Eq. (4.38) implies that the velocity and/or acceleration of the bubble’
radiug has the same sign as the perturbation, and hence the equilibrium is unstaf
because the resulting motion will cause the bubble to deviate further from R = Ry
Conversely, the equilibrium is stable if npg. > 25/ 3R..

First consider Case (1) which must always be unstable because the inequal
4.39 always holds if » = 0. This is simply a restatement of the fact (discussed i
Section 4.3.4) that, if one allows time for mass diffusion, then all bubbles will cithet
grow or shrink indefinitely.
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Figure 4.4. Stable and unstable bubble equilibrium radii as a function of the tension for various masses

of gas in the bubble. Stable and unstable conditions are separated by the dotted line. Adapted from Daily
and Johnson (19356).

Case (2) is more interesting because, in many of the practical engineering situations,
pressure levels change over a period of time that is short compared with the time

required for significant gas diffusion. In this case a bubble in stable equilibrium requires
the following:

_ mglpRe 25

L= =2 4.40
Pa %ITRE - 3kR.= ( )

where mg; is the mass of gas in the bubble and R is the gas constant. Indeed for a
given mass of gas there exists a critical bubble size, R,, where

Rc — { gkaTBRG}]’/E '

s (4.41)

This critical radius was first identified by Blake (1949) and Neppiras and Noltingk
(1951) and is often referred to as the Blake critical radius. All bubbles of radius
R = R. can exist in stable equilibrium, whereas all bubbles of radius K. = R must
be unstable. This critical size could be reached by decreasing the ambient pressure
from p.; to the critical value, p,.., where from Eqs. (4.41) and (4.37) it follows that

48 8zxs |t
Fooe =PV 5 | Skmo Ty Ra
which is often called the Blake threshold pressure.

The isothermal case (k = 1) is presented graphically in Figure 4.4, where the
solid lines represent equilibrium conditions for a bubble of size R, plotted against the

(4.42)
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tension (Pv — pqo) for various fixed masses of gas in the bubble and a fixed surface
tension. The critical radius for any particular mg corresponds to the maximum in each
curve. The locus of the peaks is the graph of R, values and is shown by the dashed line
whose equation is (pv — p.) = 45/3R,. The region to the right of the dashed line
represents unstable equilibrium conditions. This graphical representation was used by
Daily and Johnson (1956) and is useful in visualizing the quasistatic response of &
bubble when subjected to a decrcasing pressure. Starting in the fourth quadrant under
conditions in which the ambient pressure, po, > pv, and, assuming the mass of gas
in the bubble is constant, the radius, R,, will first increase as (py — p.c) Icreases.
The bubble will pass through a series of stable equilibrium states until the particular
critical pressure cotresponding to the maximum is reached. Any slight decrease in po,
below the value corresponding to this point will result in explosive cavitation growth
regardless of whether p.,, is further decreased. In the context of cavitation nucleation
(Brennen 1995), it is recognized that a system consisting of small bubbles in a liquid
can Sustain a fension in the sense that it may be in equilibtium at liquid pressures
below the vapor pressure. Due to surface tension, the maximum tension, (pyv — Pec)s
that such a system could sustain would be 25/ R. However, it is clear from the above
analysis that stable equilibrium conditions do not exist in the range
25

45
> (pPv — Peo) < x (4.43)

and therefore the maximum tension should be given by 45/3 R rather than 25/ R.

4.2 Thermal Effects

4.3.1 Thermal Effects on Growth

In Sections 4.2.3 through 4.2.5 some of the charactenstlcs of bubble dynamics in the
absence of thermal effects were explored. It is now necessary to examine the regime
of validity of those analyses. First we evaluate the magnitude of the thermal term (2)
in Eq. (4.10) [see also Eq. (4.22)] that was neglected to produce Eq. (4.25).

First examite the case of bubble growth. The asymptotic growth rate given by
Eq. (4.31) is constant and hence in the characteristic case of a constant pe, terms (1),
(3), (4), (5), and (6) in Eq. (4.10) are all ejther constant or diminishing in magnitude
as time progresses. Note that a constant, asymptotic growth rate corresponds to the
case

n=1 R = (2(pv - pk) 3ol (4.44)

in Eq. (4-19). Consequently, according to Eq. (4.22), the thermal term (2) in its lin-
earized form for small (T, — T) is given by the following:

term (2) = T(To)C(1)R 2. (4.45)

bt
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Under these conditions, even if the thermal term is initially negligible, it will gain
in magnitude relative to all the other terms and will ultirately affect the growth in
a major way. Parenthetically it should be added that the Plesset-Zwick assumption
of a small thermal boundary layer thickness, 81, relative to R can be shown to hold
throughout the inertially controlled growth period because &y increases like (Dyt)f,
whereas R is increasing linearly with ¢. Only under circumstances of very slow growth
might the assumption be violated.

Using the relation 4.43, one can therefore define a critical time, 1, (called the first
critical time), during growth when the order of magnitude of term (2) in Eq. (4.10)
becomes equal to the order of magnitude of the retained terms, as represented by
(dR/dt)*. This first critical time is given by the following:

(pv—p) 1

Pttt (4.46)

rcl =
where the constants of the order of unity have been omitted for clarity. Thus 7, depends
not only on the tension (pv — p7.)/ L but also on X(7L,), a purely thermophysical
quantity that is a function only of the liquid temperature. Recalling Eq. (4.23),

2 a2
E(T) = —~—-—£ £y " (4.47)
piep. To D}

it can be anticipated that T* will change by many, many orders of magnitude in a
given liquid as the temperature T, is varied from the triple point to the critical point
because T is proportional to (py/p1)*. As a result the critical time, £,;, will vary by
many orders of magnitude, Some values of ¥ for a nummber of liquids are plotted in
Figure 4.5 as a function of the reduced temperature T/ Tc. As an example, consider
4 typical cavitating flow experiment in a water tunnel with a tension of the order of
10* kg/m s%. Because water at 20°C has a value of )3 of about 1 mfs%, the first critical
time is of the order of 10's, which is very much longer than the time of growth of
bubbles. Hence the bubble growth occurring in this case is unhindered by thermal
effects; it is inertially controlled growth, Conversely, if the tunnel water were heated
to 100°C or, equivalently, one observed bubble growth in a pot of boiling water at
superheat of 2°K, then because £ = 10° m/s? at 100°C the first critical time would be
10 1¢5. Thus virtually all the bubble growth observed would be thermally controlled.

4.3.2 Thermally Controlled Growth

When the first critical time is exceeded it is clear that the relative importance of the
various terms in the Rayleigh-Plesset Eq. (4.10), will change. The most important
terms become the driving term (1) and the thermal term (2), whose magnitude is
much larger than that of the inertial terms (4). Hence if the tension (pv — pl. ) remains
constant, then the solution using the form of Eq. (4.22) for the thermal terin must have
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Figure 4.5 Values of the thermodynamic parameter, I, for various saturated liquids as a fugction of the
reduced temperature, T/ T¢.

n = % and the asymptotic behavior is as follows:

- p* Y11 1 — pt
- (PV Pm) : or n=~; R'= M (4.48)
PLE(T)C(5) 2 PLE(T)C(35)

Consequently, as time proceeds, the inertial, viscous, gaseous, and surface tension
terms in the Rayleigh-Plesset equation all rapidly decline in importance. In terms of
the supetheat, AT, rather than the tension

_ 1 pLCpLAT

where the group prep AT /py L is termed the Jakob number in the context of pool
boiling and AT = T, = T, T\ being the wall temperature. We note here that this
section addresses only the issues associated with bubble growth in the liquid bulk.
The presence of a nearby wall (as is the case in most boiling) causes details and
complications, the discussion of which is delayed until Chapter 6.

The result, Eq. (4.48), demonstrates that the rate of growth of the bubble decreases
substamnally after the first eritical time, #o;, isreached and that R subsequently increases
like £7 instead of . Maregver, becanse the thermal boundary layver also increases like
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Figure 4.6. Experimental observations of the growth of three vapor bubbles (C, A, V) in superheated
water at 103.1°C compared with the growth expected using the Plesset—Zwick theory (adapted from
Dergarabedian [953).

(DLt)?, the Plesset—Zwick assumption remains valid indefinitely. An example of this
thermally inhibited bubble growth is including in Figure 4.6, which is taken from
Dergarabedian (1953), We observe that the experimental data and calculations using
the Plesset-Zwick method agree quite well,

When bubble growth is caused by decompression so that p.(¢) changes sub-
stantially with time during growth, the simple approximate solution of Eq. (4.48) no
longer holds and the analysis of the unsteady thermal boundary layer surrounding
the bubble becomes considerably more complex. One must then solve the diffusion
Eq. (4.13), the energy equation [usually in the approximate form of Eq. (4.15)} and
the Rayleigh-Plesset Eq. (4.10) simultaneously, though for the thermally controlled
growth being considered here, most of the terms in Eq. (4.10) become negligible so
that the simplification, pvi(Tg) = poo(f), is usually justified. When p,, 1s a constant
this reduces to the problem treated by Plesset and Zwick (1952) and later addressed
by Forster and Zuber (1954) and Scriven (1959). Several different approximate so-
jutions to the general problem of thermally controlled bubble growth during liquid
decompression have been put forward by Theofanous et al. (1969), Jones and Zuber
(1978), and Cha and Henry (1981). All three analyses yield qualitatively similar results
that also agree quite well with the experimental data of Hewitt and Patker (1968) for
bubble growth in liquid nitrogen. Figure 4.7 presents a typical example of the data of
Hewitt and Parker and a comparison with the three analytical treatments mentioned
above.

Several other factors can complicate and alter the dynamics of thermally controlled
arowth. Nonequilibrium effects (Schrage 1953) can occur at very high evaporation
rates where the liquid at the interface is no longer in thermal equilibrium with the
vapor in the bubble and these have been explored by Theofanous ez al. (1969) and
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Figure 4.7. Data from Hewitt and Parkgy
{1968} on the growth of 2 vapor hubbl
in liquid nitrogen (pressure/time histry
also shown) and comparison with the an:
alytical treatments by Theofanous of uf
(19693, Jones and Zuber (1978). and ¢ he ‘
and Henry (1981).
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Plesset and Prosperetti (1977) among others. The consensus seems to be that thix
effect is insignificant except, perhaps, in some extreme circumstances. There iy na
clear indication in the experiments of any appreciable departure from equilibrium.

More important are the modifications to the heat transfer mechanisms at the bubbig -
surface that may be caused by surface instabilities or by convective heat transfer "
These are reviewed in Brennen (1995). Shepherd and Sturtevant (1982) and Frosi
and Sturtevant (1986) have examined rapidly growing nucleation bubbles near the
limit of superheat and have found growth rates substantially larger than expected
when the bubble was in the thermally controlled growth phase. Photographs (seé-
Figure 4.8) reveal that the surfaces of those particular bubbles are rough and irregular,
The enhancement of the heat transfer caused by this roughening is probably responsitdé:

Figure 4.8. Typical photographs of arapidly growing bubble in a droplet of superheated ether sugpendid i
glycetine. The bubble is the dark, rough mass; the droplet is clear and transparent. The photographs, wikih.
are of different events, were taken 31, 44, and 58 us after nucleation and the droplets are approximutedy
2 mm in dismeter. Reproduced from Frost and Srtevant (1986) with the permission of the authors, ;
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for the larger than expected growth rates. Shepherd and Sturtevant (1982) attribute
the roughness to the development of a baroclinic interfacial instability similar to the
Landau-Darrieus instablity of flame fronts. In other circumstances, Rayleigh—Taylor
instability of the interface could give rise to a similar effect (Reynolds and Berthoud
1981).

4.3.3 Cavitation and Boiling

The discussions of bubble dynamics in the Jast few scctions lead, naturally, to two
technologically important multiphase phenomena, namely cavitation and boiling. As
we have delineated, the essential difference between cavitation and boiling is that
bubble growth (and collapse) in boiling is inhibited by limitations on the heat transfer
at the interface, whereas bubble growth (and collapse) in cavitation is limited not
by heat transfer but only by inertial effects in the surrounding liguid. Cavitation is
therefore an explosive (and implosive) process that is far more violent and damaging
than the corresponding bubble dynamics of beiling. There are, however, many details
that arc relevant to these two processes and these are outlined in Chapters 5 and 6
respectively.

4.3.4 Bubble Growth by Mass Diffusion

Tn most of the circumstances considered in this chapter, it is assuned that the events
ocenr too rapidly for significant mass transfer of contaminant gas to occur between the
bubble and the liquid. Thus we assumed in Section 4.2.2 and elsewhere that the mass
of contamninant gas in the bubble remained constant. It is convenient to reconsider
this issue at this point, for the methods of analysis of mass diffusion will clearly
be similar to those of thermal diffusion as described in Section 4.2.2 (se¢ Seriven
1959). Moreover, there are some issues that require analysis of the rate of increase
or decrease of the mass of gas in the bubble. One of the most basic issues is the fact
that any and all of the gas-filled microbubbles that are presentina subsaturated liquid
(and particularly in water) should dissolve away if the ambient pressure is sufficiently
high. Henry’s law states that the partial pressure of gas, Pge, in a bubble that is in
equilibrium with a saturated concentration, ¢ec, of gas dissolved in the liquid will be
given by the following:

PGe = CxaHe, (4.50)

where He is Henry's law constant for that gas and liquid combination (He decreases
substantially with temperature). Consequently, if the ambient pressure, Pac, is greater
than (c..He + pv — 2.5/ R), the bubble should dissolve away completely. Experience
is contrary to this theory, and microbubbles persist even when the liquid is subjected
to several atmospheres of pressure for an extended period; in most instances, this
stabilization of nuclei is caused by surface contamination.




90 Bubble Growth and Collapse

The process of mass transfer can be analyzed by noting that the concettration,
c(r, 1), of gas in the liquid will be governed by a diffusion equation identical in form
to Eq. (4.13) as follows:

dc dR {R\?8c D8 [ ,0c
Wﬁ(?) 5:—725( a,«) @=0
where D is the mass diffusivity, typically 2 x 107 em?/s for air in water at normal
temperatures. As Plesset and Prosperetti (1977) demonstrate, the typical bubble growth
rates due to mass diffusion arc so slow that the convection term [the second term oh
the left-hand side of Eq. (4.51)] is negligible.
The simplest problem is that of a bubble of radius, R, in a liquid at a fixed ambient

pressure, Poo, and gas concentration, c,.. In the absence of inertial effects the partial
pressure of gas in the bubble will be pg. where

PGe = Px — v+ 28/R (4.52)

and therefore the concentration of gas at the liquid interface is ¢; = pae/He. Epstein
and Plesset (1950) found an approximatc solution to the problem of a bubble in a
liquid initially at uniform gas concentration, ¢qo, at time ¢ = ( that takes the following
form:

dR _ D f{eec — cs (1 +25/Rpoo)}
dt  po (1 +45/3Rp.)

where pg is the density of gas in the bubble and ¢; is the saturated concentration at the
interface at the partial pressure given by Eq. (4.52) (the vapor pressure i3 neglected in
their analysis). The last term in Eq. (4.53), R(m Dt)~ 3 arises from a growing diffusion
boundary layer in the liquid at the bubble surface. This layer grows like (Dt)z ‘When

¢t is large, the last term in Eq. (4.53) becomes small and the characteristic growth is
given approximately by the following:

[1 + R(z D) ] , (4.53)

{R(OF — (RO} ~ M, (4.54)
oG

where, for simplicity, we have neglected surface tension.

It is instructive to evaluate the typical duration of growth (or shnnkage) From .

Eq. (4.54) the time required for complete solution is 7, where

s pe{ RO
F T 2D(es — Coo)

Typical values of (¢; — cx)/pa are 0.01 (Plesset and Prosperetti 1977). Thus, in the
absence of surface contarminant effects, a 10-zm bubble should completely dissolve
inabout 2.5 s.

Finally, we note that there is an important mass diffusion effect caused by ambient
pressure oscillations in which nonlinearities can lead to bubble growth even n a sub-
saturated liquid. This is known as rectified diffusion and is discussed in Section 4.4.3.

(4.55)
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4.4 Oscillating Bubbles

4.4.1 Bubble Natural Frequencies

In this and the sections that follow we consider the response of a bubble to oscillations in
the prevailing pressure. We begin with an analysis of bubble natural frequencics in the
absence of thermal effects and liquid compressibility effects. Consider the linearized
dypamic solution of Eq. (4.25) when the pressure at infinity consists of a mean value,
Do, upon which is superimposed a small oscillatory pressure of amplimde, p, and
radian frequency, w, so that

Poo = Poc + Re{Ae/™'}. (4.56)
The linear dynamic response of the bubble is represented by the following:
R = R.[1 + Re{pe’)], ' (4.57)

where B, is the equilibrium size at the pressure p., and the bubble radius response,
@, will in general be a complex number such that R|¢| is the amplitude of the bub-
ble radius oscillations. The phase of ¢ represents the phase difference between poo
and K.

For the present we assurme that the mass of gas in the bubble, mg, remains constant.
Then substituting Eqs. (4.56) and (4.57) into Eq. (4.25), neglecting all terms of order
le|* and using the equilibrium condition of Eq. (4.37), one finds the following:

2 . 411]_ i 25
— 4 ——— 1 —
R2 " pLRI | R,

£

a

_ SkPGE] = m; o (4.58)
-3

whete, as before,

. 25 _ ImagIgRg

PGe = P — pV + RT& = Wé-‘ ‘ (459)

It follows that for a given amplitude, p, the maximum or peak response amplitude
occurs at a frequency, wy, given by the minimum value of the spectral radius of the
left-hand side of Eq. (4.58):

_ [Ghpo. —25/R)  8vE |
“= { PLRS R} (4.60)
or in terms of (P — pv) rather than pge.:
l 1
3P — pv) | 23k—1)S 8y |?
o { Rl ak R (4.61)

At this peak frequency the amplitude of the response is, of course, inversely propor-

tional to the damping as follows:
B
|¢'{wwwp = PR
4pfws + e

i

(4.62)

=
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Figure 4.9. Bubble resonant frequency in water at 300°K (§ ;‘0.0717, pr, = 0.000863, o, = $6.3)m
a function of the radius of the bubble for various values of (o — pv) as indicated.

It is also convenient for future purposes to define the natural frequency, wy,, of 33
oscillation of the bubbles as the value of w, for zero damping:
! 7 203k 1) 463
P 2 A - | R
The connection with the stability criterion of Section 4.2.5 13 clear when one observes
that no natural frequency exists for tensions (py — Pac) > 45/3 R, (for isothermal gan
behavior, k£ = 1); stable oscillations can only occur about a stable equilibrium. ‘
Note from Eq. (4.61) that wy, is a function only of (7 — py), Re, and the Vicuish
properties. A typical graph for wy, as a function of R, for several (o — pv) values i
shown in Figure 4.9 for water at 300°K. (5 = 0.0717, . = 0.000863, o = 996.3
As is evident from Eq. (4.61), the second and third terms on the right-hand sick
dominate at very small R, and the frequency is almost independent of (7. ~ v,
Indeed, no peak frequency exists below a size equal to about 2v{ gy /S. For larys#
hubbles the viscous term becomes negligible and w, depends on (P — pv). 1 thé
latter is positive, the natural frequency approaches zero like B! In the case of tensiuiy
Pv = Poo, the peak frequency does not exist above R, = R,.
For typical nuclei found in water (1 to 100 sem) the natural frequencies are of th
order of 5 to 25 kHz. This has several important practical consequences. First, if om
wishes to cause cavitation in water by means of an imposed acoustic pressure lield,
then the frequencies that will be most effective in producing a substantial concentratid
of large cavitation bubbles will be in this frequency range. This is also the frequcl,m;:‘
range employed in magnetostrictive devices used to oscillate solid material samples
in water (or other liquid) to test the susceptibility of that material to cavitation damagse
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(Knapp et al. 1970). Of course, the oscillation of the nuclei produced in this way will
be highly nonlinear and therefore peak response frequencies will be significantly lower
than those given above.

There are two important footnotes to this linear dynamic analysis of an oscillating
bubble. First, the assumption that the gas in the bubble behaves polytropically is a
dubious one. Prosperetti (1977) has analyzed the problem in detail with particular
attention to heat transfer in the gas and has evaluated the effective polytropic exponent
as a function of frequency. Not surptisingly the polytropic exponent increases from
unity at very low frequencies to ) at intermediate frequencics. However, more unex-
pected behaviors develop at high frequencies. At the low and intermediate frequencies,
the theory is largely in agreement with Crum’s (1983) experimental measurements.
Prosperetti, Crum, and Commander (1988) provide a useful summary of the issue,

A second, related concern is the damping of bubble oscillations. Chapman and
Flesset (1971) presented a summary of the three primary contributions to the damping
of bubble oscillations, namely that due to liquid viscosity, that due to liquid com-
pressibility through acoustic radiation, and that due to thermal conductivity, It is
particularly convenient to represent the three components of damping as three addi-
tive contributions to an effective liquid viscosity, i, that can then be employed in the
Rayleigh—Plesset equation in place of the actual liquid viscosity, g :

Fe = ML+ by fha (4.64)
where the acoustic viscosity, ,, is given by the following;

pr_szg

4.65
d¢p, (463)

Ha =
where ¢y is the velocity of sound in the liquid. The rhermal viscosity, i, follows
from the analysis by Prosperetti (1977) mentioned in the previous paragraph (see
also Breanen 1995). The relative magnitudes of the three components of damping (or
gffective viscosity) can be quite different for different bubble sizes or radii, R.. This is
illustrated by the data for air bubbles in water at 20°C and atmospheric pressure that
is taken from Chapman and Plesset (1971) and reproduced as Figure 4.10.

4.4.2 Nonlinear Effects

Due to the nonkinearities in the governing equations, particularly the Rayleigh—Plesset
Eq. (4.10), the response of a bubble subjected to pressure oscillations will begin to
exhibit important nonlinear effects as the amplitude of the oscillations is increased. In
the last few sections of this chapter we briefly review some of these nonlinear effects.
Much of the research appears in the context of acoustic cavitation, a subject with an
¢xtensive literature that is reviewed in detail elsewhere (Flynn 1964, Neppiras 1980;

Plesset and Prosperetti 1977, Prosperetti 1982, 1984, Crum 1979, Young 1989), We
include here a brief suinmary of the basic phenomena.
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Figure 4.10, Bubble damping components and the total damping a5 a function of the equilibrium bubble
radius, R, for water. Damping is plotted as an effective viscosity, i, nondimensionalized as shown (from
Chapraan and Plesset 1971),

As the amplitude increases, the bubble may continue to oscillate stably. Such
circumstances are referred to as stable acoustic cavitation to distinguish them from
those of the transient regime described below. Several different nonlinear phenomena
can affect stable acoustic cavitation in important ways. Among these are the production
of subharmonics, the phenomenon of rectified diffusion (see Section 4.4.3) and the
generation of Bjerknes forces (see Section 3.4). At larger amplitades the change in
bubble size during a single period of oscillation can become so large that the bubble
undergoes a cycle of explosive cavitation growth and violent collapse similar to that
described earlier in the chapter. Such a response is termed transient acoustic cavitation
and is distinguished from stable acoustic cavitation by the fact that the bubble radius
changes by several orders of magnitude during each cycle,

As Plesset and Prosperetti (1977) have detailed in their review of the subyect,
when 2 liquid that will inevitably contain microbubbles is irradiated with sound of a
given frequency, w, the nonlinear Tesponse results in harmonic dispersion that pro-
duces not only harmonics with frequencies that are integer multiples of w (super-
harmonics) but, more unusually, subharmonics with frequencies less than w of the
form mew/n, where m and » are integers. Both the superharmonics and subharman-
ics become more prominent as the amplitude of excitation is increased. The pro-
duction of subharmonics was first observed experimentally by Esche (1952), and
possible origins of this nonlinear effect were explored in detail by Noltingk and
Neppiras (1950, 1951), Flynn (1964), Borotnikova and Soloukin (1964), and Neppiras
(1969), among others. Lauterborn (1976) examined numerical solutions for a large
number of different excitation frequencies and was able to demonstrate the progres-
sive development of the peak responses at subharmonic frequencies as the amplitude
of the excitation is increased. Nonlinear effects not only create these subharmonic
peaks but also cause the resonant peaks to be shifted to lower frequencies, creating
discontinuities that correspond to bifurcations in the solutions. The weakly nonlinear
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Figure 4.11. Examples from Crum
{1980) of the growth (or shrinkage) of
air bubbles in saturated water (5 = 68
dynes/cm) due to rectified diffusion.
Data is shown for four pressure ampli-
tudes as shown. The lines are the corre-
sponding theoretical predictions.
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analysis of Brennen (1995) produces similar phenomena. In recent years, the modern
methods of nonlineat dynamical systems analysis have been applied to this problem
by Lanterbom and Suchla (1984), Smereka, Birnir, and Banerjee (1987), Parlitz er al.
(1990), and others and have led to further understanding of the bifurcation diagrams
and strange attractor maps that arise in the dynamics of single bubble oscillations.

Finally, we comment on the phenomenon of transient cavitation in which a phase
of explosive cavitation growth and collapse occurs each cycle of the imposed pressure
oscillation. We seek to establish the level of pressure oscillation at which this will
oceur, known as the threshold for transient cavitation (see Noltingk and Neppiras
1950, 1951, Flynn 1964, Young 1989). The answer depends on the relation between
the radian frequency, w, of the imposed oscillations and the natural frequency, wy, of
the bubble. If w < wy, then the liquid inertia is relatively unimportant in the bubble
dynamics and the bubble will respond quasistatically. Under these circumstances the
Blake criterion [see Section 4.2.5, Eq. (4.41)] will hold and the critical conditions will
be reached when the minimum instantaneous pressure just reaches the critical Blake
threshold pressure. On the other hand, if @ % w,, the issue will involve the dynamics
of bubble growth since inertia will determine the size of the bubble perturbations.
The details of this bubble dynamic problem have been addressed by Flynn (1964) and
convenient guidelines are provided by Apfel (1981).

4.4.3 Rectified Mass Diffusion

When a bubble i3 placed in an oscillating pressure field, an important nonlinear effect
ean oceur in the mass transfer of dissolved gas between the liquid and the bubble.
Thig effect can cause a bubble to grow in response to the oscillating pressure when
it would not otherwise do so. This effect is known as rectified mass diffusion (Blake
1949) and is important because it may cause nuclel to grow from a stable size to
an unstable size and thus provide a supply of cavitation nuclei. Analytical models of

" 'the phenomenon were first put forward by Hsich and Plesset (1961) and Eller and
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Flynn (1965), and reviews of the subject can be found in Crum (1980, 1984) and
Young (1989).

Consider a gas bubble in a liquid with dissolved gas as described in Section 4.3 4.
Now, however, we add an oscillation to the ambient pressure. Gas will tend to come out
of solution into the bubble during that part of the oscillation cyele when the bubble is
larger than the mean because the partial pressure of gas in the bubble is then depressed.
Conversely, gas will redissolve during the other half of the cycle when the bubble js
smaller than the mean. The linear contributions to the mass of gas in the bubble will,
of course, balance so that the average gas content in the bubble will not be affected at
this level. However, there are two nonlinear effects that tend to increase the mass of
gas i the bubble. The first of these is due to the fact that releasc of gas by the liquid
occurs during that part of the cycle when the surface area is larger, and therefore the
influx during that part of the cycle is slightly larger than the efflux during the part of
the cycle when the bubble is smaller. Consequently, there is a net flux of gas into the
bubble that is quadratic in the permurbation amplitude. Second, the diffusion boundary
layer in the liquid tends to be stretched thinner when the bubble is larger, and this
also enhances the flux into the bubble during the part of the cycle when the bubble is
larger. This effect contributes a second, quadratic term to the net flux of gas into the
bubble. o :

Strasberg (1961) first explored the issue of the conditions under which a bubble
would grow due to rectified diffusion. This and later analyses showed that, when an
oscillating pressure is applied to a fluid consisting of a subsaturated or saturated lig-
uid and seeded with microbubbles of radius R., there will exist a certain critical or
threshold amplitude above which the microbubbles will begin to grow by rectified
diffusion. The analytical expressions for the rate of growth and for the threshold pros-
sure amplitudes agree quite well with the corresponding experimental measurements
for distilled water saturated with air made by Crum (1980, 1984) (see Figures 4.11
and 4.12).
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