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13.1 Overview of Multiphase Modeling

E. Loth

13.1.1 Classification of Multiphase Flows

To numerically model a multiphase flow, it is often important to use separate formulations for the dif-
ferent phases. Let us define the particle phase as the phase that consists of bubbles, particles, or drops, and
the continuous phase as the fluid in which these particles are generally immersed. The particles can be
composed of solid, liquid, or gas, whereas the continuous fluid can be a liquid or a gas.

The coupling between the particle motion and its surroundings can be used to classify the character of the
multiphase flow, and thus help determine appropriate numerical techniques. The broadest division is
between dispersed and dense flows, and refers to which coupling mechanism primarily determines the par-
ticle motion. As shown in Figure 13.1, a multiphase flow can be considered dispersed if the effect of parti-
cle–fluid interactions dominates the overall transport of the particles. Particle–fluid interaction generally
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includes a drag force, which hinders the relative velocity of the particle, and thus causes particle trajectories
to tend toward continuous-fluid trajectories. If the particle–particle motion dominates, the flow can be con-
sidered to be dense. Particle–particle interactions can refer to two separate mechanisms: particle–particle 
collisions (where the particles can rebound, shatter, or coalesce by impinging on each other) and particle–par-
ticle fluid dynamic interactions (where the proximity of the particle affects their fluid dynamic forces).
Dispersed flow will generally include one-way coupling (where the dispersed-phase motion is affected by the
continuous phase, but not vice versa), two-way coupling (where the dispersed phase also affects the continu-
ous phase through the interphase coupling, e.g., drag force), three-way coupling (where particle wakes and
other continuous-phase disturbances affect the motion of other particle interactions), and four-way coupling
(where collisions and other particle–particle interactions influence, but do not dominate, the overall particle
motion). Dense flows will be generally defined as having four-way coupling, although is some cases (e.g.,
granular flows), the effects of the particles on the continuous fluid are weak and often neglected.

13.1.2 Classification of Methodologies

In addition to the above classification for multiphase flow phenomenon, we can also classify the various
numerical formulations. For one-way coupling conditions, the continuous phase can be computed inde-
pendent of the particle phase. The optimum numerical formulation of the continuous flow is often strongly
dependent on the flow Reynolds number, and is discussed in the following section, but is typically described
with an Eulerian reference-frame methodology. Typically, a spatial grid resolution (∆x) is specified for which
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FIGURE 13.1 Dilute, dispersed, and dense flow conditions based on various interphase and intraphase coupling.
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the continuous-flow equations are discretized in the Eulerian domain and solved. For two-way coupling,
these equations need to be modified to include the interphase mass, force, and heat transfer.

Several variations and combinations of these numerical treatments have been put forth, but relevant
fluid-particle physics and the available computational resources are the primary determinants for which a
set of treatments is more appropriate for a particular flow field. The following two sections separately
overview various techniques for simulating the continuous-phase flow and that of the particles, respectively.

13.1.3 Overview of Continuous-Phase Flow Methodologies

In the numerical treatment of the continuous-phase flow, the solution domain and reference frame must
be considered. Continuous-flow simulations are typically carried out in an Eulerian reference frame, since
it is usually the most computationally efficient description for solution, particularly for steady flows. In the
Eulerian reference frame, a domain of fluid is typically considered where the domain motion and bound-
aries are selected based on convenience, e.g., moving at the speed of a reference frame and with boundaries
parallel to solid surfaces. Different spatial discretizations for the fluid characteristics (velocity, temperature,
and pressure) are possible, e.g., constant, linear, quadratic, etc. These discretizations can be used with
finite-difference, finite-volume, and finite-element treatments. In addition, discretization can be by wave-
length, such that spectral and pseudo-spectral representations can be used to describe the flow quantities
throughout the domain. Although less common than the Eulerian treatment, the continuous fluid is some-
times treated in a Lagrangian manner, e.g., the discrete eddy tracking techniques termed vortex dynamical
models. In addition, there are some hybrid methods such as the Arbitrary-Lagrangian–Eulerian (ALE)
technique. In general, the treatments of the continuous-phase flow are subject to standard resolution con-
vergence issues (spatial and temporal) to satisfy the governing differential equations.

In determining the proper equations of motion, it should be noted that various mathematical represen-
tations of the continuous-phase fields are possible, depending on the controlling physics. A key issue regard-
ing formulation of the flow surrounding the particles is whether the flow can be considered as a continuum,
or whether the effects of random molecular collisions must be considered. In particular, two classes of non-
continuum effects can arise in multiphase flow: first, the entire domain can have features that depend on the
discrete molecular interactions (regardless of the particle interactions), in which the assumption of a con-
tinuous phase is no longer appropriate. In this case, some critical length scale of the domain is on the order
of the molecular mean free-path for the surrounding fluid. In the second case, we can assume that all the
fluid domain length scales (including particle diameter) are much greater than the molecular mean free-
path (as is generally assumed here), and the flow that a particle �sees� can be considered a continuum.

Assuming a continuum, generally, the most important characterization of the continuous-phase flow
is whether it is assumed to be inviscid or viscous, since this determines the relevant partial differential
equations (PDEs) to be numerically solved. For inviscid flow formulations, the quantitative effects of fric-
tion over surfaces and dissipation of vorticity are not of primary relevance to the desired flow properties
and are thereby neglected. Note that an inviscid continuous-phase solution does not preclude the effects
of viscosity with respect to particle motion, e.g., simulations of a dusty-shock flow can neglect viscosity
with respect to interactions with solid surfaces, but can still consider the viscous drag effects on the par-
ticles. Inviscid flow formulations primarily fall into three categories with an increase in physical com-
plexity:(1) potential flow (incompressible and irrotational), (2) incompressible rotational flow, and (3)
compressible rotational flow (Euler equations); which require a transport equation for energy.

Viscous flows require inclusion of shear stresses in the PDE formulation and thus in the numerical solu-
tion. These flows can be subdivided by effects of compressibility, unsteadiness, etc., but they are primarily
classified as laminar, transitional, or turbulent. In general, the Reynolds number largely determines the
type of numerical treatment. In the following sections the formulations and numerical approaches are
considered for various flow Reynolds number regimes.

13.1.3.1 Reynolds Number Effects on Continuous-Phase Flow

The Reynolds number of the flow is often the most important characteristic that determines the flow physics.
The flow Reynolds number represents the ratio of convective forces to viscous forces. On a macroscopic scale,
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it can be generally defined as ReL � ρfLuL/µ f, where L and uL are a length and a velocity scale associated with
the continuous-phase flow domain (e.g., pipe diameter and the mean streamwise flow speed) and ρf and vf

are the density and kinematic viscosity of the continuous phase. Another important characteristic is the flow
Mach number, which represents the ratio of convection speed to the speed of isentropic pressure fluctuations
(the speed of sound). The macroscopic Mach number can be defined as ML � u/af, where af is the speed of
sound of the continuous phase. It is helpful to consider the limit of ML �� 1 and negligible thermal varia-
tions or stratification, so that one may generally assume constant density of the continuous fluid. In addi-
tion, let us ignore the effects of two-way coupling at this point (for simplicity), so that there is no influence
of the particle phase on the continuous-phase motion. Written in tensor notation, the continuity and
momentum equations in the i direction for the single-phase fluid momentum (White, 1991) become

∂uf j /∂xj � 0

ρfui/t � ρfuj ∂ui/∂xj � ρfgi � ∂ρ/∂xi � ∂τij /∂xj

where p is pressure, ui the velocity in the i direction, gi the magnitude of the gravity vector in the i direc-
tion, and τij � µ f(∂ui/∂xj � ∂uj /∂xi) which the viscous stress tensor. In the limit of no flow (quiescent
conditions), this equation yields ρf gi � ∂p/∂xi, which is the hydrostatic pressure gradient equation.

If we further assume constant viscosity, the Navier–Stokes PDE becomes (in either tensor or vector form)

ui/t � uj ∂ui/∂xj � gi � (1/ρf)∂p/∂xi � vf ∂ 2ui/∂xj
2

∂u/∂ t � u�∇u � g � ∇p/ρf � vf ∇2u

where vf � µ f /ρf , u the continuous fluid velocity, g the gravity vector, and the divergence of the fluid velo-
city is zero (∇.u � 0). As the convective terms become stronger than the viscous terms (corresponding to
an increase in the flow Reynolds number), the flow will proceed from laminar conditions to transitional
and then to turbulent flow conditions. In the following section (and in Table 13.1), various Reynolds
number flow regimes are considered under the assumption that the presence of the dispersed phase does
not alter the numerical approach significantly (e.g., as in one-way coupled systems).

13.1.3.1.1 Laminar Flow
For ReL �� 1, the flow is highly laminar and is typically termed creeping flow. This condition arises in
many low-speed flows and microfluidic systems. In this case, the viscous effects dominate and convection

13-4 Multiphase Flow Handbook

TABLE 13.1 Forms of the Continuous-Flow Incompressible Navier–Stokes Momentum Equations, Assuming
No Coupling from the Particles (i.e., Assuming One-Way Coupling)

Flow Condition Flow Reynolds No. Tensor Form of Fluid Momentum Equation

Steady creeping flow ReL �� 1 0� ρf gi � ∂ p/∂xi � µf∂ 2ui /∂xj∂xj

Steady laminar flow ReL � Recrit ρfuj ∂ui /∂xj � ρf gi � ∂p/∂xi � µf ∂ 2ui /∂xj ∂xj

Transitional flow Recrit � ReL � Returb ρf ∂ui /∂ t � ρfui∂ui /∂xj �

ρf gi � ∂p/∂xi � µ f ∂ 2ui /∂xj ∂xj

Turbulent flow (DNS) ReL � Returb Same as for transitional flow

Turbulent flow (LES) ReL � Returb ρf ∂ ūi /∂ t � ρfūj ∂ ūi/∂x j � ρf ∂ (u�i���u�j���)/∂xj �

ρf g i � ∂ p̄/∂xi � µf ∂ 2ūi/∂x j∂xj

where (¯) is a spatially filtered quantity

Turbulent flow (RANS) ReL � Returb ρfūj∂ ūi /∂xj � ρf∂ (u�i���u�j���)/∂xj �

ρfgi � ∂p̄/∂xi � µf ∂ 2ūi /∂xj ∂xj

where (¯) is a time-averaged quantity

Note: Recrit corresponds to the Reynolds number at which the flow begins to become transitional and Returb corresponds to
the Reynolds number at which the flow becomes fully turbulent.
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(second terms on the LHS) is of secondary importance or can be neglected all together. Owing to the
Laplacian nature of the viscous term (third term on the RHS), the effects of viscosity are felt throughout
the flow and yield a strong elliptic character to the PDE, i.e., the flow features are highly coupled through-
out the domain in all directions. To ensure this, elliptic coupling is properly treated; numerical methods
typically employ an implicit solution technique, which is converged for a steady-state condition or given
as a physically consistent time increment for an unsteady condition. As ReL becomes an order of unity,
the convective terms become important and nonlinear, but the elliptic character of the PDE remains
strong, hence direct or iterative numerical approaches are required. As always, the domain discretization
in space and time is carefully considered, such that it does not play a significant role in the flow solution.

For 1 �� ReL � Recrit, the flow may retain its laminar character and stability, but typically a boundary
layer approximation may be applied to certain regions of the flow. The boundary layer approximation
allows certain components of the viscous stress tensor to be ignored, since velocity gradients tend to
much larger, normal and perpendicular to the convection direction (e.g., for attached wall-bounded flows
the streamwise viscous gradients can be ignored). In this case, a parabolic approach may be employed in
the direction for which the viscous diffusion may be neglected. Such an approach allows a space-march-
ing scheme that needs to be coupled (i.e., solved directly or iteratively) along perpendicular planes.
However, complex features and flow separation can cause the gradients to be significant in all directions,
in which case the full Navier–Stokes equations of momentum are needed. The numerical approaches
often include implicit schemes to properly capture the elliptic character of the viscous terms and the pres-
sure coupling (since pressure fluctuations may travel in all directions for ML �� 1). However, since the
convective terms begin to dominate at higher Reynolds numbers and are essentially parabolic locally,
explicit schemes are sometimes used to treat these particular terms more efficiently. Often, the overall
numerical approach becomes a hybrid of implicit and explicit schemes for incompressible laminar flow.
At larger Mach numbers, PDE may become parabolic or hyperbolic such that purely explicit schemes are
often appropriate.

13.1.3.1.2 Transitional Flow
For ReL � Recrit (the critical Reynolds number where transition begins), the flow instabilities become pro-
found and unsteadiness and multidimensionality become important. This can occur in wall-bounded
flows where Tollmien–Schlichting instabilities arise, pipe flows where the Taylor–Gortler mechanism
arises, free-shear flows where Kelvin–Helmhotz instabilities arise, etc. While transitional flow may be ini-
tially two dimensional, the instabilities typically lead to significant three-dimensional characteristics.
Transitional is a difficult flow field to simulate, since the higher Reynolds numbers coupled with the
small-scale features arising from the flow instabilities place severe restrictions on the space and time dis-
cretization employed in these simulations for full Navier–Stokes resolutions. Moreover, unlike fully
developed turbulent flow, it is difficult to robustly recast the flow in a time-averaged description.

While most of the numerical approaches for these continuous-phase flows are Eulerian-based, notice-
able exceptions are the Lagrangian treatments of vortex points or blobs or filaments (where the latter is
used in three dimensions). These techniques can be very useful in predicting the initial instability features
for free-shear flows and the Reynolds number effects can be included through viscous diffusion of the
vortices. These techniques have the significant advantage of avoiding discretization of the entire compu-
tational domain and thus can be efficient in terms of reduced degrees of freedom for similar accuracy as
compared with Eulerian methods. However, in highly three-dimensional flows (as the instabilities
become highly nonlinear), the technique is highly complicated by the Lagrangian tangling, merging, and
rupture of the vortex filaments and blobs. Thus, they can become impractical for complex vortex 
dynamics.

13.1.3.1.3 Turbulent Flow
For ReL � Returb (the minimum Reynolds number for fully developed turbulence), the flow instabilities have
become sufficiently profound to have caused a flow field, with vortices and flow structures that occur over
a large range of length and time scales. These features are three dimensional, unsteady, and effectively 
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stochastic at the smallest scales. The flow is sufficiently nonlinear to prevent a unique solution for a given
set of initial flow conditions, such that comparisons often requires comparison of statistical quantities rather
than instantaneous realizations. The range of wavelengths, which must be described to fully resolve such
flows, is considerable. To illustrate this aspect, consider a turbulent flow with a relatively low ReL of the order
of 105, for example, a water flow moving at 1 m/sec within a 10 cm pipe. The range of spatial resolution
required is based on the domain length scale and the Kolmogorov length scale, the ratio of which increases
with Reynolds number, e.g., L/λK � ReL

3/4. Thus, the range of length scales can be of the order of 10,000 in
each direction in this simple flow example.

13.1.3.2 Numerical Methods for Continuous-Phase Turbulent Flows

Based on the above wavelength range, the total number of points required for the fluid resolution in all
the three directions of turbulence approximately scales with 8ReL

9/4 (assuming two grid points to describe
the smallest wavelength). Thus a Reynolds number of 105; this simulation would requires an excess of 1012

computational nodes. Thus, turbulent flow predictions at large Reynolds numbers require some time
averaging of the PDEs to be simulated (of at least the small-scale structures) in order to allow practical
computational resources. Such averaging formulations unfortunately involve some empiricism, and thus
it is best to avoid (or minimize) this averaging whenever possible. The degree of averaging can vary,
depending on the physics of interest. An important distinction is whether none, some, or all of the eddy
structures can be resolved. However, the turbulent flow techniques can be broken up into two categories:
(1) time-averaged simulations (no structures resolved) and (2) eddy-resolved simulations (some or all of
the structures resolved).

Time-averaged simulations employ a time average with respect to the turbulence, such that only mean
statistics are predicted. Moreover, only an average turbulence length scale and time scale can be identi-
fied, but no eddy structures or dynamics are produced. The most common example is the Reynolds-aver-
aged technique, where all flow variables are individually time-averaged and the resulting equations are
generally called the Reynolds-averaged Navier–Stokes (RANS) equations. Another time-averaged exam-
ple is the Favre-averaged equations, where the fluid properties are weighted with the instantaneous den-
sity before being time-averaged.

Eddy-resolved simulations predict at least some of the individual spatiotemporal features of the turbu-
lent eddy structures (e.g., at least some of the turbulent eddies are resolved within the computational
grid). This category includes direct numerical simulations (DNS) where the turbulence is described for
all eddy-containing wave numbers (spatial frequency), i.e., up to the wave number constrained by vis-
cosity 1/λk. The eddy-resolved category also includes large-eddy simulations (LES) where the turbulence
is only resolved upto some cutoff wave number (1/∆), beyond which a subgrid scale is employed. In addi-
tion, hybrid RANS–LES techniques have been used, wherein only the separated flow regions are treated
with an LES approach while attached flow regions are treated with a RANS approach. Other eddy-
resolved techniques, that predict only some of the spatiotemporal features include detached eddy simu-
lations (DES) and proper orthogonal decomposition (POD), which will be discussed.

The difference between the flow predicted by a time-averaged and an eddy-resolved technique is sub-
stantial. Figure 13.2 shows the difference for a turbulent boundary layer, where the RANS discription is
two-dimentional and steady while the DNS discription is three-dimentional and unsteady. Because eddy-
resolved techniques can capture the energy-containing eddy structures associated with the turbulence,
they have been shown to provide much higher accuracy than the time-averaged techniques in terms of
turbulent diffusion and other statistical flow features.

The choice of the continuous-phase eddy-resolving description has a considerable impact on the dis-
persed-phase predictions. The time-averaged descriptions of the continuous flow allow only approximate
prediction of particle mean diffusion, whereas the eddy-resolved techniques can more accurately predict
such diffusion, while additionally providing aspects of particle preferential concentration (see Figure
13.3). In the above, diffusion refers to mean-spread of the particle cloud and thus indicates a time-aver-
aged description of the particle concentration, whereas preferential concentration refers to particle
motion associated with an individual turbulent flow features (spatio-temporal turbulent structure).
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In the latter case, this can include phenomenon such as the collection of light particles (with density less
than the continuous-fluid density) in low-pressure vortex cores or the centrifugal expulsion of heavy par-
ticles (with density greater than the continuous-fluid density). Capturing such structural dispersion
physics can be extremely important in predicting instantaneous local regions, which are either depleted
or excessive in particle concentration levels as compared to the time-averaged values (Crowe et al., 1998).
This “preferential concentration” can result in substantial changes in the relative velocity of the particle
measured in an Eulerian framework (Maxey et al., 1997). In addition, structural dispersion can have great
importance, when two-, three-, or four-way coupling effects are to be included, since interphase force
transfer, particle collision, and particle wake interaction can be locally and nonlinearly enhanced in
regions of high local concentration.

The variety of wavenumbers directly simulated by these different techniques ranging from RANS
(no dynamics i.e., just an integral length-scale), LES (dynamics of the most energetic eddies) to DNS (the
dynamics of all the eddies) is schematically represented in Figure 13.4. However, eddy-resolved formula-
tions come at a price of higher computational resources (in terms of both CPU memory and time).
Figure 13.5 shows the approximate computational resources required for attached boundary layers over
a distance of L (free shear flows are even more demanding in terms of computational resources). It can
be seen that even modest boundary Reynolds numbers of 106 require a substantial number of grid points
for DNS and LES approaches, as compared with RANS approaches (especially if the time-averaged flow
can be considered two-dimensional). In the following section, additional description is given with regard
to both time-averaged and eddy-resolved formulations.

13.1.3.2.1 Time-Averaged Formulations
For the category of RANS simulations, all the velocity components are separated into their steady and
fluctuating components, ui � u�i� � u�i , where u�i� represents a time-averaged quantity over a time period
much greater than τΛ. Application of this averaging quantity to the incompressible constant viscosity

Modeling 13-7

2.0

1.5

1.0

0.5

0.0
15 20 25 30

U/U∞
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

x /�

y
/�

2.0

1.5

1.0

0.5

0.0
15 20 25 30

U /U∞
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

y
/�

x /�

(a)

(b)

FIGURE 13.2 Different representations for a turbulent boundary layer, where 	 is the mean boundary layer
thickness, x the streamwise direction, and y normal to the wall showing: (a) a time-averaged (RANS) description
and (b) an eddy-resolved (DNS) description for one span wise plane at a single instant in time.
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(a) particle mean (time-averaged) diffusion where a steady particle concentration distribution is obtained and
(b) preferential concentration where an unsteady particle distribution is obtained.
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Navier–Stokes equation is shown in Table 13.1, where the u���i�u���j� term represents the transport of momen-
tum due to turbulent mixing. The primary aim of RANS models is to represent empirically the Reynolds-
stress terms (appearing in the source term of the momentum transport equations) using some of the
mean flow velocity features. Several of the recent developments in this field for both incompressible and
compressible flow are discussed by Vandromme (1997) and briefly overviewed below. The turbulence
models are generally classified into the traditional eddy viscosity models and the more advanced
Reynolds-stress closure models.

For the eddy viscosity models, u���i�u���j� is related to the mean velocity gradients and a mean turbulent
viscosity, the latter of which requires modeling and is typically several orders of magnitude higher than
the fluid viscosity. The eddy-viscosity models are generally classified according to the number of partial
differential transport equations, which must be solved (in addition to those for mean mass, momentum,
and energy conservation) to compute νf,t. These generally range from zero-equation (algebraic) models
where the turbulence is essentially assumed to be in a state of local equilibrium, to two-equation models,
to three-equation models where finite-rate production, diffusion, and dissipation processes are individu-
ally modeled. In all the cases, empirical coefficients (often several) are used to close the equations, and
these are obtained by “tuning” the model to some basic turbulent flow results. Therefore, the robustness
of turbulence models will always be limited to conditions for which it has been validated and empirically
calibrated, and there is no single “ideal” turbulence model.

For turbulent multiphase simulations, two-equation models (including k–ε, k–ω, and q–ω) have a dis-
tinct advantage, since they describe two independently varying properties of the turbulence; for example,
the turbulent kinetic energy (TKE) k and the turbulent dissipation ε. Modeling two independent turbu-
lence properties allows specification of a mean eddy integral length λ and eddy time-scale τΛ throughout
the flow. These two scales can be used to characterize particle diffusion using random walk approaches.

The Reynolds-stress closure models are inherently anisotropic and seek to avoid a gradient transport
approach to the turbulent stress tensor terms by employing individual equations for the individual
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FIGURE 13.5 Approximation of computational node requirements for RANS, LES, and DNS and hybrid
RANS–DNS approaches.
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turbulent stresses (and potentially the turbulent fluxes as well). The zeroth-order version of this model is
Rodi’s algebraic stress model, which supplements the k–ε transport equations with an anisotropic alge-
braic relationship (White, 1991). As such, it does not allow significant advantages over two-equation eddy
viscosity models in terms of sophistication. However, modern Reynolds-stress closure models employ
separate transport equations for each tensor component (six equations due to symmetry). This has the
obvious advantage of more directly obtaining the anisotropy of the Reynolds-stress tensor by allowing
varying states of nonequilibrium for each term. Since Reynolds-stress closure models are well suited to
the framework of particle diffusion computation in anisotropic turbulence, they may become increas-
ingly important as they mature in fidelity and convenience. Unfortunately, the large number of transport
equations results in a much more computationally intensive and complex CFD (Computational Fluid
Dynamics) solution with additional terms to be modeled. Of particular concern are the several third-
order (and fourth-order) stress terms, which require modeling not easily gleaned from experiments.
While some closure models have shown success for simple flows using heuristic arguments for these
terms, e.g., Speziale et al. (1991), a robust set of closure terms tested for several engineering flows has yet
to be developed (although the DNS techniques described below are expected to provide improved closure
models for such terms at lower Reynolds numbers). Because of these issues and the inability to incorpo-
rate preferential concentration, eddy-resolved formulations are becoming much more common for mul-
tiphase flow.

13.1.3.2.2 Eddy-Resolved Formulations
For the eddy-resolved simulations, there are quite a number of descriptions of the eddy structures. These can
be roughly arranged in order of increasing complexity, physical representation, and required computational
resources as follows (see also Figure 13.5).

Proper Orthogonal Decomposition (POD) models. These simulations employ a low-order construction
of the turbulent flow field, typically using spectral or pseudo-spectral functions (Joia et al., 1997), which
are tracked in time as 3D dynamical features. As such, they employ only a modest number of degrees of
freedom (as compared to full Navier–Stokes resolution) while simulating the large-scale nonlinear flow
physics. Unfortunately, POD models typically require a detailed realization (experiment or simulation) in
order to solve for the “best fit” of their lower-order dynamical system. Thus, they are  sometimes empir-
ical, i.e., they cannot quantitatively self-determine the continuous-flow vortex structures for a general set
of boundary and initial conditions. However, once a POD is constructed for a particular flow, it can be
reasonably rendered many times to test the transport of a variety of particle conditions.

Hybrid RANS–LES models. Several numerical treatments have emerged which attempt to treat a part of
the computational domain using a RANS formulation and on the other part with a LES formulation.
Among the first of such models was the DES methodology developed by Spalart (2000). The basic con-
cept was to allow for a one-equation RANS treatment in the attached boundary layer regions (where the
approach is known to be robust) and LES treatment in the separated and free-shear flow regions (where
the approach is known to be robust). This is achieved by using a wall distance to spatially separate the
RANS and LES regions. Several other models have been developed recently based on similar formulations.

Large Eddy Simulations (LES). The governing equations are obtained by a low-pass spatial filtering of the
Navier–Stokes equations such that all the velocity components are separated into their resolved (unfil-
tered) and unresolved (filtered) components. Using a notation similar to that used for the RANS
approach, the velocity components for the spatial filtering process are given as ui � u�i� � u�i , where some
modeling is required for the fluctuations that are at the subgrid level; for example, u���i�u���j�, which is the
velocity tensor of the unresolved fluctuations. Ideally, this spatial filtering is applied at sufficiently small
scales so that the filtered turbulence is at or below the inertial range and thus nearly homogeneous and
isotropic, such that Smagorinsky-type models can be reasonably employed. However, the inertial range
develops for only very high Reynolds number conditions (Tennekes and Lumley, 1972), such that spatial
filtering can be a complex phenomenon sometimes making it difficult to provide accurate and robust pre-
dictions of the subgrid turbulence. This problem can be effectively overcome in some flows by allowing
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high enough grid resolution, such that the subgrid component is not substantial, but this is not straight-
forward in wall-bounded flows where small-scale stresses are critical. The LES technique is perhaps the
most promising for low to moderate Reynolds number engineering flows, since, with proper care, it can
simulate complex separated flow in both the mean and rms statistics. For particle dispersion, the key
advantage of LES is the detailed spatio-temporal evolution of the unfiltered large-scale turbulent motions.
It should be noted that other variations of LES include very large eddy simulations (VLES), for which the
subgrid model is determined by the numerical grid diffusion and RANS-type turbulent viscosity. While
the representation of the subgrid scale turbulent stresses of VLES is not formulated based on a rigorous
evaluation from the filtered fluid equations of motion, these models can reproduce many features of tur-
bulent flow, since the subgrid turbulence is often not critical to the overall flow development (especially
for free-shear flows).

Direct Numerical Simulations (DNS). The governing equations in this case are the full time-dependent
Navier–Stokes equations. Typically, the high resolution required for grid-independent solutions results in
low Reynolds numbers, simple geometries, and use of spectral methods if flow discontinuities (shock
waves, concentration fronts, etc.) are not critical to the flow physics. The primary advantage of DNS is
that all the eddy structures are duly resolved and no (empirical) turbulence modeling is necessary.
However, for most engineering flows, DNS computations are simply too computationally intensive.

13.1.4 Overview of Particle-Phase Flow Methodologies

Various treatments of the particle field (composed of solid particles, droplets, or bubbles) can be employed.
As mentioned earlier, these can include an Eulerian or a Lagrangian reference frame. The Eulerian approach
can be further classified into mixed or point-force approaches, while the Lagrangian approach can be fur-
ther classified into point-force or resolved-surface approaches. Table 13.2 shows the various treatments of
the particle and continuous-phase velocity fields without any averaging or mass transfer. In this table, the
Eulerian treatments describe the particle concentration through a volume fraction αp, which is the fraction
of the computational volume composed of particles, and where the volume fraction taken up by the con-
tinuous phase is αf, such that αp � αf � 1. When a Lagrangian treatment is used for the particles, the two-
way coupling effect on the continuous phase is usually related to the particle number density np, which is
the number of particles per unit volume.These particle concentration variables can be related to the average
particle volume Vp, such that αp � npVp.

The particle phase has two sets of key classifications. The first is based on the reference frame for the
particle properties and is classified as either a Lagrangian or an Eulerian treatment. The second is based

Modeling 13-11

TABLE 13.2 Forms of the Incompressible Unsteady Navier–Stokes Momentum Equations 

Dispersed-Phase Approach Dispersed-Phase Momentum Continuous-Phase Momentum

Eulerian with ∂(ρmumi)/∂t � ∂(ρmumiumj)/∂xj � ρmgi � ∂p/∂xi � µm∂2umi / ∂xj ∂xj

mixed-fluid treatment where ρm�αpρp�αfρf applied throughout the domain

Eulerian with ρp∂(αpvi)/∂t � ρp∂(αpvivj)/∂xj � ρf ∂(αf ui)/∂t � ρf∂(αf uiuj )/∂xj �

point-force treatment αp ρp gi � αp∂(p � pcoll)/∂xi � αfρf gi � αf∂p/∂xi �

αp µf ∂2vi /∂xj ∂xj � αp Fint,i /Vp αf µf ∂2ui /∂xj
2 � αp Fint,i /Vp

applied throughout the domain applied throughout the domain

Lagrangian with mp∂vi /∂t � Fbody,i � Fsurf,i � Fcoll,i ρf∂(αf ui)/∂t � ρf∂(αf ui uj)/∂xj �

point-force where Fsurf,i � FDi � Li � Ai � Si � Hi αfρf gi � αf∂p/∂xi �

treatment applied along particle trajectories αf µf ∂2ui /∂xj
2 � npFint,i

applied throughout the domain

Lagrangian with mp∂vi /∂t � Fbody,i � Fsurf,i � Fcoll,i ρf ∂ui /∂t � ρfuj ∂uj /∂xj �

resolved-surface where Fsurf,i � ∫[� p nj � 
ij)] nj dAp ρf gi � ∂p/∂xi � µf∂2ui /∂xj
2

treatment applied along particle trajectories applied outside of particle volume

Note: In the above, np is the number density of particles per unit volume of mixed fluid, Fint,i is the interphase hydrodynamic force
acting on the particles, and pcoll is the particle collisional pressure.
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on the treatment of the surface forces on the particle and is classified as either a point-force or a resolved-
surface treatment. These two sets of classifications will be discussed in more detail.

For the reference frame, the Lagrangian method is sometimes referred to as the discrete method, since
it assumes that each particle (or a group of particles) is represented as an individual identity (as opposed
to the continuum description for the Eulerian method). For Lagrangian particles, the properties (such as
velocity and temperature) are updated along the path of an individual (or cloud of) particles, while in the
Eulerian method, the particle properties are averaged in a computational volume, which is generally on a
convenient stationary (Eulerian) grid, as demonstrated in Figure 13.6.

For the treatment of the surface forces, the point-force treatment represents the flow over the particle
with empirical and theoretical treatments (e.g., specifying a drag coefficient) to obtain the force on the par-
ticle. For the resolved-surface treatment, the fluid dynamics (e.g., pressure and shear stress distributions)
are fully resolved over the entire particle’s surface and then integrated to obtain the overall hydrodynamic
forces. Hence, for the resolved-surface treatment, high spatial resolution of the continuous phase is thus
required over the particle surface. Therefore, this method is sometimes called “direct simulation.” On the
other hand, the continuous-flow grid scale can be course with respect to particle size for the point-force
approach (see Figure 13.7), such that it is much less demanding in terms of computational resources.

13.1.4.1 Lagrangian Approaches: Point-Force Versus Resolved-Surface Treatment

The classification of point-force vs. resolved surface is considered in terms of the Lagrangian equation of
motion for the particle momentum (although the same differences are found for an Eulerian approach
to the particle equations of motion).

13-12 Multiphase Flow Handbook
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FIGURE 13.6 Comparison of Eulerian and Lagrangian particle velocity fields.
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For the point-force approach coupled with the Lagrangian reference frame, the fluid or particle is
commonly described at a single point that moves at its own (independent) velocity; hence, this approach
is often called a discrete element approach, i.e., each particle is treated individually, but with a pointwise
representation. If a point-force approximation is used, individual particle trajectories are computed in a
Lagrangian-sense (i.e., with ordinary differential equations [ODEs] based on the moving particle loca-
tion), while the continuous-phase flow is typically treated throughout in an Eulerian sense (i.e., with
PDEs based on a fixed computational grid). For a large number of particles, computational “parcels” can
be used where each parcel represents a cloud of many particles with the same characteristics. The size of
the parcel cloud should be less than the continuous-phase local grid resolution (∆x).

For dense flows with the Lagrangian point-force technique, every particle is ideally considered and the
possible particle–particle reflections are numerically monitored and then modeled using various collision
models. A collision model for smooth solid elastic spheres is reasonably straightforward using conservation
of momentum and energy, but finite energy losses are usually important to be considered, using coefficients
of restitution and friction. Incorporation of a large number of particles or particles with nonspherical
shapes substantially complicates particle collision detection and momentum interaction, hence empirical
probabilistic models are needed (Crowe et al., 1998).

If a resolved-surface approach is used, the detailed flow around each particle must be solved to a high
resolution. Then, the flow solution can be numerically integrated over the surface to obtain the net
momentum interaction of the fluid on the particle. Thus the Lagrangian method updates the particle
position based on this integrated interaction. If the particle rotation is allowed, a torque equation can be
used to determine the particle angular velocity. The primary drawback of the resolved-surface technique
is that the computational requirements of many continuous-fluid grid points around each particle, such
that simulation of many (e.g., hundreds or thousands of) particles will generally be impractical on even
the most advanced computers.

To highlight the differences between the point-force and the resolved volume approaches, consider the
following dynamic equation for a particle, for which v is the velocity at the particle centroid (xp) and mp

the particle mass:

mpdv/dt � Fbody � Fsurf � Fcoll

Modeling 13-13

• Describes particle volume−interface
as part of continuous-fluid solution.

• Ideal for complex particle shapes. 
• Requires high CPU per particle.

• Neglects particle surface effect on 
  the continuous-fluid grid and flow. 

• Ideal for many particles. 
• Requires models for drag, lift, etc.

(a) (b)

FIGURE 13.7 Different representations for particle treatment where shaded area represents the particle
(where d is the effective diameter) and the grid represents the computational resolution for the continuous phase
solution (where ∆x is the effective cell resolution): (a) point-force representation (d � ∆x) and (b) resolved-
surface representation (∆x �� d).
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In this formulation, the description of the particle equation of motion can be given as an ODE along the
particle path. The LHS represents the particle mass times the acceleration of the particle along the parti-
cle path. The first term on the RHS (Fbody) represents the forces directly proportional to the particle mass,
for example, gravitational forces, while the second term (Fsurf) represents the fluid dynamic surface forces
on the particle, which are proportional to the surface area, and the third term (Fcoll) represents the forces
due to particle–particle or particle–wall collisions.

The body force expression is typically the simplest (if electromagnetic and other body forces are neglected)
as it is based on gravitational forces. The resulting expression for the body force of a particle sphere is

Fbody � gmp � gρpVp

where Vp is the particle volume and ρp the volume-averaged density of the particle. The particle volume
for spherical shapes can be written as Vp � πd3/6, but this equation still remains valid for nonspherical
objects as long as d is interpreted as the equivalent diameter based on the particle volume.

As mentioned above, the surface force (Fsurf) can be treated with two fundamentally different
approaches: the resolved-surface approach and the point-force approach. The choice is often based on
computational convenience for a given multiphase flow system.

In the resolved-surface (direct simulation) approach, the surface force is determined by integrating the
pressure and fluid dynamic shear stress and is shown below in tensor notation as

Fsurf,i � �[�p � µf(∂ui/∂xj � ∂uj/∂xi)]nj dAp

where Ap is the particle surface area and nj the j projection of the normal unit vector outward from the sur-
face. No specific decomposition of lift, drag, or other surface force effects are needed in this formulation,
since all these effects are directly incorporated by the above integration, and thus no limiting assumptions
of particle shape, particle Reynolds number, particle or flow acceleration, flow gradients, etc., are required
for this formulation. Note that buoyancy effects, which are based on the hydrostatic pressure gradients, are
naturally included in this formulation if the gravity force is part of the continuous-phase solution for ui

and p (as discussed in the previous section). The resolved-surface approach allows for the details of the
fluid pressure and shear stress to be integrated over the particle surface and avoids empiricism associated
with the prescription of fluid dynamic forces.

In the case of a fluid particle, such as a droplet, the interior fluid dynamics may also be resolved. This
may be done with a Lagrangian approach (e.g., internal particle domain is given body-fitted coordinates
that translate with the particle movement) or an Eulerian approach (e.g., volume-of-fluid method or level
set method). The former is better for nondeforming particles where high accuracy of the interface dis-
continuity is desired, which the latter is more efficient in terms of particle breakup or coalescence. In
either of resolved-surface methods, the spatial grid resolution for ui in the region of the particles must be
fine enough to allow description of the detailed stresses around the particle, e.g., the grid scale must 
be small compared with the particle diameter (∆x �� d) as shown in Figure 13.3a. The resolved-surface
approach is the most desirable in terms of accuracy as it allows the most physically realistic surface force
methodology; however, it is also the most computationally intensive per unit particle. Hence, the
resolved-surface technique is only reasonable when there is a single or modest number of particles in the
computational domain.

If the number of particles in the simulation is too high for the given computational resources, then the
point-force technique can be used as a single equation can be used to describe the force on the particle
without actually resolving the flow around the particle surface (such that one may employ ∆x � d, see
Figure 13.3b).

For a point-force treatment, the force interaction between the fluid and particles is not computationally
integrated over the particle directly, and instead, a surface-averaged force is employed, which is based on
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analytical or empirical force expressions. In general, a surface-averaged force is a linear combination of spe-
cific forces, such as drag FD, lift L,added mass A, stress gradient S, history H, etc.

Fsurf � �
K

k�1

Fsurf,k � FD � L � A � S � H � ….

where coupling between these K number of components is generally neglected. The particle hydrody-
namic surface forces are generally related to the continuous-fluid properties extrapolated to the particle
centroid, (Xp) while neglecting the local influence of the particle . The continuous-fluid velocity and vor-
ticity at the particle centroid defined in this way can be denoted as u@p and ω@p.

The definition of hypothetical continuous-fluid properties at the particle centroid is a key assumption
for the point-force treatment and allows significant computational convenience. Thus, this condition
assumes that the continuous-fluid velocity is defined everywhere, i.e., u@p corresponds to u(xp). If the
continuous-flow characteristics are spatially uniform in instances where the particle presence is not con-
sidered (i.e., u without particles would be everywhere u∞), then u@p � u∞ is consistent with the proper
limiting value. It should be noted that if there is a nonlinear flow in the region of the particle,

Modeling 13-15

Each particle path 
described by an ODE:

d( )/dt = RHS 

Each grid node described by
a continuous-fluid PDE:

∂( )/∂t = RHS

Particle velocity component at each node 
described by a dispersed-phase PDE:

∂( )/∂t  = RHS

Increasing
Np

(a)

(b)

(c)

FIGURE 13.8 Comparison of particle treatments for: (a) the resolved surface approach employing body-
fitted computational nodes (with a Lagrangian description of particle motion if moving); (b) the Lagrangian
approach defined on particle centroids (paths can cross); and (c) the Eulerian approach defined on Eulerian
computational nodes.
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then employing a velocity from a single point may not be sufficient to characterize the surrounding 
conditions and that some averaging in the vicinity of the particle may be more appropriate. Thus the 
variations of u@p in the local vicinity of the particle (neglecting the velocity variations caused by the pres-
ence of the particle) are assumed to be weak. Based on the above, a relative particle velocity can be then
defined as

w � v � u@p

This relative velocity can be used to define the direction of the hydrodynamic surface forces, for example,
the drag force is defined as a value opposing w. Similarly, the lift force L is defined perpendicular to w and
Ωrel (the relative rotation of the particle with respect to the fluid):

Ωrel � Ωp � ω@p

where ω@p is the continuous-fluid vorticity extrapolated to the particle centroid, while neglecting the
influence of the particle. This rotation can also be used to track the angular momentum of the particles
(Crowe et al., 1998).

A well-known example of the point-force description for linear momentum particle dynamics is the
Maxey–Riley (1983) equation, which is derived analytically for the case of incompressible creeping flow
(i.e., viscous terms, dominate convective terms, such that the latter can be linearized) around a single solid
spherical particle far from any boundaries or other particles. The creeping flow assumption is defined as
Rep �� 1, where Rep � ρf d|w|/µf. If the free-stream velocity gradients are assumed to be weak when con-
sidered on the scale of the particle diameter (e.g., particle diameter smaller than the Kolmogorov length
scale), the Faxen forces (which are proportional to ∇2u@p) and the lift forces (which can arise from fluid
shear and particle rotation) can be neglected. If one also neglects mass and heat transfer as well as any tem-
poral discontinuities in u, the resulting creeping-flow point-force terms are as follows (see Section 13.1.4):

FD �� 3πdµf w

A �� ρfVP(dv/dt � Du@p/Dt)

S � ρfVpDu@p/Dt � gρfVp

and

H �� d 2(πρf µf)
1/2�t

0
� � dτ

The drag force (FD) assumes a no-slip condition at the particle surface. While this condition is satisfied
for a solid particle (as long as the flow field can be considered as a continuum), it may also be reasonable
for a small droplet or a bubble, if there is a substantial contamination on the surface rendering it nearly
immobile. The fluid stress force S results from the stress arising from the undisturbed fluid stress, and this
gives two components: the first term is proportional to the Lagrangian fluid acceleration (Du@p/Dt),
which can be nonzero even in steady flow, and the second term is proportional to the hydrostatic pres-
sure gradient, which in turn can be written as proportional to the displaced mass (ρfVp) and hence is
often called the buoyancy force. The added mass term (A) is slightly modified from the original
Maxey–Riley equation as suggested by Maxey et al. (1997). The last term is the history force and assumes
negligible relative velocity acceleration at t � 0, although Kim et al. (1998) give a proposed correction if
this is not the case. Mei et al. (1991) noted that the above history force expression (H) is not valid for long
times or noncreeping flow conditions. Thus, this equation invokes several assumptions.

dw/dτ
�
�t��� τ�

3
�
2

1
�
2

1
�
2
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Under certain conditions, some of the terms become secondary or tertiary and thus can be neglected in
the particle dynamic equations. For example, the history force terms are often neglected since these correc-
tions are typically small, numerically cumbersome, and not well posed, except for creeping-flow conditions
of simple particle shapes. Furthermore, the case of very light particles (e.g., gas bubbles in a liquid where
ρp �� ρf) indicates that terms associated with ρp (e.g., Fbody and dv/dt) can be reasonably neglected under
several (but not all) circumstances. By neglecting lift, yields the following Stokesian point-force expression
for very light particles.

ρfVpdv/dt �� 6π dµfw � 3ρfVpDu@p/Dt � 2gρfVp

� 3d2(πµf ρf)
1\2�t

0
� � dτ � Fcoll, ρp �� ρf and Rep �� 1

For very heavy particles compared with the continuous-flow (e.g., drops or solid particles in a gas where
ρp��ρf), many of the terms associated with ρf (e.g., L, A, S, and H) can be reasonably neglected under
several (but not all) circumstances. Neglecting these terms, the Stokesian point-force expression for very
heavy particles becomes

ρpVpdv/dt �� 3πdµfw � gρpVp � Fcoll, ρp �� ρf and Rep �� 1

There are a wide variety of other point-force equations (with both analytical and empirically derived
force terms) that have been reported by researchers in order to take into account the particle aspects
(such as interface conditions, nonspherical shapes, rotation, deformability, interior fluid motion, and
mass transport) and the flow aspects (such as compressibility, turbulence, shear, and strain) as well as the
presence of other particles or surfaces. In particular, empirical and semiempirical expressions are often
used for conditions, that do not correspond to creeping flow past a simple shape. These empirical expres-
sions are generally limited to specific regimes and may be subject to experimental uncertainties and
bias.The various particle dynamic equations that are employed in the multiphase community are thus tai-
lored to specific situations (based on the physics of interest, test conditions, and computational resources)
and as such the particle equations appearing in the literature are extremely numerous. This nonunique-
ness of multiphase flow equations indicates that there is no single standard equation that should be
applied to all the conditions, and thus one must choose the appropriate equations as carefully as one
chooses the appropriate numerical solution techniques.

13.1.4.2 Eulerian Approaches: Mixed-Fluid Versus Separated-Fluid Formulations

The Eulerian description applied to the dispersed phase generally assumes the characteristics of the parti-
cles (e.g., velocity or temperature) can be described as a continuum. This assumption allows the dispersed
phase to be treated with the same discretization and similar numerical techniques as those used for the-
continuous phase. This is especially important when two-way coupling effects are present and can reduce
the overall computational costs. The Eulerian treatment combined with a point-force assumption assumes
that there are several particles per control volume, which can be described by a local number density (np)
in the proper limit. To handle a variety of particle properties within a control volume, the particle charac-
teristics can also be discretized using the multigroup approach, where the number density becomes a vec-
tor (npi), such that each group is identified by a particular characteristic range. For example, polydisperse
particles can be separated into various bins, each with a specific particle diameter range (Crowe et al.,
1998). In this case, transport equations are needed and computed for each Eulerian particle group.

The Eulerian techniques can be further subdivided into mixed- and separated-fluid approaches.
The mixed-fluid approach assumes that the particles and the continuous phase are in local kinetic and
thermal equilibrium, i.e., the relative velocities, and temperatures between the two phases are small in
comparison to variations in the overall flowfield that are predicted. This approximation is the mixed-fluid
method and distinguishes only the mass fractions of the particle and fluid phases in a mixed volume.

dw/dτ
�
�t��� τ�
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It has also been termed the locally homogeneous flow (LHF) by Faeth (1987). Thus, in this approach, the
relative velocity (between the particle motion and the continuous-phase motion) is assumed to be negli-
gible, so that one has

um � u � v (w � 0) for mixed-fluid treatment

Similarly, the temperature difference between the two phases is assumed to be negligible.
The use of the mixed-fluid approximation results in a single set of momentum conservation equations for

the flow mixture (as opposed to one set for the continuous phase and one set of the dispersed phase). For
example, the resulting equations of motion for a fluid mixture with a single velocity and temperature are
shown in Table 13.2, where the particle volume fraction, αp, is the ratio of volume occupied by the particle to
the volume of the mixture of particles and the continuous phase, and where the continuous-phase void frac-
tion is similarly defined, such that αp � αf � 1. This approximation allows strong numerical simplicity and
can generally handle both dispersed and dense conditions. In addition, since it is based on volume averaging
of both phases, the exact size and shape of the discontinuous phase is not needed for the flow simulation.

The separated-fluid approach for Eulerian description of the particle phase with the point-force
assumption assumes that both the carrier fluid and the particles comprise two separate, but intermixed,
continua. Therefore, two sets of momentum equations are required for a two-phase flow: one for the con-
tinuous phase and the other for the dispersed phase. The separated fluid method is also often called the
two-fluid method, since two sets of PDEs and two sets of velocity fields are required (one for each phase):

w � 0 for two-fluid treatment

These equations will in general be coupled (e.g., one-way coupled means that the particle equations will
depend on solution of the continuous-phase equations, and two-way coupled means that both sets of
equations must be solved in companion).

In the coupling of these equations, the separated-fluid approach accounts for (and thus must formulate)
the relative interphase mass, velocity, and temperature differences.

The interphase expressions that relate the mass, momentum, and energy of the different phases are then
based on a point-force description. For example, the Eulerian separated-fluid PDEs with a point-force
approach for the two phases assuming constant density, and viscosity for the continuous fluid may be rep-
resented as listed in Table 13.2. Alternatively, a probability distribution function (PDF) approach can be
applied to the Eulerian equations to give the evolution of the ensemble-averaged properties. The resulting
transport equations can take into account many of the effects incorporated into conventional Eulerian
approaches, including near-wall behavior, particle evaporation, etc.

A key assumption regarding Eulerian treatments described above is that the particle concentration
(e.g., αp) is a variable, which is continuously differentiable, such that the PDE description is appropriate
as given in Table 13.2. This is termed the particle-phase continuum assumption by Drew and Prassman
(1998). From a deterministic point of view, this assumption is physically reasonable only considering
control volume lengths that are much larger than the average particle spacing (∆x �� Λp�p), i.e., the dis-
persed phase equations can be considered as a continuum when there are many particles within a single
computational cell–volume so that the concentration variations do not induce significant discontinuities
(as shown in Figure 13.9). In contrast, if only two particles are present in a computational cell and have
different velocities, then refinement or particle convection which eliminates one of the particles from the
cell, can cause a physically discontinuous change in the cell-averaged particle velocity v. Therefore,
Eulerian approaches are only deterministically reasonable when large amounts of particles are contained
within each cell, and are not well posed for successive grid refinements.

This requirement of many particles per cell can be removed when a probabilistic point of view is considered
based on some averaging. As such, a computational cell with 0.1 computational particles in its volume is equiv-
alent to a 10% probability of a particle occurring in the volume at a given time, such that the Eulerian particle
properties (αp, v, etc.) can be considered as the average of all possible realizations (Drew and Prassman, 1998).
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However, the computational volume, it must still be much greater than the particle diameter (∆x �� d) for the
Eulerian continuum approach to be reasonable, if one includes a point-force approximation.

13.1.4.3 Lagrangian Versus Eulerian Point-Force Approaches

Since a variety of descriptions and treatments have been used for multiphase flows, the choice of which
numerical approach to employ depends on the particle and fluid physics that are relevant and of interest
(Loth, 2000). As discussed above, one of the key distinctions between the various multiphase numerical
methods is that of Lagrangian vs. Eulerian representation of the particle characteristics (which include
velocity, concentration, diameter, etc.).

Let us now compare the pros and cons of Lagrangian vs. Eulerian approaches for the point-force treatment
of the particle fields. Lagrangian approaches are typically more physically robust if the following flow prop-
erties are of interest and importance: particle reflection from surfaces, particle breakup, particle–particle
interactions (collisions and coalescence), counterflowing particles, and turbulent diffusion. In addition, non-
physical numerical diffusion of Eulerian particle density in regions of high gradients can be eliminated by
employing Lagrangian particles due to their pointwise spatial accuracy. The Lagrangian method also allows
particles to cross over the wake of other particles (as shown in Figure 13.8b), whereas steady-state Eulerian
treatments do not allow this phenomenon. In addition, if the particles within the computational domain are
not all of the same size or shape, the Lagrangian technique can employ statistical representations of the par-
ticle distributions to incorporate these effects. As the number of physical particles increases, such that indi-
vidual tracking is prohibitive and collisions occur, the particles can be treated in groups for which probability
of collisions are modeled and incorporated. Such techniques can use PDFs in simple homogeneous flows with
simple geometries or Monte–Carlo methods, which employ random-number generators for more complex
flows and domains. The latter is often called a random-walk approach and has been very successful for mean
diffusion in homogenous turbulence, and has also shown some success in anisotropic nonhomogeneous tur-
bulence (Bocksell and Loth, 2001).

In contrast, the Eulerian particle-phase approach describes particle properties as part of a continuum
throughout the computational domain and has several distinct advantages. For particles distributed
throughout the computational domain (instead of locally concentrated), the Eulerian description typi-
cally requires fewer degrees of freedom, i.e., less Eulerian nodes than Lagrangian nodes, especially if a sto-
chastic diffusion model is employed for the Lagrangian case. Lagrangian methods can also be problematic
if the parcel volume (ΩP) is larger than the fluid averaging volume, whereas Eulerian methods have no
equivalent restriction. In addition, an Eulerian approach allows both phases to be handled with a consis-
tent numerical scheme and a consistent numerical grid. This discretization coincidence for an Eulerian
treatment of the particles becomes a distinct accuracy advantage when one attempts to compute the
effects of the particles on the continuous fluid for two-way coupling (Shrayber, 1979). For example, Sivier
et al. (1996) examined Lagrangian and Eulerian representations of the particle field with respect to the
prediction of shock attenuation of the continuous phase, and found that the Eulerian particle treatment
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FIGURE 13.9 A two-dimensional description of discrete particles in two adjoining computational cells of an
Eulerian grid where (∆x �� Lp�p) and the continuum approximation can be employed.
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proved significantly more efficient (for the given accuracy levels) in terms of both computational mem-
ory and time.

13.1.4.4 Interphase Coupling

For either Lagrangian or Eulerian treatments, it should be noted that the two-way coupling requires
description of the particle interphase coupling. This interaction occurs through the interface stresses
between the two phases on the surface of the particle. In particular, the interphase coupling force (Fint,i)
is the force acting on a single particle due to pressure and viscous stresses caused by the disturbed sur-
rounding flow, owing to the boundary conditions at the bubble surface (Druzhinin and Elghobashi,
1998). It is equal in magnitude and opposite in direction to the hydrodynamic particle force acting on the
continuous phase (�Fint,i). The interphase coupling force is effectively the hydrodynamic surface forces
minus the contributions from the undisturbed flow stresses (i.e., minus the stress gradient forces, which
occur independent of the presence of the partice):

Fint � Fsurf � S � FD � L � A � H

For two-way coupling, the hydrodynamic force acting on a continuous-fluid computational volume is
then �npFint.

For very heavy particles (ρp �� ρf), the interphase force is often simplified to include only the particle
drag (neglecting lift, added mass, and history effects, since they are proportional to ρf), i.e., Fint � FD. For very
light particles (ρp �� ρf) with negligible collisions, the particle acceleration and body force can be neglected
(as discussed in Section 13.1.4) θ, such that the interphase force can be conveniently written as Fint ��S
(Druzhinin and Elghobashi, 1998; Xu et al., 2002). In these two limits, the interaction force description is
comparatively simple, which is particularly helpful for the Eulerian point-force treatment (see Table 13.2).

As the number of particles increase collisions become more important, leading to dense flows
(Gidaspow, 1994). The key aspect for these flows is the proper incorporation of the particle–particle
effects on the particle-phase fluid dynamics. In particular, the particle collision result in an effective
stresses, which should be incorporated into the particle transport equation. These can be modeled with
particle-phase viscosity, particle-pressure, granular temperature, etc., via a kinetic theory. For example,
the Eulerian dense particle treatment will typically employ a gradient of the collisional pressure (pcoll) to
capture this effect (see Table 13.2), while particle–particle momentum interactions are described via Fcoll

for an equivalent Lagrangian particle treatment. Eulerian formulations for the particle-phase generally
model the integrated effect, and thus tend to be more empirical. However, such Eulerian formulation
are independent of the number of particles, whereas the Lagrangian techniques become increasingly
computationally intensive as the number of particles increases. Therefore, Eulerian formulation are most
practical for collision-dominated conditions. (Crowe et al., 1998).

13.2 Direct Numerical Simulations

G. Tryggvason, Y. Tsuji, and S.E. Elghobashi
Direct simulation refers to the direct solution of the flow equations describing the two-phase mixture. Bubble
and droplet motion are addressed first in which the deformation of the bubbles and/or droplets is included.
The second section introduces the discrete element approach in which the details of particle-particle contact is
addressed. The third section shows the application of the direct simulation of turbulence in fluid-particle flows.

13.2.1 Bubble and Droplet Motion and Deformation

G. Tryggvason

Understanding the dynamics of multiphase flows is of critical engineering and scientific importance and
the literature is extensive. Much of what we know has, however, been obtained by experimentation and
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scaling analysis. From a mathematical point of view, multiphase flow problems are notoriously difficult. In
addition to the nonlinearity of the governing equations, the location of the phase boundary must generally
be found as a part of the solution. Exact analytical solutions therefore exist only for the simplest of prob-
lems such as the steady state motion of bubbles and drops in Stokes flow, linear inviscid waves, and small
oscillations of bubbles and drops. Experimental studies of multiphase flows are, however, not easy. For many
flows of practical interests the length scales are small, the time scales are short, and optical access to much
of the flow is limited. The need for numerical solutions of the governing equations has therefore been felt
by the multiphase research community since the origin of computational fluid dynamics in the late 1950s
and early 1960s. Although much has been accomplished, simulations of multiphase flows have remained far
behind  homogeneous flows where direct simulations have become a standard tool in turbulence research.
Considerable progress has, however, been made in the last few years and it is clear that DNS will play a lead-
ing role in multiphase flow research in the next decade. Below we will first review briefly the various numer-
ical techniques developed for computations of multiphase flows and then discuss results for disperse flows.

13.2.1.1 Simple Flows (Re � 0 and 
)

In the limit of high and low Reynolds numbers, it is sometimes possible to simplify the flow description
considerably by either ignoring inertia completely (Stokes flow) or by ignoring viscous effects completely
(inviscid, potential flow). Most success has been achieved when the particles are undeformable spheres
where in both these limits, it is possible to reduce the governing equations to a system of coupled ODES
for the particle positions. For Stokes flow, the main contributor is Brady and collaborators (see Brady and
Bossis (1988) for a review of early work), who have investigated extensively the properties of suspensions
of particles in shear flows, and other problems. For inviscid flows, see Sangani and Didwania (1993) and
Smereka (1993) for simulations of the motion of many bubbles in periodic domains.

For both Stokes flows as well as potential flows, deformable bubbles and drops can be simulated with
boundary integral techniques. One of the earliest attempts was due to Birkhoff (1954), where the evolu-
tion of the interface between a heavy fluid initially on top of a lighter one (the Rayleigh–Taylor instabil-
ity) was followed by a method where both fluids were assumed to be inviscid and irrotational, apart from
baroclinic generation of vorticity at the interface. This allowed the evolution to be reformulated as an
integral equation along the boundary between the fluids. Both the method as well as the problem later
became a stable of multiphase flow simulations. A boundary integral method for water waves was pre-
sented by Longuet-Higgins and Cokelet (1976) and used to examine breaking waves. This paper was
enormously influential and was followed by a large number of very successful extensions and applica-
tions, particularly for water waves (Baker et al., 1982; Vinje and Brevig, 1981; Schultz et al., 1994; and oth-
ers). Other applications include the evolution of the Reyleigh–Taylor instability (Baker et al., 1980), the
growth and collapse of cavitation bubbles (Blake and Gibson, 1981; Robinson et al., 2001), the generation
of bubbles and drops due to the coalescence of bubbles with a free surface (Oguz and Prosperetti 1990;
Boulton-Stone and Blake, 1993), the formation of bubbles and drops from an orifice (Oguz and
Prosperetti, 1993), and the interactions of vortical flows with a free surface (Yu and Tryggvason, 1990),
just to name a few. All boundary integral (or boundary element, when the integration is element based)
methods for inviscid flows are based on  following the evolution of the strength of surface singularities in
time by integrating a Bernoulli-type equation. The surface singularities give one velocity component and
Green’s second theorem yields the other, thus allowing the position of the surface to be advanced in time.
Different surface singularities allow for a large number of different methods (some that can only deal
with a free surface and others that are suited for two-fluid problems) and different implementations mul-
tiply the possibilities even further. For an extensive discussion and recent progress see Hou, et al. (2001).
Although continuous improvements are being made and new applications continue to appear, two-
dimensional boundary integral techniques for inviscid flows are by now – a quarter century after the pub-
lication of the paper by Longuet–Higgins and Cokelet – a fairly mature technology. Fully
three-dimensional computations are, however, still rare. Chahine and Duraiswami (1992) have computed
the interactions of a few inviscid cavitation bubbles and Xue et al. (2001) have simulated a three-dimen-
sional breaking wave.
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The key to the reformulation of inviscid interface problems in terms of a boundary integral is the lin-
earity of the field equations. In the opposite limit, where inertia effects can be ignored and the flow is dom-
inated by viscous dissipation, the Navier–Stokes equations become linear (Stokes flow) and it is also
possible to recast the governing equations into an integral equation on a moving surface. Boundary inte-
gral simulations of unsteady two-fluid Stokes problems appear to have originated with the work of
Youngren and Acrivos (1976) and Rallison and Acrivos (1978) who simulated the deformation of a bub-
ble and a drop, respectively, in an extensional flow. Subsequently, several authors have examined a number
of problems. Pozrikidis and collaborators have examined several aspects of the suspension of drops, start-
ing with a study by Zhou and Pozrikidis (1993) of the suspension of a few two-dimensional drops in a
channel. Simulations of fully three-dimensional suspensions have been done by Loewenberg and Hinch
(1996) and Zinchenko and Davis (2000). The method has been described in detail in the book by
Pozrikidis (1992)and Pozrikidis (2001), gives a very complete summary of the various applications.

13.2.1.2 Finite Reynolds Number Flows

For intermediate Reynolds numbers, it is necessary to solve the full Navier–Stokes equations. Nearly 10
years after Birkhoff ’s effort to simulate the Rayleigh–Taylor problem by a boundary integral technique,
the Marker-And-Cell (MAC) method was developed at Los Alamos by Harlow and collaborators. In
Harlow and Welch (1965) the method was introduced and two sample computations of the so called dam
breaking problem shown. Several papers quickly followed: Harlow and Welch (1966) examined the
Rayleigh–Taylor problem and Harlow and Shannon (1967) studied the splash when a drop hits a liquid
surface. As originally implemented, the MAC method assumed a free surface so there was only one fluid
involved. This required boundary conditions to be applied at this surface and the fluid in the rest of the
domain to be completely passive. The Los Alamos group quickly realized, however, that the same method-
ology could be applied to two-fluid problems. Daly (1969) computed the evolution of the
Rayleigh–Taylor instability for finite density ratios and Daly and Pracht (1968) examined the initial
motion of density currents. Surface tension was then added by Daly (1969) and the method again used
to examine the Rayleigh–Taylor instability. The MAC method quickly attracted a small group of follow-
ers that used it to study several problems: Chan and Street (1970) applied it to free surface waves, Foote
(1973, 1975) simulated the oscillations of an axisymmetric drop and the collision of a drop with a rigid
wall, and Chapman and Plesset (1972) and Mitchell and Hammit (1973) simulated the collapse of a cav-
itation bubble. Although the MAC method was designed specifically for multifluid problems (hence the
M for Markers!) it was also the first method to successfully solve the Navier–Stokes equation using the
primitive variables (velocity and pressure). The staggered grid used was a novelty and today it is a com-
mon practice to refer to any method using a projection based time integration on a staggered grid as a
MAC methods.

The next generation of methods for multifluid flow evolved gradually from the MAC method. It was
already clear in the Harlow and Welch (1965) paper that the marker particles could cause inaccuracies,
and among the number of algorithmic ideas explored by the Los Alamos group, the replacement of the
particles by a marker function soon became the most popular alternative. Thus the volume-of-fluid
(VOF) method was born. VOF was first discussed in a refereed journal article by Hirt and Nichols (1981),
but the method apparently originated a few years earlier (DeBar, 1974; Noh and Woodward, 1976). The
VOF method has been extended in various ways by a number of authors. It has also been distributed
widely as the NASA SOLA-VOF code and as FLOW3D from Fluid Sciences Inc. In addition, many com-
mercial computational fluid dynamics codes now include the option of simulating free surface or multi-
phase flows using the VOF method. For a review of VOF methods, see Scardovelli and Zaleski (1999).
Other methods, based on similar ideas but advecting the marker function in a different way include the
level set method (reviewed by Osher and Fedkiw, 2001; Sethian, 2001) and the CIP method of Yabe and
collaborators (see Yabe et al., 2001, for a review).

While the MAC methodology and its successors were being developed, other techniques were also
being explored. Hirt et al. (1970) describe one of the earliest use of structured boundary fitted Lagrangian
grids. This approach is particularly well-suited when the interface topology is relatively simple and no
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unexpected interface configurations develop. In a related approach, a grid line is aligned with the fluid
interface, but the grid away from the interface is generated using standard grid generation techniques
such as conformal mapping or other more advanced elliptic grid generation schemes. The method was
used by Ryskin and Leal (1984), to compute the steady rise of buoyant, deformable, axisymmetric bub-
bles. Ryskin and Leal assumed that the fluid inside the bubble could be neglected, but Dandy and Leal
(1989) and Kang and Leal (1987) extended the method to two-fluid problems and unsteady flows. Several
authors have used this approach to examine relatively simple problems such as the steady state motion of
single particles or moderate deformation of free surfaces. Fully three-dimensional simulations are rela-
tively rare and it is probably fair to say that it is unlikely that this approach will be the method of choice
for very complex problems, such as the three-dimensional unsteady motion of several particles.

A much more general approach to continuously represent a fluid interface by a grid line is to use
unstructured grids to resolve the fluid motion. This allows grid points to be inserted and deleted as
needed and distorted grid cells to be reshaped. While the grid was moved with the fluid velocity in some
of the early applications of this method, the more modern approach is to either move only the interface
points or to move the interior nodes with a velocity different from the fluid velocity in such a way that
the grid distortion is reduced but adequate resolution is still maintained. A large number of methods have
been developed that fall into this general category, but we mention only a few examples. Oran and Boris
(1987) simulated the breakup of a two-dimensional drop; Shopov et al. (1990) examined the initial defor-
mation of a buoyant bubble; and Fukai et al. (1995) did axisymmetric computations of the collision of a
single drop with a wall.

Several hybrid methods combine the ideas discussed above in a variety of ways. Front-tracking meth-
ods where the interface is marked by connected marker points, but a fixed grid is used for the fluid within
each phase have been particularly successful. In the method of Tryggvason and collaborators (Unverdi
and Tryggvason, 1992; Tryggvason et al., 2001) the tracked front is used to advect a smoothed marker
function and to compute the surface tension. The method is therefore very similar to methods that work
directly with a grid-marker function, but the advection of the interface is greatly improved. Other meth-
ods have been designed to capture the interface more accurately. These include the method of Glimm and
collaborators (Glimm and McBryan, 1985), where the fixed grid is modified near the front to make a grid
line follow the interface, as well as more recent sharp-interface methods (such as Fedkiw et al., 1999; Ye
et al., 1999; and Lee and LeVeque, 2003). The increased accuracy does, however, come at the cost of a con-
siderably increased complexity and it is not clear at the time of this writing what the impact of these new
methods will be on DNS of finite Reynolds numbers flows.

The most recent addition to the collection of methods capable of simulating finite Reynolds number
multiphase flows is the Lattice-Boltzman method (LBM). Although there have been some doubts about
the accuracy and correctness of the LBM, it seems now clear that they can be used to produce accurate
results of accuracy comparable to more conventional methods. It is still not clear whether the LBM is sig-
nificantly faster or simpler than other methods (as sometimes claimed), but most likely these methods
are here to stay. For a discussion see, e.g., Shan and Chen (1993) and Sankaranarayanan et al. (2002).

Many reviews are available that discuss computational methods for multiphase flows. Early reviews
include Hyman (1984) and Floyryan and Rasmussen (1989), and more recent reviews are given by
Scardovelli and Zaleski (1999), who discuss volume of fluid methods, and Anderson et al. (1998), who
review phase field methods. Several up-to-date articles about various aspects of computations of multi-
phase systems and related problems can be found in a special issue of the Journal of Computational Physics
(Vol. 169, 2001). The book by Shyy et al. (1996) also discusses several aspects of computations of multi-
phase flows. For discussions of the role of numerical predictions for industrial problems, see Crowe et al.
(1998), for example.

13.2.1.3 Disperse Flows

In many industrial and natural processes, multiphase flows consists of one phase in the form of well
defined bubbles, drops, or solid particles dispersed in another continuous phase. Bubbly flows occur in
boiling heat transfer, cloud cavitation, aeration, and stirring of reactors in water purification and waste
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water treatment plants, bubble columns and centrifuges in the chemical industry, cooling circuits of
nuclear reactors, the exchange of gases and heat between the oceans and the atmosphere, and explosive
volcanic eruptions, just to name a few examples. Similarly, drops are found in sprays used in the atom-
ization of liquid fuels, painting and coating, emulsions, and rain. Understanding the evolution and prop-
erties of dispersed flows is therefore of major technological as well as scientific interest.

For engineering applications with a large number of bubbles and drops, computational modeling relies
on equations that describe the average flow field. The two-fluid model, where separate equations are solved
for the dispersed and the continuous phase, is the most common approach. Since no attempt is made to
resolve the unsteady motion of individual particles, closure relations are necessary for the unresolved
motion and the forces between the particles and the continuous phase. Closure relations are usually deter-
mined through a combination of dimensional arguments and correlation of experimental data. The situ-
ation is analogous to computations of turbulent flows using the Reynolds averaged Navier–Stokes
equations, where momentum transfer due to unsteady small-scale motion must be modeled. For details of
two-fluid modeling, see Drew (1983), Ishii (1987) Drew and Lahey (1992), and Zhang and Prosperetti
(1994). For the turbulent motion of single phase flows, direct numerical simulations, where the unsteady
Navier–Stokes equations are solved on fine enough grids to fully resolve all flow scales, have had a major
impact on closure modeling. The goal of direct numerical simulations of multiphase flows is similar. In
addition to information about how the drift Reynolds number, velocity fluctuations, and bubble disper-
sion change with the properties of the system, the computations should yield insight into how bubbles and
drops interact, both with each other and with the continuous phase. The simulations should show whether
there is a predominant microstructure or interaction mode, and if the flow forms structures that are much
larger than the size of the dispersed particles. Information about the microstructure is essential for the con-
struction of models of multiphase flows and can also help to identify what approximations  can be made.

Although the need for direct numerical simulations to help with the construction of reliable closure mod-
els has been recognized for a long time, it is only recently that major progress has been made. In the limit of
high and low Reynolds numbers major simplifications are possible and the Stokesian dynamics method of
Brady and collaborators (for a recent contribution, see Sierou and Brady (2002) for example) has been used to
examine many aspects of solid suspensions. For invisic bubbles, Sangani and Didwania (1993) and Smereka
(1993) simulated the motion of spherical bubbles in a periodic box and observed that the bubbles tended to
form horizontal “rafts,” particularly when the variance of the bubble velocities was small. As this rafting is gen-
erally not observed experimentally, the results cast considerable doubt on the utility of the potential flow
approximation for the interactions of many bubbles. This is somewhat  unexpected since for a single bubble
this approximation is excellent (see, however Harper (1997) for a discussion of bubbles rising in-line). In both
Stokes flows and potential flows, deformable bubbles and drops can be simulated using boundary integral tech-
niques. For recent papers on Stokes flow see, for example, the study by Li and Pozrikidis (2000) of the dynam-
ics of two-dimensional drops in a channel and the simulation of a few three-dimensional drops in a channel
by Zinchenko and Davis (2000). While transient interactions of a few bubbles have been examined using
boundary integral methods, no simulations of the long-time evolution of many deformable bubbles have been
done, and given the failure of the potential flow approximation for rigid bubbles at high Reynolds numbers, it
seems unlikely that such studies would be applicable to a large range of realistic situations.

For nondilute flows at intermediate Reynolds numbers it is necessary to solve the full unsteady
Navier–Stokes equations. Such simulations for the unsteady motion of many bubbles or particles are rela-
tively recent. Unverdi and Tryggvason (1992a, 1992b) computed the interactions of two, two- and three-
dimensional bubbles and Esmaeeli and Tryggvason (1996) followed the evolution of a few hundred
two-dimensional bubbles. Esmaeeli and Tryggvason (1998, 1999) simulated the unsteady motion of several
two- and three-dimensional bubbles and Mortazavi and Tryggvason (2000) examined the motion of a
periodic row of drops in a channel. More recently, Bunner and Tryggvason (1999, 2002a, 2002b, 2003) used
a fully parallelized version of the method to examine three-dimensional systems with a much larger num-
ber of bubbles. Other studies of the motion and interactions of many bubbles have been done by several
Japanese authors. Early work, using the VOF method to compute the motion of a single two-dimensional
bubble can be found in Tomiyama et al. (1993) and more recent work on bubble interactions, using both
VOF and the Lattice-Boltzman Method, is presented in Takada et al. (2000, 2001).
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The numerical simulations of Tryggvason and collaborators have focused on homogeneous bubbly
flows, modeled by fully periodic domains. The average bubble Reynolds number has generally been rela-
tively modest, 20 to 30, so that each bubble is fully resolved by 20 to 30 grid points per diameter. Relatively
low-order statistics, such as the average rise velocity of the bubbles and the pair probability distribution,
converge rapidly with increasing size of the simulated domain and Bunner and Tryggvason (2002) found
essentially no difference between the rise velocity of 12 and 216 nearly spherical bubbles. Other quanti-
ties, like the self-diffusion coefficient, converge much more slowly. For nearly spherical buoyant bubbles
at modest Reynolds numbers, the simulations show that the dominant interaction mode is the “drafting,
kissing, and tumbling” mechanism described by Fortes et al. (1987). Thus, a bubble behind another bub-
ble is drawn into the wake of the bubble in front, once in the wake it catches up and collides with the one
in front and the two bubbles then “tumble” and move apart. This collision mode is inherently a finite
Reynolds number effect, since two buoyant bubbles in Stokes flow do not change their orientation unless
acted on by the third bubble and bubbles in potential flow repeal each other if they are rising in an in-
line configuration. The simulations have also shown that freely interacting bubbles rise considerably
slower than bubbles constrained to remain in a fixed array. At very low Reynolds numbers the opposite
is true as predicted theoretically for Stokes flow. While spherical bubbles remained nearly uniformly dis-
tributed, Bunner and Tryggvason (2003) found that deformable bubbles could gather into streams or
chimneys and rise much faster than when they were uniformly distributed. Figure 13.10 shows the close-
up of a few bubbles and the velocity field in a plane cutting through some of the bubbles, taken from a
simulation of 27 freely rising bubbles at a void fraction of 6%, before they stream. The simulations are
done using a cubic, fully periodic domain resolved by 1923 grid points and for the particular set of param-
eters used here, the average rise Reynolds number of the bubbles is about 23.

Major progress has also been made in the simulation of finite Reynolds number suspension of rigid
particles. Feng et al. (1994, 1995) simulated the two-dimensional, unsteady motion of one and two 
rigid particles, Hu (1996) computed the motion of a few hundred two-dimensional particles and fully
three-dimensional simulations of 100 particles were presented by Johnson and Tezduyar (1997). Recent
papers include simulations of over 1000 spheres by Pan et al. (2002) and a study of the fluidization of
300 circular particles in in plane Poiseuille flow by Choi and Joseph (2001). While there is, of course, some
differences between the behavior of deformable bubbles and drops, development of direct numerical sim-
ulations for such systems have paralleled the capability for bubbly flows and lessons learned for one sys-
tem often find applications in the other.

As computer power increases, it is possible to examine both larger and more complex systems. In
Figure 13.11, one example of a relatively large-scale simulation of bubbles in a turbulent channel flow is
shown. The bubbles and the streamwise velocity in two planes, one parallel to the lower wall and another
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FIGURE 13.10 A closeup of the velocity field around a few interacting bubbles from a simulation of 27 buoyant
bubbles in a fully periodic domain. The bubbles and the velocity in a plane cutting through the middle of the domain
is shown. (Courtesy of Dr. Bernard Bunner.)
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perpendicular to the walls, cutting through the middle of the channel, are plotted at a relatively early
time. The domain is 2π � π � 2 in the streamwise, spanwise, and wall-normal direction, respectively,
resolved by a regular structured grid, stretched in the wall-normal direction to provide a finer resolution
near the walls. The total number of grid points is 512 � 256 � 256. The initial velocity field was taken
from spectral simulations of turbulent channel flows to avoid having to simulate the transition, and the
volume flux is kept constant by adjusting the pressure gradient. The turbulent flow was first evolved with-
out bubbles to ensure that the finite-difference method used here correctly simulated the single-phase
flow. Initially, 120 bubbles of diameter 0.3 are placed in the flow, next to the walls. The channel Reynolds
number is 3000, giving a shear Reynolds number of 135 based on the shear velocity and the wall unit. The
domain dimension are 848 � 424 � 270 wall units, and in wall units the bubble diameter is 27.5. As the
bubbles interact with the turbulent flow, they are dispersed and slowly migrate away from the walls. The
goal of these simulations is to cast some light on how microbubble injection into turbulent boundary lay-
ers reduces drag. For the parameters used here, the effect of the bubbles on the wall drag is very small.
For other work on this problem, see Kanai and Miyata (2001) and Kawamura and Kodama (2002).

13.2.1.4 Current Status

Direct numerical simulations of multiphase flows have come a long way during the last decade. It is now
possible to follow the motion of hundreds of bubbles, drops, and particles at finite Reynolds numbers in
simple geometries for sufficiently long time so that meaningful averages can be computed. Much remains
to be done, however. At higher Reynolds numbers the number of grid points required to resolve each bub-
ble and the flow around them increases and the cost of doing simulations with many bubbles increases.
With larger computers such simulations will become increasingly more feasible. The formation of bubbles
and drops as well as coalescence must also be addressed and except for a few simulations of the breakup of
drops in well-defined flows, little has been done. These problems are, nevertheless, well within reach.
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FIGURE 13.11 An example of a direct numerical simulation of bubbles in a turbulent channel flow. The bubbles
and the streamwise velocity in a plane near the bottom wall and another one cutting through the middle of the
domain is shown. (Courtesy of Dr. Jiacai Lu.)
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As direct numerical simulations of multiphase flows become more common, the need for advances in
the development of the theoretical framework for modeling such flows is also becoming more urgent.
Current models have mostly been developed in an environment where relatively little has been known
about the details of the flow, and for the most part these models are far behind what is available for 
single phase turbulent flows. While our abilities to simulate directly more and more complex multiphase
systems will certainly increase dramatically in the next few years, it is important to realize that our desire
to compute will always be ahead of what we can do by direct numerical simulations. Even if we could fully
compute the behavior of a particular system, we can easily imagine, for example, that we might want to
incorporate simulations into a real-time control algorithm that dynamically explored the consequences
of several possible control actions. Thus, the condensation of knowledge obtained by direct numerical
simulations into reduced or averaged models that allow faster predictions will remain at the core of mul-
tiphase flow research for a long time to come.

Although the opportunities for studies of two-fluid disperse systems are enormous, it is the longer-term
development of the ability to compute the coupled motion of complex systems that will bring about the full
impact of direct numerical simulations. Most engineering fluid systems include a large number of physical
phenomena such as fluid flow, evaporation, solidification, and chemical reactions, and while the ability to
examine each aspect in detail is important, simulations of the full system will allow unprecedented insight.
Here, progress is just starting. A few investigators have simulated boiling flows (Son and Dhir, 1998; Juric
and Tryggvason, 1998; Welch and Wilson, 2000; Shin and Juric, 2002; Esmaeeli and Tryggvason, 2003; Yoon
et al., 2001), dendritic solidification in the presence of flow (Tonhardt and Amberg, 1988; Boettinger et al.,
2002; Jeong et al., 2001; Al-Rawhai and Tryggvason, 2004), and a few other problems. The potential for com-
plexity is virtually unlimited and even relatively simple systems will put considerable demand on computa-
tional resources and the solution methodology. Thus, for example, the effect of electric fields on the boiling
of binary mixture requires the solution of the fluid flow, species conservation, the energy equation and
phase change, as well as an equation for the electric field. It is also likely, as more and more complex prob-
lems are dealt with, that the difference between direct numerical simulations — where everything is resolved
fully — and simulations where the smallest scales are modeled, will become blurred. Simulations of atom-
ization where the evolution of thin films is computed by subgrid models and very small drops are included
as point particles are a relatively obvious example of such hybrids. Other examples include possible cou-
plings with microscopic simulations of moving contact lines, kinematic effects at a solidification interface,
and thin flames. Simulations of non-Newtonian fluids, where the microstructure has to be modeled in such
a way that the molecular structure is accounted for in some way also falls under this category.

13.2.2 Discrete Element Approach

Y. Tsuji

13.2.2.1 Introduction

The discrete element approach is known by various names, such as particle tracking approach, Lagrangian
approach, single-particle approach, and so on. In the field of granular flows, the distinct element method
(DEM) is a popular terminology used for expressing simulations employing the soft sphere model. In this
approach, trajectories of all individual particles or sample particles of limited number are calculated by mak-
ing use of the Newtonian equations of motion for a solid body. Equations of fluid motion are the same as those
for single-phase flows in one-way coupling. In the two-way coupling the fluid–particle interaction term is
added to the equation of fluid motion as external forces. In general, the calculation should be done based on
the two-way coupling when the particle concentration is high. Under the condition of such high particle con-
centrations, not only the two-way coupling, but also the particle–particle interaction should be taken into
account. The two-way coupling with the particle–particle interaction is the case in many industrial
particle–fluid systems. If the particle concentration is sufficiently low, both fluid–particle and particle–parti-
cle interactions are neglected. Such a case corresponds to dilute-phase flow and is not described in this section.

The phenomena associated with particle–particle interaction are different depending on the degree of
concentration. When the concentration is moderate, particles are dispersed in the fluid. In such a case,

Modeling 13-27

© 2006 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n]
 a

t 1
2:

18
 3

0 
Se

pt
em

be
r 

20
15

 



the particle–particle interaction is different depending on the nature of fluid. If the fluid is a liquid, par-
ticles hardly touch due to the lubrication effect. If the fluid is a gas, the particle inertia force is dominant
and the particles collide. When the concentration is extremely high, particles are not dispersed and they
keep in contact with other particles. The case in which the lubrication effect is important is not described
here. Therefore, this section deals with collision- and contact-dominated flow of gas–particle flows.

13.2.2.2 Equation of Motion

Concerning the particle motion, we use the well-known Newtonian equations of motion considering the
effects of external forces such as gravitational force and fluid force. Individual particles have two types of
motion: translation and rotation. The equations of translational and rotational motion are expressed as

x
..

� � g (13.1)

Ω � (13.2)

where x is the position vector of the particle gravity center, m the particle mass, fc the summation of con-
tact forces, fF the summation of fluid force, g the gravity acceleration vector, ω the particle angular velocity
vector, M the summation of torque, I the moment of inertia of the particle, and the (.) time derivative.

Needless to say, the contact force fc is taken into account only when particles are in contact. The new
velocity and position are calculated step by step by using an appropriate time step ∆t :

v � v0 � x
..

0�∆t (13.3)

x � x0 � v �∆t (13.4)

and

Ω � Ω0 � Ω· 0�∆t (13.5)

where v is the particle velocity vector and the subscript (0) the value at the previous time.
The calculation method for the fluid motion can be classified into the following cases: (1) calculation

of individual particle base and (2) calculation of local cell base.
In the first method, the instantaneous flow around each particle is found using the Navier–Stokes

equation (Hu, 1996; Pan and Banerjee, 1997; Kajishima and Takiguchi, 2002; Pan et al., 2002) or the
Lattice–Boltzman method (Qi, 2000) as shown in Figure 13.12. The fluid forces fF acting on particles are
obtained by integrating stresses on the surface of the particles, which are solutions of the basic equations.
Thus, such coefficients as drag and lift are not needed. This method is most rigorous but it takes much
computational time and large memory capability.

In the second method, a flow field is divided into cells as shown in Figure 13.13; the size of the cells should
be larger than the particle size and smaller than the system size of flow. The effects of the presence of particles
on fluid are taken into account by the volume fraction of each phase and momentum exchange through the
drag force. This approach can be called “local averaging approach,”proposed by Anderson and Jackson (1967).

The equations for fluid motion are given as follows:

� � 0 (13.6)

and

� ��ε � fsi � ε � ρεg (13.7)

where u is the velocity, p the pressure, ρ the fluid density, ε the void fraction, fsi the force on fluid due to
drag, and τij the stress tensor.

∂τij
�∂xj

∂p
�∂xi

∂(ρεuiuj)
�∂xj

∂(ρεui)
�∂ t

∂(εuj)
�∂xj

∂ε
�∂t

M
�
I

fc � fF
�

m
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Equations (13.6) and (13.7) are the continuity equation and the momentum equations, respectively. Mass
transfer is neglected in the above equations. Concerning the drag force, two different expressions are used
depending on if the particle motion is collision or contact-dominated. The formula for the drag force act-
ing on a single particle with modification of void fraction (Wen and Yu, 1966) is used for collision-domi-
nated flows and an expression developed for particle beds, such as the Ergun equation (Ergun, 1952), is used
for the contact-dominated flow. If the particles are coarse and the fluid is a gas, the particle inertia term is
larger than the stress and gravitational terms which can be neglected. Tsuji et al. (1993) showed that calcu-
lation based on such simplifications leads to realistic results.

13.2.2.3 Collision-Dominated Flows

Once the external forces are given in Eqs. (13.1) and (13.2), the trajectory calculation is relatively simple dur-
ing the period when the particle–particle collision does not occur. When a particle collides with another par-
ticle, values of particle velocities are reset. The postcollisional velocity can be obtained by the hard sphere
model described in Section 12.4.1.1. These calculations are straightforward. The difficulty in the calculation of
collision-dominated flows lies in finding collision pairs from a large number of particles in the flow field. There
are two methods available for finding collision partners: (1) deterministic method and (2) stochastic method.

In the first method, the collision pairs are found deterministically from trajectories of individual parti-
cles. This method takes more computation time as the particle number is increased. The second method
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FIGURE 13.12 Treatment of individual particle base.

∆x

∆y

+FIGURE 13.13 Treatment of local cell base.
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is based on the probability of collision which has been developed in molecular flows. Oesterle and Petitjean
(1993) proposed a method assuming the Maxwell distribution for particle fluctuating velocity. Kitron et al.
(1990), Yonemura et al. (1993), and Tanaka et al. (1996) used the direct simulation Monte Carlo (DSMC)
method. In the DSMC method, trajectory calculations are made only for sample particles; their number is
much smaller than the actual number of particles.

The DSMC method is briefly explained below. Imagine that a very large number of particles exist in an
actual flow field as shown in Figure 13.14a and all the particles have different velocity vectors. This actual
field of particles is replaced with a simple field that consists of sample particles of a limited number with fixed
velocity vectors. Figure 13.14b shows three such sample particles: white, black, and dotted. (In the figure, the
number of sample particles shown is only 3; for simplicity of explanation, but in practical calculations, the
number of sample particles should be much larger.) Each sample particle represents a group of particles with
the same velocity vector, but it is invisible in Figure 13.14b. The invisible particles are assumed to be distrib-
uted at random. The actual field shown in Figure 13.14a is replaced with the field shown in Figure 13.14c,
where particles that are invisible in Figure 13.14b are shown. The total number of particles in Figures 13.14a
and 13.14c are set to be the same. Figures 13.14a and 13.14c appear similar but in Figure 13.14c, all the par-
ticles belong to a limited number of groups (here group 3). It can be proven mathematically that if the num-
ber of sample particles is sufficiently large, the statistical properties in Figures 13.14a and 13.14c are the same.
Instead of the field shown in Figure 13.14a, we treat the field in Figure 13.14c. In this field it is easy to derive
the collision probability, i.e., the collision probability can be expressed as a function of the relative velocity
between both particle and number density. Once the collision probability is given, trajectory calculations are
made in the field of Figure 13.14b, where only sample particles exist.

The next problem is to obtain the collision probability. If the relative velocity between two groups of
particles distributed at random is known, the collision frequency Pij at which a particle of the particle
group i collides with particles of the particle group j within time ∆t is given by

Pij � nj ⋅ πd 2 ⋅ Gij ∆t (13.8)

where nj is the number density of particle j, Gij the relative velocity vi � vj, and d the particle diameter.
The next question is how to use this in the trajectory calculation. There are a few methods that have

been proposed. Bird(1976) who developed the DSMC method proposed the time count method. Illner
and Neunzert(1987) proposed the modified Nanbu (1980) method. The calculation process of the mod-
ified Nanbu is as follows.

As described earlier, trajectory calculations are made for sample particles with the time step ∆t. Let us
consider the motion of sample particle i. At every time step, a random number is produced to find the num-
ber of another sample particle, which is the candidate for the collision partner with the sample particle i.
The number j chosen by the random number generator corresponds to many particles represented by the
sample particle j. The possibility of collision between the sample particle i and one of particles represented
by sample particle j depends on the collision probability given by Eq. (13.8). In the modified Nanbu method
(Illner and Neunzert, 1987), one random number is used for finding a candidate of collision partner and for
deciding if collision occurs. For details, refer to Tanaka et al. (1996).

13.2.2.4 Contact-Dominated Flows

The key idea for the discrete element approach of the contact-dominated flows is the model of the contact
force. The soft sphere model described in Section 12. 4.1.2 is used for this purpose. Once the contact forces
are given, trajectories of individual particles are obtained by Eqs. (13.1) to (13.3). To provide the readers
with an image of how the discrete element approach for contact-dominated flows works, Figure 13.15 shows
how particle motion is calculated by using the soft sphere model. Figure 13.15 also shows the case where
particle i approaches particle j with a relative velocity vi�vj. Particle j is made stationary. Instead of consid-
ering deformation, the two particles are made to overlap. As the overlap distance increases, the contact force
becomes larger and the particle velocity decreases. In the course of time, particle velocity changes direction
and the overlap distance decreases. Finally the two particles separate. This process is calculated step-by-step
by Eqs. (13.4)–(13.7). The time step ∆t is much smaller than that for collision-dominated flows.
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13.2.2.5 Simulation Example

Figure 13.16 shows a snap shot of particle concentration and velocity vectors of particles and gas calcu-
lated by Yonemura et al. (1993), who used DSMC method. An interesting finding is that the in-elastic
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FIGURE 13.14 (a) Field of real particles; (b) sample particles; (c) field replacing.
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particle-particle collision leads to the formation of clusters. The flow field of the clusters shows 
large-scale fluctuations. The structure of cluster has been investigated more in details by Tanaka et al.
(2002)

The discrete element simulation using the soft sphere model DEM has very wide applicability in par-
ticle technology even if the fluid is neglected. The following examples are those to which the discrete ele-
ment simulation has been applied to contact-dominated flows; gravity flows in hoppers and chutes,
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FIGURE 13.15 Calculation of particle motion based on soft sphere model.
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FIGURE 13.16 Collision-dominated flow. (From Yonemura et al., ASME/FED Gas–Solid Flows, 166, 303, 1993. With
Permission)
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rotary kiln, screw feeder, mixers (drum mixer and V-shape mixer), granulator, sieve, vibrating bed, shear
flow, etc. Many scientists are engaged in the research of these particle flows; the research tends to deal with
complicated cases. Some researchers take into account the effects of cohesion forces caused by a liquid
bridge, some others nonsphericity, while few other include heat transfer.

If the effects of the fluid are included in the discrete particle simulation, the range of applications
becomes larger. The first work of Tsuji et al. (1992) is a dense-phase pneumatic conveying example and
the calculated results are shown in Figure 13.17. Tsuji et al. (1993) extended their work to the fluidized
bed. The results for a bubble rising in the fluidized bed are shown in Figure 13.18. The velocity of the ris-
ing bubble agrees with experiments not only qualitatively but also quantitatively. A spouted bed (Figure
13.19) is another example to which the discrete element simulation has been applied. Recently, various
complicated factors such as heat transfer (Rong et al., 2001; Liu et al., 2002) and cohesion forces (Mikami
et al., 1998; Rhodes et al., 2001; Kuwagi and Horio, 2002) have been added by several workers for a more
practical applications.
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FIGURE 13.17 Plug conveying in horizontal pipe. (From Tsuji et al., Powder Technol., 77, 79, 1993. With permission.)

FIGURE 13.18 Single rising bubble in fluidized bed.
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13.2.3 Direct Simulation of Turbulent Flows Laden with Dispersed Particles

S.E. Elghobashi

13.2.3.1 Introduction

DNS of turbulent flows laden with a large number (∼108) of dispersed spherical (solid, liquid, or gas) par-
ticles requires the spatial and temporal resolution of all the relevant scales of the carrier fluid motion
down to the Kolmogorov scales (η,τκ), and ideally, the simultaneous resolution of the flow around the
surfaces of the individual particles. However, the resolution of the flow around each particle is infeasible
at present and in the near future (i.e., the next 15 years; Jimenez, 2003). This infeasibility is only due to
computer (memory and speed) limitations as demonstrated next. For example, consider a typical turbu-
lent boundary layer flow of 0.01 m thickness over a flat plate of 1 m length and 0.5 m width (i.e., the fluid
volume � 5 � 10�3 m3 or 5 L), which contains dispersed particles of 50 µm diameter occupying a vol-
ume fraction (or concentration) of 10�3. The number of these particles is thus more than 76 � 106. Now,
in order to resolve the motion around each of these 76 million particles, we have to solve the unsteady,
three-dimensional Navier–Stokes and continuity equations in a small domain surrounding each particle,
at each time step of computing the carrier flow. If we assume that computing the flow around each par-
ticle requires only 103 CPU S (i.e., many orders of magnitude smaller than the currently required
CPU time; Bagchi and Balachandar, 2003) on the fastest computer available, then we would need
76 � 109 sec/time step or 2443 CPU years/time step for a single processor. However, if we use 1024 par-
allel processors, this time can be reduced to 2.4 CPU years/time step; if we use 10, 000 processors, we can
reduce this time further to 3 CPU months/time step, and at least 104 time steps are needed for a typical
DNS run. Thus, it is evident that at present it is not possible to perform DNS of a turbulent flow laden
with a large number of dispersed small particles while simultaneously resolving the flow around each 
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FIGURE 13.19 Spouted bed in cylinder. (From Kawaguchi et al., Powder Technol., 109, 3, 2000. With permission.)
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particle. This fact necessitates treating the dispersed particles in DNS as “points” whose motion and tra-
jectories are governed by the appropriate differential equations. There are currently two approaches
(namely, the Lagrangian–Eulerian or trajectory and the Eulerian–Eulerian or two-fluid) employed in
DNS of particle-laden turbulent flows. These two approaches will be described in the two examples that
are presented later in this chapter.

13.2.3.2 Classification Map of Particle-Laden Turbulent Flows

The classification map in Figure 13.20 is a slightly modified version of the original map proposed by
Elghobashi (1994). The quantities appearing on the dimensionless coordinates are defined below:

α volume fraction of particles(�NVp /V)
Ν total number of particles in the flow
Vp volume of a single particle
V total volume occupied by particles and fluid
d diameter of particle
τP particle response time (�ρpd 2/(18ρfv) for Stokes flow
τκ Kolmogorov time scale (�(v/ε)1/2)

In the above definitions, ρ is the material density, v the kinematic viscosity of the fluid, and ε the dis-
sipation rate of turbulence kinetic energy and the subscripts p and f denote, respectively, the particle and
carrier fluid. For very low values of α(�10�6), the particles have negligible effect on turbulence, and the
interaction between the particles and turbulence is termed as one-way coupling. This means that particle
dispersion, in this regime, depends on the state of turbulence but owing to the negligible concentration
of the particles, the momentum exchange between the particles and the turbulence has an insignificant
effect on the flow. In the second regime, 10�6 � α � 10�3, the momentum exchange between the parti-
cles and turbulence is large enough to alter the turbulence structure. This interaction is called two-way
coupling. Now, in this regime and for a given value of α, there are two zones (A and B), depending on the
ratio τP/τκ where the transition from A to B occurs at about τP/τκ � 10. In zone A, the particle Reynolds
number, Rp is � 1, but within the range 0.01 � (τP/τκ) � 10 and for a fixed α, the effects of the particles
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on the turbulence vary significantly as function of (τP /τκ) as shown in Figure 13.21 and will be discussed
later. In zone B, as τP increases (e.g., with an increase in the particle diameter) for the same α, the parti-
cle Reynolds number increases, and at values of Rp � 400, vortex shedding takes place resulting in an
enhanced production of turbulence energy. In the third regime, due to an increase in particle loading ,
α � 10–3, flows are referred to as dense suspensions. Here, in addition to the two-way coupling between
the particles and turbulence, particle–particle collision takes place, hence the term four-way coupling. As
α approaches 1, we obtain a granular flow in which there is no fluid, and, therefore, the granular flow is
beyond the scope of this chapter.

The line separating the two- and four-way coupling regimes is inclined to indicate the tendency of parti-
cle–particle collision to take place at higher values of τP /τκ, thus transforming the two- to four-way coupling
regime even for α � 10�3.

The dispersion of particles (and their preferential accumulation) in turbulent flows with one-way cou-
pling is reasonably understood, at least in unconfined homogeneous flows (Elghobashi and Truesdell,
1992, 1993; Ahmed and Elghobashi, 2001; Ferrante and Elghobashi, 2003). On the other hand, flows in
the two- or four-way coupling regimes are still a challenge and require more studies to improve their
understanding.

We restrict the present discussion to isothermal incompressible fluids without phase changes (e.g.,
vaporization) or chemical reaction. Also, the effects of particle–particle or particle–wall collisions are not
considered here.

In the following subsections we will present two examples of DNS of particle- and bubble-laden turbulent
flows and discuss the physical mechanisms of two-way coupling. These flows are: (1) isotropic turbulence
laden with solid particles and (2) isotropic turbulence laden with bubbles.

13.2.4 The Physical Mechanisms of Two-Way Coupling in Particle-Laden
Isotropic Turbulence

Since isotropic turbulence is the simplest homogeneous turbulent flow it has been the subject of a num-
ber of earlier DNS studies on the effects of particles on isotropic turbulence (Elghobashi and Truesdell,
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FIGURE 13.21 Classification map of dispersed two-phase flows details of Zone A.
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1993; Squires and Eaton, 1990; Boivin et al., 1998; Sundaram and Collins, 1999; Druzhinin and
Elghobashi, 1999b; Ferrante and Elghobashi, 2003).

The discussion in the following subsections is a condensed version of our paper (Ferrante and
Elghobashi, 2003), whose objective was to analyze our DNS results for a detailed explanation of the main
physical mechanisms responsible for the modification of isotropic turbulence by dispersed solid particles.
The present study, in comparison with the previous DNS studies, has been performed with higher resolu-
tion (Reλ � 75) and considerably larger number (80 million) of particles. One of the interesting results to
be discussed is that in zero gravity, dispersed particles with τP /τκ � 0.25 (denoted here as ‘Ghost particles’)
modify the spectra of the turbulence kinetic energy and its dissipation rate in such a way that the decay
rate of the turbulence energy is nearly identical to that of particle-free turbulence, and, thus, the two-way
coupling effects of these ghost particles would not be detected, for example, in microgravity environment,
by examining only the temporal behavior of the turbulence energy of the carrier flow either numerically
or experimentally.

13.2.4.1 Mathematical Description

In this study we use the Eulerian–Lagrangian (or trajectory) approach, where the instantaneous, three-
dimensional velocity and pressure fields of the fluid motion are computed on a fixed (Eulerian) mesh;
whereas, the instantaneous trajectories of the dispersed particles are obtained by computing the instan-
taneous positions of the particles.

13.2.4.2 Governing Equations

The governing dimensionless equations for a particle-laden incompressible isotropic turbulent flow are
the Navier–Stokes equations,

� �� � ν � fj (13.9)

and the continuity equation,

� 0 (13.10)

where j � 1,2,3 for the three coordinate directions x1, x2, and x3, respectively, and ν the dimensionless
kinematic viscosity. In Eqs. (13.9) and (13.10) we neglect the volume occupied by the individual particles
(in comparison with the volume of the carrier fluid) and thus they are treated as points moving in the
flow according to Eq. (13.12). �fj is the net force per unit mass of fluid exerted in the xj direction by M
particles within the integration control volume and is computed from

fj � �
M

ρ�1

fjp (13.11)

where fjp is the drag force acting on particle p in the xj direction and Mf the mass of fluid within the inte-
gration control volume.

The particle equation of motion (Maxey and Riley, 1983) can be written for large ratio (ρp/ρ) of the
particle density to fluid density as 

mp � mp � (mp � mf)gj (13.12)

where mp is the mass of the particle, mf the mass of fluid displaced by the particle volume, d/dtp the time
derivative following the moving particle, vj the particle instantaneous velocity, uj the instantaneous fluid
velocity at the particle location, and gj is the gravitational acceleration. The numerical solution method is
described in detail in Ferrante and Elghobashi (2003) and, thus, will not be discussed here.

(uj � νj)
�τp

dvj
�
dtp

1
�
Mf

∂uj
�∂xj

∂ 2uj
�∂xk ∂xk

∂p
�∂xj

∂(ujuk)
�∂xk

∂uj
�∂t
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13.2.4.3 Results

13.2.4.3.1 Turbulence and Particles Parameters
We studied six cases to understand how particles with different inertia, τP,modify the decay rate of
isotropic turbulence in both zero- and finite-gravity conditions. The flow parameters are listed in Table
13.3 and the particle properties in Table 13.4 Case A represents the particle-free flow, whereas cases B–E
represent particle-laden flows with different inertia particles in zero gravity, and case F represents the par-
ticle-laden flow in finite gravity. It is important to note that all the five cases (B–F) of particle-laden tur-
bulence have the same volume fraction of particles, α � 10�3, and the same mass loading ratio αm�1.0
(for ρp /ρ�1000) and, thus, the differences between the resulting modifications of turbulence in these
cases are only due to the different values of τP /τκ. We changed the particle diameter for each case to obtain
a different ratio τP /τκ of the particle response time to the Kolmogorov time-scale at the injection time, for
example., τP /τκ�0.1 in case B and τP /τκ�5.0 in case E. The effects of gravity are studied in case F where
τP /τκ�0.25 (as in case C) and νt /u∗

0�0.25, where νt is the terminal velocity (νt�gτP) of the particle 
and u∗

0 is the rms velocity of the surrounding fluid at the injection time, and gravity is in the negative x3

direction.

13.2.4.3.2 Turbulence Modification by Particles
In the following two subsections we describe briefly the temporal evolution of the turbulence kinetic
energy (TKE) and its spectra, E(k), for all the six cases (A–F). Then we discuss in detail the physical mech-
anisms of the two-way interaction in four of these cases. The details of the other cases are given by
Ferrante and Elghobashi (2003).

13.2.4.3.2.1 Time evolution of turbulence kinetic energy. Figure 13.22 shows the temporal evolution of
TKE normalized by its initial value, E(t)/E0, for the zero gravity cases (A–E). The microparticles (case B)
with τP /τκ � 0.25 initially (1 � t � 2.1) reduce the decay rate of TKE, resulting in TKE being larger than
that of case A at all times, whereas particles with higher inertia (critical particles, case D, and large parti-
cles, case E), τ P /τκ � 0.25, initially enhance the TKE decay rate considerably, resulting in TKE being
smaller than that of case A at all times. Figure 13.22 also shows that particles with τP /τκ � 0.25 (case C)
keep TKE nearly identical to that of case A at all times, with a percentage difference smaller than 0.6%.
Thus we denote the particles in case C as ghost particles, since their effects on the turbulence cannot be
detected by the temporal behavior of TKE, E(t). However, as we will discuss later (Figure 13.23) these
ghost particles do modify the spectrum of E(κ) TKE. Figure 13.22 shows that at time t � 5, in compari-
son with TKE in case A, TKE in case B is larger by more than 5%; in case C is nearly identical; in case D
is smaller by about 13%; in case E is smaller by about 30%.

13-38 Multiphase Flow Handbook

TABLE 13.3 Flow Parameters (Dimensionless) at Initial Time (t � 0), Injection Time (t � 1), and for Case A at
Time t � 5

t uo ε l λ η Rel Reλ l/η τk τt

0.0 0.0503 7.4 � 10�4 0.0684 0.0345 0.00202 150 75 33.8 0.177 1.36
1.0 0.0436 9.8 � 10�4 0.0685 0.0259 0.00188 129 49 36.4 0.154 1.57
5.0 0.0233 2.0 � 10�4 0.0891 0.0305 0.00280 90 31 31.9 0.338 3.83

TABLE 13.4 Particle Properties (Dimensionless) at Injection Time (t � 1) with α�10�3 and αm � 1.0 (for ρp/ρ � 1000)

Case τp τp /τl τp /τk d d/l d/η d (µm) Mc Mr/Mc Rep, max vt/u0
∗

A – – – – – – – – 0 – –
B 0.0154 0.0098 0.1 0.80�10�4 0.00117 0.043 30 80�106 46.7 0.11 0.0
C 0.0385 0.0245 0.25 1.26�10�4 0.00185 0.067 47 80�106 11.8 0.31 0.0
D 0.1540 0.0979 1.0 2.53�10�4 0.00369 0.134 94 80�106 1.5 1.34 0.0
E 0.7700 0.4895 5.0 5.66�10�4 0.00825 0.300 211 10.6�106 1.0 5.33 0.0
F 0.0385 0.0245 0.25 1.26�10�4 0.00185 0.067 47 80�106 11.8 0.32 0.25
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Figure 13.24 displays the effects of gravity on the time evolution of TKE by comparing cases C and F.
The figure shows that in the presence of gravity (case F), particles reduce the decay rate of TKE as com-
pared with both case C, the flow laden with ghost particles, and case A, the particle-free flow. The basic
physical mechanisms that are responsible for the above-described modifications of E(t) by the dispersed
particles for cases B–F are discussed later in this section.

Modeling 13-39
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FIGURE 13.22 Time development of the turbulence kinetic energy.
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FIGURE 13.23 Three-dimensional spatial spectrum of energy E(κ) at t � 5.0.
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13.2.4.3.2.2 Energy spectrum. Figure 13.23 shows the three-dimensional energy spectra E(κ) for the five
cases A-E at time t � 5. Microparticles (case B) increase E(κ) relative to case A at wavenumbers κ � 12,
and reduce E(κ) relative to case A for κ � 12, such that � E(κ) dκ 	 TKE in case B is larger than that in
case A, as shown in Figure 13.22. For ghost particles (case C), although E(t) is nearly identical to that of
case A at all times (Figure 13.22) it is clear in Figure 13.23, that the energy spectrum in case C differs from
that in case A, but in such a unique way that its integral, TKE, is nearly identical to that in case A. Figure
13.23 shows that ghost particles reduce E(κ) relative to that of case A for κ � 15, and increase it above
that of case A for κ � 15. Critical particles (case D) increase E(κ) above that of case A for κ � 27, and
reduce it for smaller wavenumbers. In this case (case D) the modulation of E(κ) is such that its integral,
TKE, is smaller than that in case A (Figure 13.22). Large particles (case E) contribute to a faster decay of
TKE by reducing the energy content at almost all wavenumbers, except for κ � 87, where a slight increase
of E(κ) occurs.

In order to understand how the particles, E(κ), modify we write the evolution equation of the three-
dimensional energy spectrum:

� T(κ) � ε(κ) � Ψp(κ) (13.13)

Equation (13.13) states that in particle-laden isotropic turbulent flows, the rate of change of spectral tur-
bulence kinetic energy at wavenumber κ is the net result of the spectral energy-transfer rate τ(κ), the
spectral viscous dissipation rate ε(κ), and the spectral two-way coupling (fluid–particle drag interaction)
energy rate Ψp(κ). A discussion on the behavior of T(κ), ε(κ), and Ψp(κ) and their effects on E(κ) is pro-
vided in the following section.

13.2.4.3.3 Mechanisms of Modification of Isotropic Turbulence by the Particles
In this section, we discuss the mechanisms responsible for the modification of decaying isotropic turbu-
lence by the particles for four of the cases listed in Table 13.4: microparticles (τP /τκ �� 1 in zero gravity;
case B), critical particles with τP /τκ 
 1 (case D), and ghost particles with τP /τκ 
 0.25 (case C).

∂E(κ)
�∂ t
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FIGURE 13.24 Time development of the turbulence kinetic energy normalized by its initial value showing the effect
of gravity in case F.
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FIGURE 8.9 Gas flow field simulation for an external mixing (free-fall) atomizer: (a) gas velocity contours: underex-
panded exit condition (left panel), and ideal expanded exit condition (right), (b) gas velocity on center line, comparison
of under- and ideally expanded exit conditions. (From Heck, U., Ph.D. thesis, Universität Bremen, 1998. With permission.)
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FIGURE 8.52 Diesel spray flame: photo of injection and ignition, principal stationary flame structure. (From Tao, F.,
Ph.D. thesis, Chalmers University of Technology, Sweden, 2003.)
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FIGURE 8.54 Simulation of a DI-diesel spray flame and temperature contours. (From Tao, F., Ph.D. thesis,
Chalmers University of Technology, Sweden, 2003. With permission.)
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FIGURE 8.63 Modeling result for gas and particle temperature behavior on spray center line and edge in spray
forming of steel. (From Bergmann et al., Proceedings of the 2nd International Conference on Multiphase Flow, Kyoto,
Japan, April 3–7, 1995, Vol.1, pp. SP1–SP8. With permission.)
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FIGURE 8.65 Temperature and solid content distribution during spray forming of a copper billet. (From Meyer et al.,
Int. J. Thermal Sci., 42, 2003. With permission.)
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FIGURE 13.25 Case B: microparticles (white dots) superimposed on ω 2 (color contour) at x2 � 0.5 and t � 5.0.
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FIGURE 13.26 Case A: ω 2 (color contour) at x 2 � 0.5 and t � 5.0.
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FIGURE 13.36 Case D: critical particles (white dots) superimposed on ω 2 (color contour) at x2 � 0.5 and t � 5.0.
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FIGURE 13.37 Case C: “ghost” particles in zero gravity (white dots) superimposed on ω 2 (color contour) at x2 � 0.5
and t � 5.0.
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FIGURE 13.39 Case F: “ghost” particles in finite gravity (white dots) superimposed on ω 2 (color contour) at x2 � 0.5
and t � 5.0.
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 (a)  time = t1

 (b)  time= t1 + 33.33 ms

FIGURE 14.85 Snapshots of interactions of the bubbles with the flow at two instants.
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FIGURE 14.88 Surface plot of fluid vorticity component ωy on X–Z plane, position y � 0, at t � 33.3 msec after the
bubble has entered the viewing volume.
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FIGURE 14.89 Surface plot of liquid vorticity component ωz on X–Y plane, position z � 6.72, at t � 33.3 msec  after
the bubble has entered the viewing volume.
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FIGURE 14.90 ωz vorticity contours on Z-plane slices 16.6 msec after the bubble has departed from the viewing 
volume.

FIGURE 12.11 Tip vortex cavitation, cloud cavitation, and partial attached cavitation on a model of a marine pro-
peller. (Courtesy of Dr. Y.T. Shen, Naval Surface Warfare Center-Carderock Division.)
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13.2.4.3.3.1 Microparticles (τP /τκ �� 1). Microparticles (case B) behave almost like flow tracers because
their response time, τP, is much lesser than the Kolmogorov time scale, τΚ, but since their material density, ρp,
is much higher than that of the carrier fluid, ρ, they cause the fluid to behave like a �heavy gas� (Saffman, 1962).

In order to explain the physical mechanism of the two-way coupling, we write the time evolution equa-
tion of TKE, which is obtained by multiplying Eq. (13.1) by uj and ensemble averaging,

��ε(t) � Ψp(t) (13.14)

where ε(t) is the viscous dissipation rate of E(t) and Ψp(t) the energy rate of change due to the particles
drag force (Ahmed and Elghobashi, 2000):

Ψp(t) � αm�uj(vj � uj)/τp� (13.15)

and αm is the mass loading ratio (αm � αρp/ρ).
Now we show how the microparticles contribute to both Ψp(t) and ε(t). Because of their fast response

to the turbulent velocity fluctuations of the carrier flow, the microparticles are not ejected from the vor-
tical structures of their initial surrounding fluid. Figure 13.25 shows contours of the instantaneous vor-
ticity component ω2 (in a small zone whose area is 2.25 � 10�2 of the vertical midplane, x1x3, of our
computational domain) and particles locations at t � 5 for case B. It is seen that the solid particles are
not ejected from the vortex cores, and that the contours of maximum positive and negative values of vor-
ticity occupy a larger fraction ( ∼ 18%) of that zone than in case A (~9%) in Figure 13.26. Furthermore,
the inertia of the microparticles causes their velocity autocorrelation to be larger than that of their sur-
rounding fluid 〈vj vj 〉 � 〈uj uj 〉, Figure 13.27), indicating, as expected, that the microparticles retain their
kinetic energy longer than the surrounding fluid. Since the microparticles trajectories are almost aligned
with fluid points trajectories, and their kinetic energy is larger than that of their surrounding fluid, then
the correlation 〈uj vj 〉 remains higher than the fluid velocity autocorrelation 〈uj uj 〉, (Figure 13.27).
Consequently, Ψp provides a positive contribution to dE(t)/dt in Eq. (13.14) as shown in Figure 13.28, and
hence Ψp is responsible for the reduction of the decay rate of TKE relative to case A. On the other hand,

dE(t)
�

dt
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FIGURE 13.25 (Color insert follows page 13-40) Case B: microparticles (white dots) superimposed on ω 2 (color
contour) at x2 � 0.5 and t � 5.0.
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13-42 Multiphase Flow Handbook

the microparticles increase the viscous dissipation rate, ε(t), relative to that of case A (Figure 13.28). The
reason is that microparticles remain in their initially surrounding vortices (Figure 13.25), and the corre-
lation 〈uj vj 〉 remains larger than 〈uj uj 〉, as discussed above, thus causing the vortical structures to retain
their initial vorticity and strain rates longer than the particle-free flow (case A). Table 13.5 shows that at
time t � 5, the enstrophy in case B is about 86% larger than that in case A. Table 13.5 also shows that the
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FIGURE 13.26 (Color insert follows page 13-40) Case A: ω 2 (color contour) at x 2 � 0.5 and t � 5.0.
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FIGURE 13.27 Case B: time development of fluid velocity autocorrelation �u1u1�, correlation �u1v1� between the
fluid velocity and particles velocity, and particle velocity autocorrelation �v1v1�.
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mean square of the strain rate

Sij � (∂ui/∂xj � ∂uj /∂xi)/2 (13.16)

for case B is nearly 80% higher than that in case A at t � 5. The square of the strain rate tensor is related
to the three eigenvalues of Sij: the extensional (α), intermediate (β), and compressive (γ) strain rates 
(α � β � γ and α � β � γ � 0 due to incompressibility), through the relation

sijsij � α2 � β 2 � γ 2 (13.17)

At time t � 5, Figures 13.29–13.31 confirm that the values of α, β , and γ in case B are larger than those
in case A (i.e., the probability of finding a large value of α is higher in case B than in case A). The viscous
dissipation rate is related to the strain rates via

ε(t) � 2ν �sij sij � � 2ν �α2 � β 2 � γ 2�, (13.18)

and thus the viscous dissipation rate in case B is larger than that in case A at all times as shown in Figure 13.28.
This increase in ε(t) is mainfested in the reduction of the growth rate of the Kolmogorov time-scale 
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FIGURE 13.28 Time development of the negative of the energy dissipation rate �ε(t) and the fluid–particle drag
interaction energy rate Ψp(t).

TABLE 13.5 Mean Values of Enstrophy and Strain Rate at
Time t � 5

CASE 〈ω 2〉 〈sijsij〉

A–no particles 8.37 4.05
B–microparticles 15.6 7.26
C–ghost particles in zero gravity 13.1 6.20
D–critical particles 8.61 4.05
E–Large particles 3.13 1.52
F–ghost particles in finite gravity 33.6 15.6
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13-44 Multiphase Flow Handbook

τκ(t) (not shown here). Figure 13.28 also shows that the magnitude of the increase in ε(t) in case B rela-
tive to case A is less than the magnitude of increase in Ψp(t) in the former with the net result of a reduc-
tion in the decay rate of E(t) in case B according to Eq. (13.14) and is shown in Figure 13.22. Now we
discuss the effects of the microparticles on the energy spectrum E(κ) (Figure 13.23) of the carrier fluid.
The time evolution of is governed by Eq. (13.13). Microparticles contribute to all the terms on the RHS

�
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FIGURE 13.29 Probability distribution of the principal extensional strain rate α at t � 5.
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FIGURE 13.30 Probability distribution of the principal intermediate strain rate β at t � 5.
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Modeling 13-45

of Eq. (13.13) (Figures 13.32–13.34). The time evolution of E(κ), not shown here, indicates that the
microparticles first modify the high wave number portion of the spectrum, before the smaller wave num-
bers are affected as time increases. Because of their properties, microparticles (d �� η and τp �� τκ)
directly interact with the small scales of motion, augmenting their energy content. The triadic interaction
of wave numbers then alters the energy content of the other scales of motion, such that after few integral
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FIGURE 13.31 Probability distribution of the principal compressive strain rate γ at t � 5.
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FIGURE 13.32 Three-dimensional spatial spectrum of two-way coupling fluid–particle drag interaction energy rate
Ψp(�) at t � 5.0.
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13-46 Multiphase Flow Handbook

time scales, τl, E(κ) modified at all the wave numbers as compared to the particle-free case (Figure 13.23).
We have explained earlier in this section how microparticles produce a positive Ψp(t) (Figure 13.28).
Since Ψp(t) � ∫Ψp(κ) dκ at time t, in case B this integral should be positive. Figure 13.32 shows that Ψp(κ)
in case B is positive at almost all the wave numbers, and thus microparticles provide a positive two-way
coupling contribution to ∂E(κ)/∂t (Eq. [13.13]).
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FIGURE 13.33 Three-dimensional spatial spectrum of energy dissipation rate  ε(�) at t � 5.0.
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FIGURE 13.34 Three-dimensional spatial spectrum of nonlinear energy transfer rate T(�) at t � 5.0.
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Modeling 13-47

On the other hand, we have explained how the microparticles increase the dissipation rate, ε(t), in case
B, as compared with the particle-free flow (Figure 13.28). Since ε (t) � ∫ε (κ) dκ at time t, ∫ε(κ) dκ in case
B should be greater than that in case A (Figure 13.33). Also ε (κ) � 2νκ 2E(κ); thus, in accordance with
E(κ) in Figure 13.23, Figure 13.33 shows that ε(κ) in case B is greater than that in case A at medium-high
wave numbers. The increase in dissipation at high wave numbers causes a larger transfer rate of energy
to the large κ value from the small κ value. The energy transfer rate T(κ) is, thus, modified by shifting κ,
at which T(κ) � 0 toward higher wave numbers for case B as compared with case A (Figure 13.34). Due
to the increased transfer of energy from the small κ, the decay rate of E(κ) at small κ is increased, and
thus E(κ) in case B is smaller than in case A at small κ (Figure 13.23).

13.2.4.3.3.2 Critical Particles (τp/τκ 
 1). We label the particles in case D (τp/τκ � 1) as “critical” parti-
cles because of their property of maximum preferential accumulation in comparison to other particles as
will be discussed later in this section. We will show that these particles are ejected from the large-vorticity
cores of the eddies soon after injection, remain in certain orbits (Figure 13.36), and do not move from
one eddy into another as larger particles do (case E).

Now we examine how these critical particles affect Ψp(t) and ε(t) to increase the decay rate of TKE with
respect to case A (Figure 13.22). For critical particles, Ψp(t) is negative after injection (Figure 13.28) and
becomes positive at later times, t � 2.3 
 tinj � τl � 1 + τl, where τl is the turnover time of the large-scale
motion (Table 13.3). At early times (1 � t � 1 � τl) critical particles, similar to large particles, are cen-
trifuged from their initial surrounding fluid and thus 〈ujvj〉 � 〈ujuj〉. Consequently, according to
Eq. (13.15), Ψp(t) becomes negative (Figure 13.28) and thus contributes to the faster decay of TKE as
compared to case A.

At later times (t � 1 � τl), after they have been ejected from the cores of vortices, the critical particles
do not have sufficient inertia to cross the convergence regions (of high-speed fluid between the counter-
rotating vortices) and enter new eddies, similar to large particles, but rather, they accumulate in these
regions of low vorticity and high strain (Maxey, 1987; Wang and Maxey, 1993b). The occurrence of pref-
erential accumulation can be indicated by the time development of the Dc factor (Wang and Maxey,
1993b), which measures the sum of the squared differences between the actual probability of concentra-
tion, Pc(C), and the probability of random distribution, pµ

c (C),

Dc � �
Np

C�0

(Pc(C) � Pc
µ(C))2 (13.19)

where Np is the total number of computational particles (denoted by Mc in Table 13.4). Figure 13.35
shows the time development of Dc for the four cases (B–E). It is clear that in case D (critical particles),
the preferential accumulation is much larger than in the other three cases. Figure 13.36 clearly shows the
preferential accumulation of the critical particles in orbits outside the regions of large ω2.

The higher inertia of the critical particles relative to the carrier fluid causes their velocity autocorrela-
tion to be higher than that of the surrounding fluid, 〈vjvj〉 � 〈ujuj〉, indicating that critical particles retain
their kinetic energy longer than their surrounding fluid. Once these particles are in the high-velocity con-
vergence regions, characterized by pathlines of small curvature, their trajectories become more aligned
with those of the fluid points. Consequently, the correlation 〈ujvj〉 becomes larger than 〈ujuj〉 for t � 1 �

τl. Thus, Ψp(t) becomes positive (Eq. [13.15]) for t � 1 � τl (Figure 13.28). Since the high vorticity cores
are nearly free of particles, the two-way coupling force ƒκ 
 0 inside these cores, and thus the evolution
equation of vorticity reduces to that of particle-free flow. Table 13.5 confirms that the value of mean
enstrophy at time t � 5 in case D is nearly equal to that of case A, with a difference smaller than 3%.

Since the vortical structures in case D evolve nearly as that in case A, the growth rates of the turbulence
scales are nearly identical in both cases (τkd

(t) 
 τkA
(t))(not shown here). Consequently, the decay rate of

the local velocity gradients will be the same in both the cases, resulting in a similar decay of the magni-
tude of the local strain rate. Table 13.5 shows that the strain rate for case D is identical to that of case A
at t � 5. At time t � 5, Figures 13.29–13.31 confirm that the values of, α, β, γ and in case D are almost
identical to those in case A. Accordingly, the viscous dissipation rates in these two cases are nearly the
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13-48 Multiphase Flow Handbook

same (see Figure 13.28). Thus, the net effect of the modifications of Ψp(t) and ε(t) in case D (Figure
13.28) is the reduction of E(t) relative to case A. The modification of the energy spectrum E(κ) of the car-
rier flow by the critical particles (case D) is displayed in Figure 13.23. It is seen that E(κ) for case D lies
between those of case B (microparticles) and case E (large particles). Accordingly, the magnitudes of

t
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FIGURE 13.35 Time development of the Dc factor.
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FIGURE 13.36 (Color insert follows page 13-40) Case D: critical particles (white dots) superimposed on ω 2 (color
contour) at x2 � 0.5 and t � 5.0.
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Ψp(κ), ε(κ), and T(κ) of case D are intermediate between those of cases B and E (Figures 13.32–13.34).
Ψp(κ) is positive at large κ as for microparticles, and negative at small κ as for large particles. ε(κ) is such
that ε(t) � ∫ ε(κ) dκ is nearly identical to that of case A (See Figure 13.28), as discussed above. The net
result of these modifications is that, in case D, the crossover wave number of E(κ) with that of the parti-
cle-free flow (case A) lies in between the crossover wave numbers of cases B and E.

13.2.4.3.3.3 Ghost particles in zero gravity. It is clear from Figure 13.22 and the discussion in the previ-
ous subsections that in comparison with the particle-free flow (case A), microparticles (case B, τp/τκ � 0.1)
reduce the decay rate of TKE, and critical particles (case D, τp/τκ � 1.0) enhance this rate. These two
opposing effects in cases B and D lead us to search for particles that have a neutral effect on that decay rate.
More specifically, we searched for particles whose τp is in the range 0.1 � τp /τκ � 1.0 and which maintain
the decay rate of TKE as that of the particle-free flow (case A). Our DNS results show that particles with
τp/τκ � 0.25 (case C) satisfy this condition at all times, as shown in Figure 13.22. Thus we denote these par-
ticles as ghost particles because their presence in the flow cannot be detected by examining only the tem-
poral development of TKE. It is important to emphasize that the value of τp /τκ � 0.25 is not universal, but
depends on Reλ0, αm, and the magnitude of the gravitational acceleration (zero in our case). However, the
significance of this finding is that dispersed particles are capable of modifying the turbulence energy spec-
trum (Figure 13.23) in such a unique way that the amount of energy gained by the turbulence at high wave
numbers balances exactly the amount of energy lost at low wave numbers, with the net result of retaining
the integral of the spectrum equal to that of the particle-free flow at all times (Figure 13.22).

Similar to microparticles, ghost particles are not ejected from the vortex cores (Figure 13.37), and thus
they enhance the lifetime of the vortical structures, such that, at time t � 5, the enstrophy and the strain
rate in case C are larger than those in case A by about 56 and 53%, respectively (Table 13.5). Since ghost
particles have larger inertia than microparticles, their trajectories tend to deviate from those of their sur-
rounding fluid points more than the trajectories of microparticles. Thus the magnitudes of Ψp(t) and ε(t)
for the ghost particles (see Figure 13.28) are smaller than those for the microparticles. However, the mag-
nitudes of Ψp(t) and ε(t) for the ghost particles are in a unique proportion, such that the positive Ψp(t)
is only equal to the increase (∆ε(t)) in the magnitude of ε(t) with respect to case A, resulting in the net
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FIGURE 13.37 (Color insert follows page 13-40) Case C: “ghost” particles in zero gravity (white dots) superimposed
on ω 2 (color contour) at x2 � 0.5 and t � 5.0.
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13-50 Multiphase Flow Handbook

sum (Ψp(t)�∆ε(t)) being equal to ε(t) of case A. Consequently, the decay rate of TKE in case C is the
same as in case A.

13.2.4.3.3.4 Ghost particles in finite gravity. In case F, we study the effect of gravity on the two-way cou-
pling between the ghost particles of case C(τp/τκ � 0.25) and decaying isotropic turbulence. A gravitational
acceleration is imposed in the negative x3 direction, and its magnitude is prescribed, such that (vt/u0) � 0.25
(Table 13.4).

Figure 13.24 shows that due to gravity, the particles in case F reduce the decay rate of TKE relative to
cases A and C at all times. Figure 13.38 compares the temporal developments of the three rms velocity
components, ui ,rms(t) of the fluid in both cases A and F. It is seen that only the decay rate of the velocity
component in the x3 direction, u3,rms, has been considerably reduced relative to the other components, i.e.,
the two-way coupling in the presence of gravity in the x3 direction resulted in augmenting u3,rms. The
mechanisms responsible for this modulation will be discussed below by comparing the vorticity fields in
cases C (zero gravity) and F (finite gravity).

Figure 13.37 and Figure 13.39 display the contours of the instantaneous vorticity component ω2 (in a small
zone of the vertical midplane x1x3 of our computational domain) and particles locations at t � 5 for cases C
and F, respectively. We see that most of the vortical structures in case F are stretched in the x3 direction in a
banana-like shape, and the values of maximum (positive and negative) vorticity are larger than in case C.

We also see that the particles in case F tend to accumulate in patches according to the mechanism of
preferential sweeping described by Wang and Maxey (1993b). The solid particles, settling under the effect
of gravity, tend to follow a path where the local fluid instantaneous velocity is in the direction of gravita-
tional acceleration (negative x3 direction). Figure 13.39 shows that the particles accumulate on the RHS
of a vortical structure with positive (clockwise) vorticity (red color) or on the LHS of a structure with
negative vorticity (blue color). This preferential accumulation or sweeping, as expected, creates zones that
are nearly devoid of particles. Thus only the side of the vortical structure swept by the trajectories of the
particles will be subjected to a drag force, �f3, which is directed downward. As a consequence of this
asymmetry of the force acting on the fluid, local gradients ∂ f3 /∂x1 and ∂ f3 /∂x2 are generated in the hori-
zontal plane, increasing the magnitudes of the source terms, bi , the horizontal components of vorticity,
and ω1 and ω2, in addition to stretching the structures in the x3 direction.

The results discussed above provided new information about the behavior of the TKE and its dissipa-
tion rate in Zone A of the classification map in Figure 13.20 as shown in Figure 13.21. Zone A includes
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FIGURE 13.38 Time development of rms fluid velocity components.
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Modeling 13-51

three regions:

● Microparticles (τp /τκ � 0.1) that cause both TKE and its dissipation rate, ε, to be larger
than in the single-phase flow.

● Ghost particles (0.1 � τp /τκ � 0.5) that modify the energy spectrum E(κ) in a manner such
that TKE is unchanged but ε is larger than that of the single-phase flow.

● Large particles (τp/τκ � 1) that reduce both TKE and ε relative to their values in the single-
phase flow.

13.2.5 DNS of Bubble-Laden Isotropic Turbulence Using the Two-Fluid
Approach

In the preceding section we employed the Lagrangian–Eulerian approach to study the two-way coupling
interactions between solid particles and isotropic turbulence. In the present section we use the alternative
approach, known as the two-fluid or Eulerian–Eulerian approach (Elghobashi, 1994), which has been
applied frequently with the Reynolds-averaged equations of motion (Elghobashi and Abou Arab, 1983).
Recently Druzhinin and Elghobashi, 1998) employed the two-fluid approach in DNS of bubble-laden
isotropic turbulence. This section provides a condensed version of this paper (Druzhinin and Elghobashi,
1998). In this approach, the governing equations are obtained by volume averaging the equations of
motion of both the phases, (the carrier flow and bubbles) based on the assumption that the dispersed
phase behaves as a continuum under certain conditions.

The objective of this section is to describe how DNS is performed using the two-fluid approach for
bubble-laden homogeneous isotropic turbulence without applying force (i.e., decaying turbulence). It is
important to point out that in employing the two-fluid approach a difficulty may arise due to the phe-
nomenon of preferential accumulation of the dispersed particles. It is well known (Eaton and Fessler,
1994) that solid particles, due to their inertia, tend to accumulate in the low-enstrophy regions of the
flow, whereas gaseous bubbles in a liquid flow tend to accumulate in a high-enstrophy regions (Druzhinin
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FIGURE 13.39 (Color insert follows page 13-40) Case F: “ghost” particles in finite gravity (white dots) superimposed
on ω 2 (color contour) at x2 � 0.5 and t � 5.0.
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and Elghobashi, 1998, 2001), generally associated with the centers of vortices. Preferential accumulation
in homogeneous turbulence is most pronounced for particles with response times of the order of the
Kolmogorov time scale τκ (Wang and Maxey, 1993b). This segregation creates regions devoid of particles
neighboring regions of high particle concentration. Therefore, performing DNS using the two-fluid
approach may generate high concentration gradients causing numerical resolution and stability prob-
lems, thus restricting the implementation of that approach. Druzhinin and Elghobashi (1999a) recently
developed a numerical scheme that resolves the large gradients of particle velocity and concentration
fields created by preferential accumulation.

In this section we show that the two-fluid approach is applicable to bubbles with diameter smaller than
the Kolmogorov length scale, and accordingly their response time is much smaller than the Kolmogorov
time scale. Thus, the effects of preferential accumulation of bubbles in the high-enstrophy regions of the
carrier flow become less pronounced, so that DNS with the two-fluid approach can be successfully used.

13.2.5.1 Equations of Motion for the Bubble-Laden Flow

We consider spherical bubbles with diameter db to be much smaller than the characteristic length scale of
the flow, Lf , and average the equations of motion of the fluid and bubble over a length scale λ, which is
much smaller than Lf but much larger than the bubble diameter, db�� λ ��Lf. Thus the bubble phase can
be treated as a continuum characterized by the velocity Vi(r,t) and concentration (or volume fraction)
α(r,t) � πd 3

b Nb(r,t)/6, where Nb(r,t) is the bubble number density.
We assume that the density of the gas and, consequently, the mass of the bubble are negligible com-

pared with those of the surrounding fluid, ρf �� ρb � 0. By taking into account the effect of the bubbles
on the fluid flow in a unit volume of the mixture and neglecting the interactions between the bubbles, we
write derive the following equations for the bubble-laden flow (Drew, 1983; Zhang and Prosperetti, 1997)
Fluid momentum equation:

(1 � α)ρf ��(1 � α)∂i P � ∂j(1 � α)σij � αFi
d � (1 � α)ρf gδiz (13.20)

Fluid continuity equation:

�∂iα � ∂j(1 � α)Uj � 0 (13.21)

Bubble-phase momentum equation:

0 ��α∂i p � ∂j ασij � αFi
d (13.22)

Bubble-phase continuity equation:

∂iα � ∂j αVj � 0 (13.23)

In the above equations, Ui is the fluid velocity, Vi the velocity of the bubble phase, σij the viscous stress
tensor, σij � µ(∂jUi � ∂iUj), the Lagrangian derivatives D/Dt � ∂/∂t � Uj∂j and d/dt � ∂/∂t � Vj∂j are
taken along the trajectories of the fluid point and bubble, respectively, and g the projection of the gravity
acceleration on the z-axis, gi ��gδiz. Fi

d denotes the force acting on the bubble due to the pressure and
viscous stresses caused by the disturbance flow Ud owing to the boundary conditions at the bubble sur-
face. The details of the derivation of Eqs. (13.22)–(13.23) are given by Druzhinin and Elghobashi (1998).

Since we assume that the bubble mass is negligible, the sum of the forces acting on the bubble must
vanish and thus the equation of the bubble motion becomes

Fi
0 � Fi

d � 0 (13.24)

DUi
�
Dt
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Modeling 13-53

where Fi
0, the force exerted on the bubble by the undisturbed fluid flow U 0, is obtained by integrating

both the pressure and viscous stresses of the undisturbed flow over the bubble surface. For small spheri-
cal bubbles with diameter much smaller than the flow length scale,

db �� Lf (13.25)

and with Weber number less than unity, Fi
0 is given by

Fi
0 � ρf 
 � gδiz� ��∂i P

0 � ∂jσij
0 (13.26)

where P 0 and σij
0 are the undisturbed pressure and viscous stresses fields, respectively. The boundary con-

dition at the bubble surface is effectively equivalent to that for a solid sphere, rather than the stress free-
condition needed for the Hadamard–Rybczynski formula (Batchelor, 1967). Thus, for bubbles with
Reynolds number less than unity,

Re b � � 1 (13.27)

the force due to the disturbance flow, F d, can be calculated from the solution of the corresponding
unsteady Stokes problem in the form

Fi
d � (Ui

0 � Vi) � 
 � � (13.28)

The first and second terms in Eq. (13.28) correspond to the Stokes drag and added-mass forces, respec-
tively. From Eq. (13.24) we obtain an equivalent expression for the disturbance force:

Fi
d ��Fi

0 (13.29)

where Fi
0 is given by Eq. (13.26).

Therefore, the equation of the bubble motion Eq. (13.24) can be rewritten in the form

� 3 � (Ui � Vi � Wδiz) (13.30)

where the bubble response time τb and terminal velocity w are defined as

τb � (13.31)

and

W � 2τb g (13.32)

In Eqs. (13.20)–(13.23), (13.30) and the following discussion, we omit the superscript “0” in the notation
for the undisturbed fole U 0.

We assume that the bubble volume fraction, α, is small enough (i.e., α � 10�3), and therefore, neglect
its contribution to the fluid inertia and continuity, i.e., we retain α only in the buoyancy term in the
momentum equation of the carrier flow Eq. (13.20). This is analogous to the Boussinesq approximation
in a stratified fluid with effective density (1�α)ρf.

By substituting the expression for the disturbance force obtained from Eqs. (13.29) and (13.26) into
the equation for the fluid momentum Eq. (13.20), and using Eq. (13.20), we write equations of the con-
servation of the fluid- and bubble-phase momentum and mass in the form (Ruetsch and Meiburg, 1994):

�� ∂iP
∼

� ν∆Ui � (α � � α �)gδiz (13.33)
1

�ρf

DUi
�
Dt

d 2

�
36ν

1
�τb

DUi
�
Dt

dVi
�
dt

dVi
�
dt

DUi
0

�
Dt

ρf
�
2

18µ
�
d 2

db
�U 0 � V �

��ν

DUi
0

�
Dt
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∂jUj � 0 (13.34)

� 3 � (Ui � Vi � Wδiz) (13.35)

� ∂jαVj � 0 (13.36)

By using the analogy between the bubbly flow and a stratified flow with density (1�α)�f , we remove the
modified hydrostatic part in the pressure field in Eq. (13.33):

P∼ � P � ρfg�z

0

(1 � �α �) dz (13.37)

where �α � is the ensemble-averaged bubble volume fraction. In the following discussion, we evaluate �α �
as an average over a horizontal (z) plane.

13.2.5.2 Numerical Method

The momentum conservation and continuity equations (13.33)–(13.36) for both phases are solved in a
cubical domain with periodic boundary conditions. The equations are discretized in an Eulerian frame-
work using a second-order finite-difference technique on a staggered grid containing 963 points equispaced
within unit length in each of the three coordinate directions (x,y,z). The Adams–Bashforth scheme is used
to integrate the equations in time. Pressure is obtained by solving the Poisson equation using fast Fourier
transform. More details about the numerical method and its accuracy are discussed by Elghobashi and
Truesdell (1993), Gerz et al. (1989), Schumann (1977) and Ferrante and Elghobashi (2003).

13.2.5.3 Results

In this section, we present the DNS results for bubble dispersion in isotropic decaying turbulence with
one-way coupling.

13.2.5.3.1 Dispersion of Bubbles in Isotropic Decaying Turbulence (with One-Way Coupling)
DNS of bubble dispersion in isotropic decaying turbulence is performed with the initial conditions: Reλ0

� 25, U0 � 0.05, and kp /kmin � 5, which correspond to the initial dissipation ε(0) � 0.002584, Taylor
microscale λ0 � 0.027877, Kolmogorov length scale η0 � 0.002861, integral length scale L0 � 0.057815,
and viscosity ν � 5.57 � 10�5. The dimensionless gravity constant g is assumed to equal unity. The ref-
erence length and time scales used in normalizing the above dimensionless quantities are Lref � 0.098 m
and Tref � 0.1 s, respectively.

The initial bubble velocity and volume fraction (concentration) are prescribed as

Vi � δizW, α0 � C0 � 5 � 10�4 (13.38)

where the bubble terminal velocity W is given by Eq. (13.32).
The ability of the simulation to resolve the motion at the smallest turbulence scales is assured by the

criterion ηkmax � 1, where kmax � Ngπ is the highest resolved wave number for the given number of grid
points in each coordinate direction Ng ( � 96 in the present case). Our simulations show that 1 � ηkmax

� 2.65 for 0.75 � t � 10.
The choice of the bubble response time is restricted by the conditions Eqs. (13.25) and (13.27), which

can be rewritten in the form

db � η (13.39)

and

Reb � � 1 (13.40)
Wdb
�ν

∂α
�∂ t

1
�τb

DUi
�
Dt

dVi
�
dt
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Modeling 13-55

The first condition ensures that the bubble size is smaller than the characteristic flow scale, i.e., the
Kolmogorov length scale η � (ν 3/ε)1/4 in the case of decaying isotropic turbulence. The second condition
restricts the bubble Reynolds number, based on the bubble terminal velocity, to be less than one.
Substituting the terminal velocity (13.32) and the bubble diameter (db � (36ντb)

1/2) in Eq. (13.39) and
Eq. (13.40), and using the equality η2 � ντk, we rewrite conditions (13.39) and (13.40) as 

� � 0.028 (13.41)

and

τb � 
 �
1/3

� τ∗ (13.42)

It should be emphasized that conditions (13.41) and (13.42) are essential for the derivation of the bub-
ble motion equation (13.30). Thus, violating either of these conditions renders the equation of motion
(13.30) invalid. Note that Wang and Maxey (1993a) and Maxey et al. (1994) performed DNS of isotropic
turbulence laden with bubbles with τb � τk using the Eulerian–Lagrangian approach and Eq. (13.30), i.e.,
violating the condition (13.41).

Also note that in the case of solid particles, the condition dp � η (which is also required for the deri-
vation of the particle motion equation) is equivalent to (τP /τK) � (ρp/18 ρf), which allows (τP /τK) to
be � 1 for ρp � 18ρf.

In DNS of bubble-laden decaying turbulence we prescribe τb � 0.04τk0, where the initial dimension-
less Kolmogorov time scale is τk0 � 0.15. The bubbles are added to the flow at time t � 1, when the mag-
nitude of the skewness of the fluid velocity derivative reaches about 0.47, indicating an established rate of
energy transfer across the energy spectrum. At that time, τk increases to 0.22, hence ratio τb/τk � 0.027
and the time τ∗ � 0.0073 (see Eq. [13.42]). Since τk increases monotonically in decaying turbulence, con-
dition (13.41) is satisfied throughout the simulation. Thus both conditions Eqs. (13.41) and (13.42) are
met for the prescribed value of τb. The corresponding bubble Reynolds number (13.40) equals 0.74 (i.e.,
of the order of unity) and the dimensional bubble diameter is db � 350 µm (for the bubble to remain
spherical in liquid water, i.e., db � 1 mm). Therefore, the prescribed value of τb is close to the maximum
limit for the validity of the equation set (13.33)–(13.36).

Figure 13.40 shows the time development of TKE E(t), and its dissipation rate ε(t), and the concen-
tration variance �α�2 � � �(α � �α �)2 �calculated from the corresponding spectra E(k,t) and Eα(k,t) as

E(t) � �
Ng /2

k �1

E(k, t) (13.43)

∈(t) � 2ν �
Ng /2

k �1

k2E(k, t) (13.44)
and

� α�2 � (t) � �
Ng /2

k �1

Eα(k, t) (13.45)

normalized by the spective initial values E(0), ε (0) and α0
2. Both E(t) and ∈(t) decay in time due to the

viscous dissipation. On the other hand, the bubbles concentration variance first increases from zero to 
�α� 2 � � 5.1 � 10�3α0

2 (for time 1 � t � 5, where t � 1 is the time of injecting the bubbles into the flow),
and then decays. The growth of the concentration variance is caused by the preferential accumulation of
bubbles in the high-enstrophy regions of the flow. The effects of the bubble accumulation as well as the
decay of the concentration variance for t � 5 are discussed below.

Figure 13.41 shows the spectra of the fluid kinetic energy, E(k), the dissipation, ε(k) � 2νk2E(k), and the
bubble concentration fluctuations, Eα(k), at time t � 3 (here and below, for convenience, we omit the
explicit reference to the time dependence of E(k,t), ε(k,t) and Eaα(k,t)). At this time, the energy spectrum

ν
�
144g2

1
�
36

τb
�τk
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peaks at k � 3. Note that since the transport equation of bubble concentration is of the advection
(Lagrangian) type, there is no molecular dissipation of the bubble concentration fluctuations. Thus there
is no decay in the spectrum Eα(k) at high wave numbers, rather, the fluctuations intensity piles up at larger
wave numbers (cf. Figure 13.41). Note however, that the concentration variance Eq. (13.45) remains finite
and small, relative to the average concentration α2

0, throughout the computations (cf. Figure 13.40).
Figure 13.42 shows the DNS results obtained at t � 3 for the bubble concentration (gray scale) and flow
enstrophy field (contour lines) in the (x,y) plane at z � 0.5. Although the bubble response time is much
smaller than the Kolmogorov time scale, we still observe the accumulation of bubbles in the zones of max-
imum enstrophy (corresponding to the centers of intense vortices). This means that even for such small τb,
the bubble inertia, owing to the added mass, influences the bubble motion and causes the preferential accu-
mulation of bubbles in the high-enstrophy regions of the flow and the initial growth of the concentration
variance. Note that the time interval ∆t � 2 corresponds approximately to six characteristic vortex time
scales, �ω 2 ��1/2, estimated as an average Kolmogorov τ�k time for 1 � t �3, �ω2��1/2 τ�k � 0.3.

In order to quantify the accumulation effects we calculated the enstrophy-conditioned average bubble
concentration, �α �ω , and its variance, �α�2 �ω, defined as

�α �ω � �
N(ω 2)

j�1

αj/α0 (13.46)

�α�2 �ω � �
N(ω 2)

j�1

(αj /α0 � �α �ω)2 (13.47)

where N(ω 2) is the number of grid points where the enstrophy value lies within the range [ω 2, ω 2�∆ω 2],
and using the data shown in Figure 13.42 with the enstrophy increment ∆ω2 � 0.5. Figure 13.43 shows the

1
�
N(ω 2)

1
�
N(ω 2)
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FIGURE 13.40 Time dependence of the normalized turbulence kinetic energy E(t)/E(0) (solid curve), its dissipa-
tion rate ε(t)/ε(0) (dashed curve) and variance of bubble volume fraction (concentration) �α�2�/α2

0 	 �C�2�/C 2
0

(dash-dotted curve).
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FIGURE 13.41 Spectra of the turbulence kinetic energy E(k) (solid curve), dissipation ε(k) (dashed curve) and bub-
ble volume fraction (concentration) fluctuations Eα(k) 	 Ec(k) (dash-dotted curve).
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FIGURE 13.42 Turbulence enstrophy and bubbule volume fraction (concentration), α 	 C, normalized by the
maximum values.
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13-58 Multiphase Flow Handbook

dependence of �α �ω and �α�2 �ω on ω2. As in the case of bubble dispersion in the Taylor–Green (TG) vortex
discussed in Druzhinin and Elghobashi (1998), both �α �ω and �α�2 �ω increase in the high-enstrophy regions
of the flow. However, since the bubble response time is much smaller than the Kolmogorov time scale, the
bubble preferential accumulation is significantly reduced compared with the TG-vortex case (Druzhinin and
Elghobashi, 1998), where τb � τf. Also note also that fluctuations of both 〈α 〉ω and 〈α�2 〉ω grow as the enstro-
phy increases, which shows the intermittent nature of the high-enstrophy regions in turbulence.

Now, we introduce a mathematical model to explain how the ratio τb/τk governs the preferential accu-
mulation process and the growth of the local concentration gradients in isotropic turbulence.

Let us consider a single vortex with a radius of the order of the Kolmogorov length scale η and core
vorticity ω0 � 1/τk. Assume that the bubble response time is much smaller than the Kolmogorov time
scale, τb/τk �� 1. Then, the local accumulation rate can be estimated from the solution for the bubbles
concentration in the TG vortex (Druzhinin and Elghobashi, 1998) as

� τbω0
2 � (13.48)

Thus the difference in bubble concentration between the inside and the outside of the vortex, ∆α � αi �

αο, related to (τb/τk) via

� (13.49)

and the corresponding concentration gradient is

~ ~ (13.50)
τb

�ητk

∆α
�αoη

�∇α �
�αo

τb
�τk

∆α
�αo

τb
�τk

2

∂α /∂ t
�α0
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FIGURE 13.43 Dependence of the enstrophy-conditioned average bubble volume fraction (concentration), �α�ω 	
�C�ω, (solid curve) and its variance �α�2�ω 	 �C�2�ω (dashed curve) on the enstrophy.
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Modeling 13-59

Note that according to Eq. (13.49), the variance of the concentration fluctuations is proportional to the
ratio (τb /τk)

2, which decreases with time in decaying turbulence, since the Kolmogorov time scale increases
monotonically. This prediction agrees with our DNS results for �α�2 � given in Figure 13.40, which shows
that the concentration variance decays with time after the initial transient (1 � t � 5).

It should be noted that both the accumulation of bubbles and the absence of the diffusivity in the
transport equation for the bubble concentration Eq. (13.36) may lead to instabilities in the numerical
solution due to the development of steep gradients in the concentration field. The occurrence of this
numerical instability depends on the initial distribution of the bubble concentration, the flow Reynolds
number, and the bubble response time. In the DNS, we chose the initial microscale Reynolds number 
Reλ0 � 25, so that at the time of the injection of bubbles (t � 1), the small-scale motions are resolved, i.e.,
kmaxη � 1, where kmax � Ngπ is the maximum wave number for the given grid resolution Ng�96. The
numerical instability may occur for higher-inertia bubbles, i.e., for τb of the order of the Kolmogorov time
scale τk. However, prescribing τb � τk would violate the condition db � η, which is necessary for deriving
Eq. (13.35) of bubble motion.

In our DNS we prescribe τb � 0.04τk0 � 0.006, for which the bubble diameter (db � 3.47 � 10�3) is
smaller than the Kolmogorov length scale at the time of bubble injection (η � 3.5 � 10�3 at t � 1) (both
db and η are dimensionless here), to remain within the validity limit of Eq. (13.35). No instability occurs
in our DNS under these conditions, for both the cases of the initially uniform and the initially linear bub-
ble concentration fields. This is evident in Figure 13.44 which shows the instantaneous concentration vari-
ance spectra, obtained from our DNS for the initially uniform bubble distribution, at four different times.
The time evolution of the concentration spectrum in Figure 13.44 and the corresponding concentration
variance �α�2 � (dash-dotted curve in Figure 13.40) show that no numerical instability occurs. The spectrum
EC(k) at high wave numbers approaches an asymptotic form at t � 10 (Figure 13.44). The high wave-num-
ber range in the spectrum (i.e., k � 40) would detect any numerical instability if it existed. Furthermore,
Figure 13.40 shows that the concentration variance �α�2 �, decays with time for t � 5.

10 20 30 40
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10−5

10−4

10−3

10−2

Ec

Re�0=25, �b=0.04�k0(1-way, C0=�0)

t =2

t =3
t =6

t =10

FIGURE 13.44 Instantaneous spectra of the bubble volume fraction (concentration) fluctuations Eα(k) 	 Ec(k) at
four different times (with one-way coupling).
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13-60 Multiphase Flow Handbook

The reason for the absence of the instability is that the fluctuations of the bubble concentration, caused
by the preferential accumulation, are proportional to the ratio τb/τk, which decreases with time (∼1/t) in
decaying turbulence, as discussed above.

13.2.6 DNS of Turbulent Shear Flows Laden by Dispersed Solid Particles or 
Bubbles

In the above subsections we described our DNS studies for nonsheared turbulent flows. Here we describe
briefly two recent DNS studies on turbulent shear flows, one homogeneous shear and the other inhomo-
geneous, laden with particles or bubbles.

13.2.6.1 The Mechanisms of Modifying the Structure of Turbulent Homogeneous Shear
Flows by Dispersed Solid Particles

This study (Ahmed and Elghobashi, 2000) is concerned with answering the question: what are the phys-
ical mechanisms responsible for the modification of the turbulence structure by solid particles dispersed
in a homogeneous shear flow? We employ DNS to examine the effects of the two-way interaction between
the two phases on the turbulence structure. Our results indicate that particles affect the rate of produc-
tion of turbulence energy via modifying the vorticity dynamics. It is known that regions of large pro-
duction rate of turbulence energy are sandwiched between counterrotating vortices whose vorticity, ωs,
is aligned with the axes of the longitudinal vortex tubes. These longitudinal vortex tubes are strongly
inclined toward the streamwise direction due to the imposed mean shear. The stronger ωs is the longer
the production rate. The dispersed solid particles modify the alignment of the local vorticity vector, ω,
with the axis of the longitudinal vortex tube. Increasing this alignment, increases the ωs, which in turn
augments the turbulence production rate, and vice versa. In addition, due to the enhanced strain rate of
the carrier fluid by the particles, the dissipation rate of turbulence energy is always increased. The parti-
cles also reduce the alignment of the vorticity vector with the intermediate eigenvector (β) of the strain
rate tensor. This reduction in alignment is due to an increase in the rotational term and particle-source
term in the governing equation of the cosine of the angle between the vorticity vector and the interme-
diate strain eigenvector.

13.2.6.2 DNS of a Microbubble-Laden, Spatially Developing Turbulent Boundary Layer
over a Flat Plate

The objective of the present section (Ferrante and Elghobashi, 2004) is to explain in as much detail as
possible, the physical mechanisms responsible for the reduction of skin friction in a microbubble-laden,
spatially developing turbulent boundary layer over a flat plate, for Reθ � 1430. Our DNS results with
microbubbles volume fraction ranging from α � 0. 001 to 0.02 show that the presence of bubbles results
in a local positive divergence of the fluid velocity, ∇⋅U � 0, creating a positive mean velocity normal to
(and away from) the wall, which in turn reduces the mean streamwise velocity and displaces the quasi-
streamwise longitudinal vortical structures away from the wall.

This displacement has two main effects:
(1) it increases the spanwise gaps between the wall streaks associated with the sweep events and

reduces the streamwise velocity in these streaks thus reducing the skin friction by up to 20.2%
for α � 0.02;

(2) it moves the location of peak Reynolds stress production away from the wall to a zone of a
smaller transverse gradient of the mean streamwise velocity (i.e., smaller mean shear), thus
reducing the production rate of TKE and enstrophy.

13.3 Continuous-Phase Equations

Clayton T. Crowe
Unlike the flow of a single-phase liquid or gas, the carrier phase of a dispersed-phase flow contains dis-
persed particles or droplets. For analysis, the ideal situation would be to solve the governing conservation

© 2006 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n]
 a

t 1
2:

18
 3

0 
Se

pt
em

be
r 

20
15

 



Modeling 13-61

(continuity, momentum, and energy) equations for the carrier phase by accounting for the boundary
conditions imposed by each and every particle or droplet in the field. This would provide a complete
description of the carrier phase throughout the mixture.

Computationally, this would require a grid dimension at least as small as the smallest particle in the
field. Such a solution is beyond current computer capability. Solutions have been obtained in limited
cases with a finite number of particles in a low Reynolds number (Stokes) flow (Brady, 1993). Also
numerical solutions have been obtained for flows in which the particles occupy no volume but produce
a drag force on the flow (Elghobashi and Truesdell, 1992; Squires and Eaton, 1991). These solutions are
also limited to low Reynolds numbers. In general, however, one must resort to the use of equations based
on the average properties in a flow.

The purpose of this section is to introduce the averaging procedures and to present the equations in
volume average form suitable for numerical model development. The equations for kinetic energy of tur-
bulence are presented and discussed at the end of this section

13.3.1 Averaging Procedures

In essence, there are three approaches to averaging the continuous phase equations: time, volume, and
ensemble averaging.

13.3.1.1 Time Averaging

The time average is the result of averaging the flow properties over time at a point in the flow as shown
in Figure 13.45. This type of measurement corresponds to a hot-wire or laser-Doppler anemometry,
which has been used extensively to obtain average and fluctuation properties in single-phase flows. The
time average of property B of the fluid is defined as

B
∧

� �T

0

B dt (13.51)

where T is the averaging time.
Assume that the velocity of each phase is measured as particles and fluid pass the measuring point. The

signal may appear as shown in Figure 13.46. Obviously, the averaging time must be large compared with
the local fluctuation time, t�, in order to define an average value. Yet, the averaging time must be smaller
than the time associated with the system change, T�.

t� �� T �� T�

In many transient flow systems, this condition may not be realizable. A true time average can only be
obtained in a steady flow system and is given by

u
∧

� lim
T→


�T

0

u dt (13.52)

A more detailed discussion on temporal averaging is provided by Ishii (1975).

13.3.1.2 Volume Averaging

Volume averaging is carried out by averaging properties at an instant in time over a volume and ascrib-
ing the average value to a point in the flow. For example, the volume-averaged property B would be
defined as

B� � �
V

B dV (13.53)

where V is the averaging volume. Assume that the distribution of the dispersed-phase mixture appears as
shown in Figure 13.47, where � is the nominal distance between the particles and L is a distance that

1
�
V

1
�
T

1
�
T
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13-62 Multiphase Flow Handbook

characterizes the spatial change in mixture properties. Obviously, in order to obtain a near stationary aver-
age (an average which does not change with a change in the size of the averaging volume), the averaging
volume must be much larger than �3. However, in order that the average provide a local value for B in the
field, the averaging volume must be much less than L3. Thus the constraints on the averaging volume are

�3 �� V �� L3 (13.54)

This constraint is essential to approximate spatial derivatives of B� in the flow field. An accurate volume
average is only possible for a homogeneous mixture.

Measurement
Location

FIGURE 13.45 Measurement location in a multiphase flow field.

V
el

oc
ity

u

Time t

T

t ′

FIGURE 13.46 Velocity variation with time at measurement point.
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Modeling 13-63

Besides the volume average defined by Eq. (13.53), there is also a phase average, which is the average
over the volume occupied by the phase:

{B} � �
Vc

B dV (13.55)

where Vc is the volume associated with the continuous phase. This defines the phase average for the con-
tinuous phase. If B is the density of the continuous phase, then {ρc} is the average material density of the
continuous phase. If the density is constant, then {ρc}�ρc . The relationship between the volume-averaged
property and the phase average for the continuous phase is {B}�αcB�.

Several authors have used the volume averaging approach to derive the equations for the continuous
phase in a mixture. Drew (1983) introduced a phase function

Xk(xi, t) � �1 if xi is in phase k and time t (13.56)

0 otherwise

The basic equations are then multiplied by Xk(xi ,t) and averaged including the discontinuity at the sur-
faces between the dispersed and continuous phases.

Crowe (1998) used the formulation, introduced by Slattery (1972), to relate the volume average of the
derivative to the derivative of the volume average

� {B} � �
Sd

Bni dS (13.57)
1
�
V

∂
�∂xi

∂�B�
�∂xi

1
�
Vc

L

l

FIGURE 13.47 Spatial distribution of particles in spatial averaging field
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where the integral is taken over the interface, Sd, between the continuous and dispersed phase. The prop-
erty B can be a scalar or a vector. Another relation used in the analysis is for the volume average of the
time derivative

� {B} � �
Sd

Br
.
dS (13.58)

where r. is the local regression rate of the surface with respect to coordinates moving with a dispersed-
phase element. The equations presented in this section are based on this approach. Special attention is
given to the disperse-phase elements that are severed by the control surface. These are referred to as
boundary elements.

Another approach to volume and temporal averaging has been developed by Roco and Shook (1985)
and has been applied to liquid–solid flows.

13.3.1.3 Ensemble Averaging

Ensemble averaging avoids the shortcomings of time and volume averaging, but is much more difficult
to implement. Ensemble averaging is based on the probability of the flow field being in a particular con-
figuration at a given time. For example, assume that the distribution of the fluid density over a region is
measured many times. It is found that there are N different configurations and that the distribution in
each configuration (realization) at a given time t is

ρεc� fη(xi, t) (13.59)

where η is one realization of the N configurations (ensemble). Assume that n(η) is the number of times
that configuration fη(xi,t) occurred. The ensemble average is then defined as

�ρc� � (13.60)

In the limit of an infinite number of realizations, the above equation becomes

�ρc � � �1

0

f(xi, t, µ) dµ (13.61)

where µ is the probability that the realization f(xi,t) will occur. Obviously, ensemble averaging is not lim-
ited by volume or time constraints.

Joseph et al. (1990) applied ensemble averaging techniques to develop the equations for an incom-
pressible fluid–particle suspension. They used an indicator function for both the solid and the fluid. The
ensemble average of the indicator functions give volume fractions. The resulting equations differed from
those postulated from mixture theory, particularly the form of the stress terms.

Hinch (1977) utilized ensemble averaging to find the relationship between bulk stress and bulk strain
rate for force-free particles.

Zhang and Prosperett (1994) addressed ensemble averaging of a mixture of identical particles in an
inviscid, incompressible fluid. They defined a function ζN representing a specific configuration of a sys-
tem with position vectors and velocities. They also defined an indicator function χC which is unity for the
continuous phase and zero otherwise. Relationships were developed for the ensemble averages of the time
and spatial derivatives in terms of the time and spatial derivatives of the ensemble averages. These rela-
tionships were then used to develop the ensemble-averaged form of the conservation equations. In 1997,
Zhang and Prosperetti extended the model to viscous Newtonian flows. The authors continued their
work (Machioro et al., 1999) to address the mixture pressure and shear stress.

The conservation equations presented in this section are based on volume averaging. The detailed deri-
vations for the continuity and momentum equations can be found in Crowe et al. (1998). The majority of
numerical models for multiphase flows are based on volume discretization. Also, the volume-averaging
approach is amenable to Large Eddy Simulation (LES).

�N fη(xi, t)n(η)
���N n(η)

1
�
V

∂
�∂ t

∂�B�
�∂ t
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13.3.2 Mass Conservation

The general statement for mass conservation is that the net efflux of mass from a control volume plus the
rate of accumulation of mass flow in the volume is zero. Starting with the continuity equation for the con-
tinuous phase,

� (ρcui) � 0 (13.62)

Taking the volume average yields

�
�

(ρ
�

c

�
u
�

i

�
)
�

� 0 (13.63)

Applying Eqs. (13.57) and (13.58) yields (Crowe et al., 1998)

(αc{ρc}) � (αc{ρcui}) �� �
k

m.
k (13.64)

where m.
k is the rate of change of mass of the dispersed-phase element (droplet) k and the summation is car-

ried out over every element in the averaging volume. This is the mass source term or the mass coupling term.

Smass �� �
k

m.
k (13.65)

For evaporating droplets, m.
k � 0, hence mass coupling term would be positive. If all the droplets evapo-

rate at the same rate, the mass source term simplifies to Smass��nm. .
For convenience, the mass-averaged velocity, defined by

u~i � (13.66)

will be used. If the density of the continuous phase is constant, the volume average and mass average
velocities are the same. If, however, the continuous-phase density is nearly constant over the averaging
volume, then u∼i � {ui}. Thus the continuity equation is written as

(αc{ρc}) � (αc{ρc}u~i) � Smass (13.67)

All averaging techniques yield the same form of the continuity equation. Some derivations do not include
the mass coupling term. For numerical models that treat the dispersed phase as point (no volume) ele-
ments, the volume fraction of the continuous phase, αc, is set equal to unity and the continuity equation
simplifies to

{ρc} � ({ρc}u~i) � Smass (13.68)

which is the same as the continuity equation for single-phase flow, except for the mass coupling term.
If the continuous phase is a gas, which consists of component chemical species, then the continuity

equation for species A would be

(αc{ρc}ωA) � (ωA{ρc}αcu
~

i) � ωA,SSmass � 
αc{ρc}�A � � R
.

A (13.69)

where ωA is the mass fraction of species A, ωA,S is the mass fraction of species A at the droplet surface, �A

the diffusion coefficient, and R
.

A the mass generation rate of species A per unit volume due to a chemical
reaction. In this equation, u~i is the mass-averaged velocity for the mixture.

∂ωA
�∂ xi

∂
�∂xi

∂
�∂xi

∂
�∂ t

∂
�∂xi

∂
�∂ t

∂
�∂xi

∂
�∂ t

{ρcui}
�

{ρc}

1
�
V

1
�
V

∂
�∂xi

∂
�∂ t

∂
�∂xi

∂�ρ�c��∂ t

∂
�∂xi

∂ρc
�∂ t
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13-66 Multiphase Flow Handbook

13.3.3 Momentum Conservation

The momentum equation for the continuous phase is

(ρc ui) � (ρcuiuj) �� � � ρc gi (13.70)

where τij is the shear stress tensor and gi the acceleration due to gravity. Taking the volume average of each
term and accounting for the boundary elements yields

(αc{ρc}u~i) � (αc{ρc}u~ju
~

i) �� � �k
vk,im

.
k (13.71)

� {τij} � (αc{ρcu�iu�i}) � �k
Fi,k � αc{ρc}gi

where νk,i is velocity of the dispersed phase element k and Fk,i is the hydrodynamic force produced by the
continuous phase on particle k. The velocity u�i is

u�i � ui � u~i

or the deviation of the local velocity in the averaging volume from the mass-averaged value.

The term �1/v�k
vk,im

.
k is the momentum coupling term due to addition of mass (and momentum)

to the continuous phase and will be identified by

Smom,m
. �� �

k

vk,im
.

k (13.72)

If all the dispersed-phase elements are moving at the same velocity, νi , then

Smom,m
. � viSmass (13.73)

If all the dispersed-phase elements are losing mass at the same rate, m. , then

Smom,m
. ��m

.
{vi}n (13.74)

The term �(∂/∂xi)(αc{ρcu�iu�j}) is analogous to the Reynolds stress in a single-phase flow. The flow does 
not have to be turbulent to create this stress, because velocity deviations can occur by the flow around
individual particles. In order to evaluate the shear stress terms, constitutive models are necessary to relate
the shear stress to the properties of the conveying phase. One approach is to define an effective stress

{τij}
e ��{ρcu�iu�j} (13.75)

and to assume that the effective shear stress can be represented by

{τij}
e � µe
 � � (13.76)

where µe becomes the effective viscosity. This is referred to as the Boussinesq approximation. The effec-
tive shear stress is related to the turbulence parameters of the flow. It is a common practice to use the k–ε
methodology, common to single-phase flows, to estimate the effective shear stress. It is unlikely that this
approach is useful since the gradients in the average velocity do not capture the local gradients imposed
by the presence of the particles.

The hydrodynamic force on dispersed-phase element k is the integral of the pressure forces and shear
stress acting on the particle surface, Sk.

Fk,i � �
Sk

(�pni � τijnj) dS (13.77)

∂u~j
�∂xi

∂u~i
�∂xj

1
�
V

1
�
V

∂
�∂xj

∂
�∂xj

1
�
V

∂{p}
�∂xi

∂
�∂xj

∂
�∂ t

∂τij
�∂xj

∂p
�∂xi

∂
�∂xj

∂
�∂ t
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Modeling 13-67

expressing the pressure as p�{p}�δp and τij�{τij}�δτij, the force becomes

Fij ��Va � Vd � �
Sk

(�δ pni � δτd nj) dS (13.78)

��Vd � Vd � Lk,i

The last term, Lk,i, represents the sum of all the other forces: the lift force, the steady-state drag, the vir-
tual mass, and Basset term. Substituting this equation into Eq. (13.69) for the force yields

(αc{ρc}u~i) � (αc{ρc}u∼ju
∼

i) ��αc � Smom,m
. (13.79)

� αc {τij} � (αc{ρcu�iu�i}) � �k
Li,k � αc{ρc}gi

This is nearly the same form as obtained using ensemble averaging (Zhang and Prosperetti, 1997). With
ensemble averaging, there is one additional term relating to the momentum transfer associated with the flow
around individual particles. This effect is in the Reynolds stress term, which is not singled out by volume
averaging.

If the Lk,i force consists only of steady-state drag, the momentum equation becomes

(αc{ρc}u~i) � (αc{ρc}u∼ju
∼

i) ��αc � Smom,m
. (13.80)

� αc {τij} � (αc{ρcu�iu�i}) � �k
3πµcdk fk(ui � vi,k) � αc{ρc}gi

where fk is the ratio of the drag to Stokes drag for particle k. If all the dispersed-phase elements have the
same size and move at the same speed, νi, then the momentum equation simplifies to

(αc{ρc}u∼i) � (αc{ρc}u∼ju
∼

i) ��αc � nm. vi (13.81)

� αc {τij} � (αc{ρcu�iu�i}) � αdρd (ui � vi) � αc{ρc}gi

In the case of bubbles, the steady-state drag is not the most important force and other forces, such as vir-
tual mass, must be included.

If the dispersed-phase elements occupy no volume (point particles), then

({ρc}u~i) � ({ρc}u~ju
~

i) �� � nm. vi (13.82)

� {τij} � ({ρcu�iu�i}) � ρ�d (ui � vi) � {ρc}gi

where ρ�d is the bulk density of the dispersed phase.
In DNS of multiphase flows, averaging is not used. In the case of point particles, the equation of

motion for the continuous phase is

(ρcui) � (ρcuiuj) �� � � ρcgi � fp,i (13.83)
∂τij
�∂xj

∂ p
�∂xi

∂
�∂xj

∂
�∂ t

f
�τv

∂
�∂x j

∂
�∂x j

∂{p}
�∂xi

∂
�∂x j

∂
�∂ t

f
�τv

∂
�∂x j

∂
�∂x j

∂{p}
�∂xi

∂
�∂x j

∂
�∂ t

1
�
V

∂
�∂x j

∂
�∂x j

∂{p}
�∂xi

∂
�∂x j

∂
�∂ t

1
�
V

∂
�∂x j

∂
�∂x j

∂{p}
�∂xi

∂
�∂xj

∂
�∂ t

∂{τij}
�∂xj

∂{p}
�∂xi

∂{τij}
�∂xj

∂{p}
�∂xi
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where fp,i is the force acting at the point due to the neighboring the dispersed-phase elements. Some of
the examples of DNS are provided in Section 13.2.3. Further, examples using DNS and LES with point
particles can be found in Boivin et al. (2000)

13.3.4 Energy Equation

There are two forms for the energy equation: the total energy equation that includes the kinetic energies,
and the thermal energy equation, which addresses the change of thermal properties of the fluid. The ther-
mal energy equation is obtained by subtracting the dot product of the local velocity and the momentum
equation from the total energy equation. The result is

(ρcic) � (ρcuiic) ��p � τij � (13.84)

where ic is the internal energy of the continuous phase and q.i is the heat transfer rate to the continuous
phase. If the fluid is incompressible, then ∂ui /∂xi�0 and the first term on the RHS disappears. The sec-
ond term is the dissipation term, which is always positive, and represents the irreversible conversion of
mechanical into thermal energy. This term will be represented by φ. The equation reduces to

(ρcic) � (ρcuiic) � φ � (13.85)

Performing the volume-averaging operation on this equation yields

(αc{ρc}i
~

c) � (αc{ρcuiic}) (13.86)

�� �
k

m.
kis ,k � αc{φ} � 
keff � � �

k

q. k

where the first term on the RHS is the energy input due to mass transfer from the dispersed phase car-
ried out over all elements in the control volume. This term will be designated as Sener,m

. .
The third term is the conductive heat transfer through the mixture where keff is the thermal conduc-

tivity for the mixture. A first-order model for keff would be

keff � αckc � αdkd (13.87)

where kc and kd are the thermal conductivities of the continuous and dispersed phases, respectively. The
last term is the conductive heat transfer from the dispersed-phase elements to the continuous phase. It
would be evaluated by

�
k

q.k � πkc�
k

Nukdk(Td,k � {Tc}) (13.88)

where Nuk is the Nusselt number and the summation is carried out over all elements in the control 
volume.

The convection term on the LHS of the Eq. (13.85) can be rewritten as

(αc{ρcuiic}) � (αc{ρc}{ui}i
~

c) � (αc{ρc}{u�ii�c}) (13.89)

where u�i and i�c are the deviation in velocity and internal energy from the averaged values. The additional
term can be regarded as the heat transfer due to turbulent fluctuations, analogous to Reynolds stress, and
possibly may be modeled as

∂
�∂xi

∂
�∂xi

∂
�∂xi

∂ �Tc�
�∂xi

∂
�∂xi

1
�
V

∂
�∂xi

∂
�∂ t

∂q.i
�∂xi

∂
�∂xi

∂
�∂ t

∂q.i
�∂xi

∂ui
�∂xj

∂ui
�∂xi

∂
�∂xi

∂
�∂ t
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Modeling 13-69

{ρc}{u�ii�c} � kt (13.90)

where kt is the heat transfer coefficient due to turbulence, which may be determined from the experiment
or, possibly, PDF methodologies. By Reynolds analogy, one can make an estimate for kt using kt � µecm,
where cm is the specific heat of the mixture and µe is defined by Eq. (13.76).

Taking the internal energy as the product of the temperature and specific heat allows one to write the
energy equation as

(αc{ρc}cm{Tc}) � (αc{ρc}u~i cm{Tc}) (13.91)

� Sener,m
. � αc{φ} � �(αccmµe � keff) �

� πkc�
k

Nukdk(Td,k � {Tc})

In actual applications of this equation, order or magnitude analyses would be useful to eliminate terms,
that can be neglected. The form of the equation is similar to that reported in Zhang and Prosperetti (1997).

13.3.5 Turbulence Equations

Several derivations of the equations for the turbulent energy of the continuous phase have appeared in
the literature. Most of the derivations (e.g., Elghobashi and Abou-Arab, 1973; Chen and Wood, 1975),
begin with the momentum equation in the form

(αc ρcui) � (αc ρcujui) ��αc � αc τij � fi � αc ρc gi (13.92)

where fi is the force of the disperse phase on the continuous phase per unit volume of mixture. The 
derivations proceed using a Reynolds decomposition to develop the equations for turbulence energy 
in the same manner as for single-phase flows. The above equation implies that the velocities are defined at
a point, which is not the case for averaged equations. This equation can only be regarded as a short-hand
notation for the actual momentum equation (13.79) where the velocities are volume–averaged. Reynolds
decomposition using volume (or ensemble)-averaged velocities does not yield the fluctuation velocity

{ui} � {ui} � u�i (13.93)

Unfortunately, there is a whole body of literature based on this misconception (Crowe, 2000).
Another approach (Crowe, 1998) is to start with the mechanical energy equation for the continuous

phase obtained, by taking the dot product of the momentum equation and the velocity. The resulting
equation is


ρc � � 
ρcuj � ��ui � ui � ρcui gi (13.94)

By taking the volume average of this equation and subtracting the dot product of Eq. (13.79) and {ui},
one obtains an equation for the turbulence kinetic energy

kc � � � (13.95)

in the form

(αc ρckc) � (αcρc{ui}kc) (13.96)
∂

�∂xi

∂
�∂ t

u�iu�i
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13-70 Multiphase Flow Handbook

� 
σc � � αc ρc{u�iu�j}

� αd ρd �{ui} � {vi}�
2

� αdρd ({v�iv�i} � {u�iv�i})

� αcε

where the unsteady forces on the disperse phase have been neglected and all dispersed-phase elements are
assumed to have the some size. This equation has the same terms as for single-phase flow. The first two
terms on the RHS are the diffusion and generation of turbulence and the last term on the RHS is the dis-
sipation. The dissipation is given by

ε � � � (13.97)

There are two additional terms that account for the presence of the dispersed phase. The third term on
the RHS is the turbulence generation due to particle drag. The fourth term relates to the kinetic energy
transfer between phases and is generally much smaller than the third term. Similar forms of the turbu-
lence energy equation have been reported by Liljegren and Fosslein (1994), Hwang and Shen (1993),
Kataoka and Serizawa (1989), and Kashiwa and VanderHeyden (2000).

Equations for the dissipation of turbulence are generally adhoc extensions of the dissipation equations
used for single-phase flow. More developments with the dissipation equation can be found in Kashiwa
and VanderHeyden (2000).

More information on multiphase turbulence is provided in Section 12.6.

13.4 Dispersed Phase Equations

A. Berlemont, Clayton T. Crowe, M. Reeks, and O. Simonin
There are essentially three approaches to modeling the particle flow field. One approach to follow ind-
vidual particles or sample particles. This is the Lagrangian approach. Another technique is to treat the
particles as a cloud with continuum-like equations. This is the Eulerian approach. Another approach is
to use particle ditribution functions (PDF approach) to describe the particle flow properties.

13.4.1 Lagrangian Approach

A. Berlemont and Clayton T. Crowe

The Lagrangian approach is applicable to both dilute and dense flows. In dilute flows, the time between
particle–particle collisions is larger than the response time of the particles (or droplets), so the motion of
the particles is controlled by the particle fluid interaction, body forces, and particle-wall collisions. In a
dense-phase flow, the response time of the particles is longer than the time between collisions; thus par-
ticle–particle interaction not only controls the dynamics of the particles, but is also influenced by the
hydrodynamic and body forces as well as particle–wall interaction. If the flow is steady and dilute, a form
of the Lagrangian approach known as the trajectory method (Crowe et al., 1977) is easy to implement. If
the flow is unsteady and dense, a more general discrete element approach is necessary.

13.4.1.1 Trajectory Method

The trajectory approach can be explained best with reference to an example. Consider a nozzle spraying
a liquid at a steady rate into the chamber shown in Figure 13.48. Assume, that the flow is steady, so the
spatial distribution of the carrier flow properties is invariant with time. The flow field is subdivided 
into a series of computational cells as shown. The inlet stream is discretized into a series of starting 

∂u�i
�∂x j

∂u�i
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Modeling 13-71

trajectories. If the initial droplet velocity and mass are known, the droplet velocity can be calculated by
solving the droplet motion equation (Section 1.4) in the flow field, namely,

� � g (13.98)

where Ff is the fluid forces (form and friction forces) acting on the droplet of mass m and g, the gravity
vector. The trajectory is obtained from

� v (13.99)

where xp is the droplet position. The integration scheme to be used depends on the desired accuracy and
computational efficiency.

Concurrently, the droplet temperature history can be calculated using

� (Q
·

d � m. hL) (13.100)

where Q
.

d is the sum of both the convective and radiative heat transfer to the particle or droplet. If the
Biot number of the droplet is large, this equation must be modified to account for the fact that the sur-
face temperature is not the average temperature in the droplet.

The droplet mass transfer must also be calculated along the trajectory according to the relations given
in Section 1.4. Evidently, the droplet diameter must be adjusted to conform with the droplet mass unless
the application is the drying of a porous particle.

Assume that the mass flow entering from the atomizer is discretized into j trajectories and the mass
flow associated with each trajectory is M

.
(j). Then the number flow rate along trajectory j would be

n· ( j) � (13.101)
M· ( j)
�
(π /6)ρdd0

3

1
�
mcd

dTd
�
dt

dxp
�
dt

Ff
�
m

dv
�
dt

Trajectories

Computational cell

FIGURE 13.48 Droplet trajectories in a spray.
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13-72 Multiphase Flow Handbook

where ρd is the material density of the droplet and d0 the initial droplet diameter. If no droplet breakup
or coalescence occurs, the flow rate number will be invariant along each trajectory. Of course, more detail
is possible obtained by discretizing the starting conditions according to a size distribution as well. For
example, if f

~
m

(Ds) is the fraction of particle mass associated with size Ds (see Chapter 3), then the num-
ber flow rate associated with size Ds on trajectory j would be

n· (j, Ds) � (13.102)

Obviously more detail requires more trajectories and increased computational time. In an axisymmetric
flow, if the starting locations are discretized to a series of concentric rings, the mass flow rate on each ring
must be weighted with the ring radius.

Once all the trajectories are calculated, the properties of the particle cloud in each computational cell
can be determined. The particle number density is found using

n � (13.103)

where ∆tj is the time required for the particle to traverse the cell on trajectory j and V the volume of the
computational cell. The summation is carried out over all trajectories which traverse the cell. The parti-
cle volume fraction in each computational cell can be determined from

αd � (13.104)

where V�d is the average droplet volume along trajectory j in the cell. Other properties such as bulk den-
sity, particle velocity, and temperature can be determined in the same way. Thus, the properties of the
cloud can be determined once all the trajectories have been calculated.

Particle or droplet wall collisions are included in the calculation by continuing the trajectory after wall
collision, according to the models presented in Section 12.4.2. New velocities are established depending
on the nature of the collision. In the case of a droplet impact, the droplet may splatter on the surface and
the trajectory is terminated or the trajectory is restarted with smaller droplets. In the case of annular mist
flows, one would model reentrainment by initializing trajectories of droplets from the liquid layer on the
wall. The specific conditions depend on the model selected for the problem.

The Lagrangian method has been the basis of many numerical simulations of gas–particle and gas-
droplet flows.

13.4.1.2 Discrete Element Method

If the flow is unsteady and dense (particle–particle collisions are important), the more general discrete
element method is required. In this approach, the motion and position (as well as other properties) of indi-
vidual particles, or representative particles, are tracked with time. Ideally, one would like to track each and
every particle, but this may not be computationally feasible. For a gas laden with 100 µm particles at a
mass concentration of unity, there would be an order of 109 particles/m3. If the flow field of interest were
one tenth of a cubic meter, then 108 particles would have to be tracked through the field. This is impracti-
cal, so a smaller number of computational particles are chosen to represent the actual particles. For exam-
ple, if 104 computational particles were chosen, then each computational particle would represent 104

physical particles. This computational particle is regarded as a parcel of particles. It is assumed then that
the parcel of particles moves through the field with the same velocity and temperature, as a single particle
(physical particle). Of course, size distribution effects can be included by specifying parcels with a specific
particle size. The parcel is identified as a discrete element. In some simulations, such as fluidized beds, it
may not be possible to use parcels of particles without forgoing the details necessary to simulate the sys-
tem, so the dynamics of each individual particle must be considered.

�traj n.
·

j V�d ∆tj
��

V

�traj n.
· ∆tj

��
V

f
~

m(Ds)M· (j)
��
(π /6)ρdDs

3
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Modeling 13-73

The equation for particle motion now assumes the form

� � g (13.105)

where Fc is the force due to particle–particle (and particle–wall) contact.
Establishing the initial conditions for the discrete elements, depends on the problem. For 

the example shown in Figure 13.49, a parcel could be the droplets emerging along a starting trajec-
tory j in time interval ∆tp. Thus, the number of droplets in the parcel would be Np � n· (j, ds) ∆tp, and 
the initial velocity would be determined from other information. For modeling a fluidized bed, the 
initial state may be all the particles at rest as a packed bed, and the interstitial gas flow initiates the 
motion.

The motion of each parcel over one time interval is obtained by integrating the particle motion equation.
At the same time, the particle temperature, spin, and other properties can be calculated. A field with a distri-
bution of sample particle parcels is shown in Figure 13.49. During the time step, there may be particle–par-
ticle collisions that alter the trajectories and change the distribution of the parcels in each computational cell.

At every time step, the properties of the droplet cloud can be determined by summing over all the par-
ticles in a computational volume. For example, the number density would be

n � (13.106)

where the summation is carried out over all the parcels in the computational cell. Also the particle vol-
ume fraction would be

αd � (13.107)

where Vd,p is the volume associated with an individual particle and Np the number of particles in parcel p.
The calculation of other properties such as bulk density and particle velocity is obvious. The distribution of

�p NpVd,p
�

V

�p Np
�V

Ff � Fc
�

m

dv
�
dt

Computational cell

Parcels

FIGURE 13.49 Distribution of droplet parcels in a spray field.
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13-74 Multiphase Flow Handbook

the volume fraction of the solid phase is important in calculating the interstitial flow field. If each discrete
element is an individual particle, then Np in the above equations is unity.

13.4.1.3 Source Term Evaluation

The mass source term for a computational cell is simply the sum of the mass added by every droplet in the cell:

Smass ���
k

m· k (13.108)

where m·
k is the rate of change of mass of droplet k and the summation is carried out over every droplet

in the cell. The minus sign indicates that a droplet losing mass is adding mass to the carrier phase. The
mass source term using the trajectory approach is evaluated by

Smass ���
traj

n· jm�·� ∆tj (13.109)

where m�.� is the average mass evaporation rate of the droplet during its traverse through the cell. The mass
source term is evaluated using the discrete element approach by

Smass ���
p

Np m·
p (13.110)

where summation is carried out over all parcels, which occupy the cell at the given time and m.
p is the mass

evaporation (or condensation) rate of the individual droplets in the parcel. The mass source term per unit
volume is

Smass � (13.111)

where V is the volume of the computational cell.
The momentum source term in the i direction is given by

Smom ���
k

(Ff,k � vkm.
k) (13.112)

where Ff,k is the fluid forces acting on the droplet and vk the velocity of droplet k. The force would include
both a lift and drag force, but would not include the forces due to pressure gradient, shear stress gradi-
ent, and body forces. For the case in which the transient drag forces and lift forces are unimportant, the
momentum source term for the trajectory approach becomes

Smom ���
traj

n
.
j ∆tj�mj (vj � u) � m.

jvj� (13.113)

where vj is the average velocity of droplets, fj the drag factor and τv,j is the velocity response time for the
particles on trajectory j. The corresponding momentum source term for the discrete element approach is
calculated by

Smom � �
p

Np�mp (vp � u) � m·
pvp� (13.114)

where the subscript p refers to particles or droplets in the packet. Note that the body force due to gravity
is not included in this expression.

The source term for the total energy equation using the trajectory approach is

Sener ���
traj

n· j ∆tj�Q
·

j � m·
j
hs,j � � � Ff,j vj� (13.115)

where hs,j is the enthalpy of the carrier phase at the surface of the droplet on trajectory j and Q
·

k the con-
vective heat transfer to the droplet (radiative heat transfer is not included). The corresponding source

�v �2j
�
2

fp
�τv,p

fj
�τv,j

Smass
�

V
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Modeling 13-75

term for the discrete element method is

Sener ���
p

Np�Q
·

p � m·
p
hs,p � � � Ff,p vp� (13.116)

If the transient drag forces and lift forces are unimportant, the energy source term due to the dispersed
phase is

Sener � �
p

Np� (Td,p � Tc) � m·
p
hs,p � � � mp (v � u)p vp� (13.117)

The source terms for the thermal energy equation can be evaluated in the same fashion.
Source terms can also be evaluated for the turbulence energy and dissipation depending on the mod-

els used.

13.4.1.4 Calculation of Particle–Droplet Trajectories in Dilute Turbulent Flows

In ditute two-phase flows the particle motion is controlled by the fluid–particle interaction. The rela-
tionships for calculating the trajectories is given by Eqs. (13.98) and (13.99). The force on the particle
involves the lift and drag which depends on the fluid velocity at the particle position, up � f (xp,t). In
turbulent flow, the fluid velocity is the instantaneous velocity, the accurate prediction of which is the pri-
mary difficulty in Lagrangian tracking. The instantaneous velocity is decomposed into a mean value
(interpolated on particle position) and a fluctuating part, u�p. Developing techniques to generate the fluc-
tuating part is the primary problem.

Methods based on DNS provide an accurate simulation of turbulence in simple flows (Yeung and
Pope, 1989; Elghobashi and Truesdel, 1993; Wang and Maxey, 1993; Eaton and Fessler, 1994) but are lim-
ited to small Reynolds numbers and are not useful for practical applications. LES can handle more com-
plex flows (Squires and Eaton, 1990; Wang and Squires, 1996; Boivin et al., 2000) but the majority of
models for engineering problems are based on complete stochastic modeling. This section will address
RANS modeling, such as the k–ε model, supplemented with algebraic models to account for anisotropy
or Reynolds stress models for more accurate prediction of Reynolds stress.

A significant problem in evaluating the fluid velocity at the particle location derives from the fact that
the particle does not follow the fluid path. There are three aspects to this problem.

When no body force is included, particle motion is controlled by the particle mass and drag force. The
key parameter is the particle relaxation time, τV , that describes the particle response to any fluctuation of
the surrounding fluid. For turbulent flow, the relevant scale for fluctuating velocities is the Lagrangian
integral time scale, τ L , and the time scale ratio τ L /τ V quantifies the influence of turbulence on the parti-
cle motion.

In the presence of a body force such as gravity, a relative mean velocity is generated between the dis-
crete particle and the carrier fluid. In this case, it is obvious that the discrete particle no longer follows the
same fluid element or eddy, but is continuously crossing several eddies on its trajectory. This behavior is
called crossing trajectory effects as first described by Yudine (1959) and Csanady (1963) and experimen-
tally studied by Wells and Stock (1983). It has been observed that the fluid velocity correlation along the
particle trajectory is overestimated by the time scale τ L, and particle dispersion is correspondingly
reduced.

The third effect that can also modify the particle behavior is due to the continuity of the fluid turbu-
lence. The fluid mass conservation equation implies that an eddy that is crossing a plane parallel to the
mean flow direction must be replaced by an eddy crossing the same plane in the opposite direction. The
net result of this effect is the occurrence of positive and negative fluid velocity correlations in the corre-
sponding direction along the particle trajectory, and thus a decrease in particle dispersion. The continu-
ity effect is a consequence of the difference on the Eulerian fluid velocity correlation with respect to the
average velocity. It is known from turbulence theory that if there are no negative loops in the longitudi-
nal correlation, then negative loops will be involved in the transverse correlation.

fp
�τv,p

�v�2p
�
2

mpcd
�τT,p

Nup
�

2

�v�2p
�
2
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13-76 Multiphase Flow Handbook

From the work of Csanady (1963) on stationary homogeneous turbulence with gravity, an integral
time scale along the discrete particle trajectory that takes into account crossing trajectory effects and con-
tinuity effects can be derived in the form

τL
p � (13.118)

in the direction parallel to the gravitational force and

τL
p � (13.119)

in the direction normal to the gravitational force. β is the ratio between the Lagrangian integral time scale
and the Eulerian time scales and ξ the ratio between the discrete particle mean velocity (here the free fall
velocity) and the fluid velocity rms. It will be shown further that these scales can be used in a one-step
approach.

13.4.1.4.1 Eddy Lifetime Model
Historically, the first approach to the stochastic modeling of turbulence was developed by Gosman and
Ioannides (1981) and has been used widely in engineering calculations. It is referred to as the eddy life-
time model. In this scheme, the particle is assumed to interact with a succession of eddies. Each eddy is
characterized by a velocity (fluctuating), a time scale (lifetime), and length scale (size). The fluctuation
velocity is randomly sampled from a Gaussian PDF with variance determined from the turbulence kinetic
energy, k. The eddy lifetime is related to the integral time scale, τ L, and the length scale is defined by

le � b (13.120)

where ε is the dissipation rate and b is an empirical constant ranging from 0.16 to 0.46. The time for a
particle to traverse an eddy is calculated from the particle velocity (at the beginning of the time step) and
length scale

τe ��τ v ln
1 � � (13.121)

The particle is assumed to interact with the eddy for a time that is the minimum of the eddy lifetime and
the eddy transit time, τc. During the interaction time, the fluctuating fluid velocity is assumed constant.
Following the interaction time, a new fluctuating velocity is sampled and the process is repeated. Note
that in the limit of very small particles that identify fluid particles, the process generates a linear decrease
for the fluid Lagrangian correlation function from 1 to 0 in a time delay equal to 2τL.

The original scheme has been extended in order to include inertia, continuity, and crossing trajectory
effects. An analysis of the performance of variants of the eddy lifetime model has been investigated by
Graham (1998).

13.4.1.4.2 Coupled Fluid and Particle Trajectories
This method is based on the simultaneous realization of a fluid trajectory and a particle trajectory.
Originally developed by Ormancey (1984), the method has been adapted by Zhou and Leschziner (1991),
Burry and Bergeles (1993), and Pascal and Oesterlé (2000), among others.

Figure 13.50 presents an overview of the method. Initially the fluid particle and discrete particle are at
the same location. Then the fluid particle F is moved to location XF (t � δt) using a one-step stochastic
procedure with respect to the fluid Lagrangian integral time scale. In the particular case of fluid particles,
the stochastic scheme implies an exponential decrease in the fluid Lagrangian correlation. The discrete
particle trajectory P is calculated using the particle equation of motion. The fluid velocity is then trans-
ferred from the fluid position to the particle position xP (t � δ t) according to the Eulerian correlation.
The process is then repeated.

le
��τ

v�v � up�

k3/2

�ε

τL
��
�1���4β�2ξ�2�

τL
��
�1��� β�2ξ�2�
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Modeling 13-77

This approach has been extended by Berlemont et al. (1990) and includes the correlation matrix method
for fluid trajectories in order to handle any kind of correlation. The method is depicted on Figure 13.51.
The locations of the fluid particle and discrete particle are calculated simultaneously for several time steps.
The fluid velocity at the particle location is determined by the use of Eulerian correlations. This process is
carried out until the discrete particle leaves a correlation domain corresponding to the fluid particle. When
the distance r between the two particles is greater than the correlation length scale LD, a new fluid particle
is sampled on the discrete particle location and the process is repeated. This scheme accounts for the cross-
ing trajectory effects in a very physical way. It also allows one to incorporate the continuity effect through
the Eulerian correlation. It is apparent that whatever method is chosen, the essential problem is the deter-
mination of the fluid velocity at the position of the discrete particle.

Using the same ideas with a spatial correlation of a random process for the temporal correlation, it is
assumed that the fluid velocity at point P can be expressed as (in one dimension)

u�P � γu�F � ηy (13.122)

where

γ �

and

η � �(u�F)2�1/2 �1��� γ�2�

�u�Pu�F�
��
��(�u��P)�2�� �(�u��F)�2��

P = Xp( t+∆ t )

F = x f( t+� t )

X f(t )  = Xp(t )

Uf( t+∆ t )

Vp( t+∆ t )

Vp(t )

u f(t )

U f(Xp, t+∆t )
Eulerian

Lagrangian

FIGURE 13.50 Coupled fluid and particle trajectories in one-time step.

Fluid particle

P

P

F
F

Discrete particle 

LD

r

r
F

P

FIGURE 13.51 Coupled fluid and particle trajectories and correlation domain.
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When anisotropy of the flow is involved, a change of coordinate system is first carried out, where the first
unit vector direction is the direction from xF to xP. The above relation is extended to 3D case through the
equivalent expression:

u�P � {γ}u�F � {η}ys (13.123a)

{γ} � �u�Pu�F
T� �u�Fu�F

T��1 (13.123b)

{η}{η}T � �u�Fu�P
T� � {γ}�u�Fu�F

T� {γ}T (13.123c)

Any kind of relation can be used for the correlation coefficients. For example, the Frenkiel function may
be used where the loop parameters ni and nij can be specified:

�u�i ,Fu�i,P� � ��u��i,F
2�����u��i,P

2��� exp� � cos� � (13.124a)

and

�u�i ,Fu�j,P� � �u�i,Fu�j,F� exp� � cos� � (13.124b)

The loop parameter ni can help to introduce the continuity effect in the Eulerian correlation, namely, by
choosing ni � 0 in the main flow direction and ni � 1 in the transverse directions. When no information
is available on the length scales, the following relations can be used:

LEii
� ��u��i

2���τLi
(13.125)

where

τLi
� Cste

and Cste ranges between 0.2 and 0.6. Also

LEij
� CijτLij

���u��iu��j ���� (13.126)

where

τLij
� CLij

and Cij � CLij
� 1.

13.4.1.4.3 One-Step Scheme
Another approach, based on a one-step stochastic process, is to approximate the fluid velocity at the par-
ticle location with respect to the time scale viewed by the fluid along the particle path. It means that the
Lagrangian step and the Eulerian step of the previous method are mixed to give a simpler stochastic
scheme. The key issue is then the approximation of the time and length scales T ∗, which characterize the
fluid viewed by the particles. A Langevin equation is used:

u�pi(t � δt) � au�pi(t) � byi (13.127)

where

a � exp
� �δt
�
T ∗

i

��u�i(t)u�j(t)��
��ε

�u�i
2�

�ε

nijr
��
(nij

2 � 1)LEij

�r
��
(nij

2 � 1)LEij

nir
��
(ni

2 � 1)LEi

�r
��
(ni

2 � 1)LEi
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and

b � �u�pi
2(t)�1/2 �1��� a�2�

Different expressions can be found in the literature for scales and for the fluid velocity correlation along dis-
crete particle trajectory. By assuming gravity is in the third dimension, Wang and Stock (1992) proposed

R33(τ) � exp�� �1��� 
���
2

� � (13.128a)

T3
∗ � (13.128b)

R11(τ) � R22(τ) � 
1 � �R33(τ) (13.128c)

and

T1
∗ � T2

∗ � ��1��� 
���
2

� � � (13.128d)

where the fluid integral time scale along the particle path depends on Stokes number:

T f
p
(Stk) � TmE�1 � � (13.129)

where vd is the drift velocity, TmE is the Eulerian time scale, Stk the Stokes number, and Lf � σfTmE.
Applying the same philosophy, Pozorski and Minier (1998) proposed in a Langevin model:

T3
∗ � (13.130)

and

T1
∗ � T2

∗ � (13.131)

where T ∗
L is given by

� � (13.132)

with

x �

The problem is the evaluation of x. One possible approach is to assume that Tchen�s theory is valid (sta-
tionary isotropic turbulence) and x satisfies

x � �� (13.133)

Another version of the one-step method is that introduced by Sommerfeld et al. (2001). In this model,
the component of fluid velocity fluctuation in the i direction, at the new particle position, u�in�1, is cor-
related with the old position through a correlation function by

u�i,n�1 � u�i ,nRp,i(∆t, ∆r) � σ �1��� R�2
p,�i(�∆�t,� ∆�r)�ξi (13.134)

1
��
1 � τ v /τL

σp
�σf

1 � x
�

TE

x
�τL

1
�
TL

∗

TL
∗

��
1 � 2(vdTL

∗/σfTE)

TL
∗

��
1 � (vdTL

∗/σfTE)

1 � TL/TmE
���
(1 � Stk)0.4/(1 � 0.01Stk)

vdT f
p

�
2Lf

v
d
T

f
p

�Lf

T f
p

��
1 � (vdT f

p/Lf)
2

vdτ
�
2Lf

T f
p

��

�1��� 
��
vd�L

T�
f

f
p

���
2

�
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�
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�
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where Rp,i (∆t, ∆r) is the correlation function, σ the mean fluctuation velocity of the fluid at the particle
position, and ξi a Gaussian random number selected for the i direction with zero mean and standard
deviation of unity. The mean fluid fluctuation velocity is obtained from the kinetic energy k by

σ 2 � 2k/3 (13.135)

The correlation function in the i direction is decomposed into a Lagrangian and Eulerian part according to

Rp,i(∆t, ∆r) � RL(∆t) � RE,i(∆r) (13.136)

where the exponential form

RL(∆t) � exp
� � (13.137)

is selected for the Lagrangian part. The Lagrangian time scale is determined from

TL � cT (13.138)

where ε is the dissipation rate.
The spatial correlation function can be obtained from Eulerian correlation tensor (Von Karman and

Horwarth, 1938)

RE,ij(∆r) � {f(∆r) � g(∆r)} � g(∆r)δij (13.139)

where f (∆r) and g(∆r) are exponential functions of the separation distance and the integral length scales.
Generally, only the three main components of the tensor are used and the integral length scales are related
to the TL and σ.

These different schemes have been compared extensively with theoretical and experimental results. But
it is important to keep in mind that all these schemes are very sensitive to scale approximation and par-
ticle dispersion is roughly proportional to the turbulence time and length scales.

13.4.1.5 Calculation of Particle Motion in Dense Flows

In dense flows, the particle motion is controlled by particle–particle collisions. Different approaches can
be developed to study and to understand the underlying physical processes. Simulations on the basis of
tracking several particles simultaneously (Tanaka and Tsuji, 1991; Chang, 1998; Berlemont et al., 1998)
have been developed. Also Lagrangian simulations have been proposed based on single-particle tracking
with stochastic process for collisions (Oesterlé and Petitjean, 1993; Sommerfeld, 1995, 2001; Berlemont
and Achim, 1999; 2001; Berlemont et al., 2001).

In the multiple-particle method, several particles are tracked simultaneously and particle pairs are
examined on each time step in order to determine if any collision is taking place. Since the number of
simultaneous trajectories is limited by computational constraints, the simulation is carried using several
starting points for a given number of particles. They are initially randomly distributed in a box, the size
of which is established by the mean distance between particle centers derived from the initial concentra-
tion and geometry for the case under study. The multiple-particle method is obviously quite expensive in
CPU time. Moreover, the multiple-particle method is unrealistic for industrial purposes. In addition, it
was found that the overall particle–particle velocity correlation (referring to the two colliding particles)
induced by the surrounding fluid is an important parameter requiring particular attention.

In the stochastic approach for particle collisions, a collision probability is defined and a random
process is used to first decide if a collision occurs. Several successive random processes are then involved
in order to characterize the collision partner in terms of velocity, concentration, impact location, and
diameter when polydispersed particles are considered.

rirj
�
r 2

σ 2

�ε

∆t
�
TL
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13.4.1.5.1 The Stochastic Collision Model
Using the classical one-particle Lagrangian approach, a stochastic particle–particle collision model is needed,
as described by Sommerfeld (2001) and Berlemont et al. (2001). The model first requires information on the
collision frequency. It is assumed that the fluctuating motion of the discrete phase is similar to the thermal
motion of molecules in a gas. A collision frequency can then be estimated by analogy with the kinetic theory.

Consider two particle classes, which are identified through the diameters d1 and d2 (radius r1 and r2),
the instantaneous velocities v1 and v2, and the number of particles per unit of volume, np1 and np2. The
collision frequency with which particle 1 collides with particle 2 is

fcoll � (d1 � d2)
2np2��∞

�∞
�vrel � fp

(2) dv1 dv2 (13.140)

where �vrel� � �v2 � v1�,
The most important term in the above equation is the particle–particle pair distribution function fp

(2).
If is assumed that the colliding particle velocities are independent (molecular chaos assumption), then
the particle velocity distribution is Gaussian:

fp
(1) � exp
� � (13.141)

and the particle–particle pair distribution function is the product of the two distribution functions. The
collision frequency then reduces to (Abrahamson, 1975; Gourdel et al., 1999)

fcoll � (d1 � d2)
2np2��vrel ��H(z) (13.142)

with

H(z) � � erf �z�
1 � �
and

z �

The variable z represents the ratio between the mean particle relative velocity and the particle turbu-
lent fluctuation velocity. For large values of z (high drift velocity), H(z) tends to unity, hence:

fcoll � (d1 � d2)
2np2���v 1� � �v 2��� (13.143)

and the collision frequency depends essentially on mean particle relative velocity. Using a Taylor expan-
sion for H(z) for small values of z (low drift velocity) leads to

fcoll � (d1 � d2)
2np2���v 2

1� � �v 2
2��� (13.144)

which means that the collision frequency depends primarily on the particle agitation.
The collision probability p12 of particle 1 to collide with particle 2 then reads:

p12 � fcoll ∆t (13.145)

where the time step ∆t is assumed to be small enough (of the order of τc /10 where τC � 1/fcoll). To decide
whether there is a collision or not, a uniform random number (between 0 and 1) is sampled and the col-
lision occurs when it is smaller than the collision probability. Velocities of a fictitious collision partner are
then sampled from the local properties.

23/2π 1/2

�
4

π
�
4

��vrel �� 2

���v 2
1� � �v 2

2�
1
�
2

1
�
2z

exp(�z)
�

�π�z�

π
�
4

v2

�
2�v�2�

1
��
(2π �v�2�)3/2

π
�
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13-82 Multiphase Flow Handbook

When two particles collide, the first problem is to determine the point of contact on the particle sur-
faces. A coordinate system (Ox�y�z�) is moved such that the main axis (Ox�) is in the vrel direction and O
is the center of the tracked particle (Figure 13.52a). A uniformly distributed random number β between
0 and 1 is used to obtain the normalized impact parameter b (b � B/(r1 � r2)��β� ) and another uniform
random number is then chosen to get the α angle, with 0 � α � 2π (Figure 13.52b). The new coordinate
system (Ox �y �z�) is now used with Ox� at the particle center direction (Figure 13.52c), and Ψ and Φ
angles are defined by

Ψ � arctan
 � and Φ � arctan
 � (13.146)

When the point of impact is located, the change in particle velocity has to be calculated. These relation
ships for doing so are provided in Section 12.4.1. Returning to the initial coordinate system completes the
process.

When comparing the stochastic approach with LES results, it is found that the molecular chaos
assumption was not satisfied. The scheme has to account for the correlation between the fluctuating
motion of the colliding particles caused by the surrounding fluid. In order to overcome this problem,
Sommerfeld (2001) has recently proposed correlating the fictitious particle velocities with velocities of
the real particle through the following relation:

v2,i � R(Stk)v1,i � σi �1��� R�(S�tk�)2�ξ (13.147)

where σi is the rms value of the velocity component i, ξ a Gaussian random number, and R(Stk) given
(comparing model calculations to LES results) by

R(Stk) � exp( � 0.55Stk04) (13.148)

This relation improves the results but is still based on empiricism.
Another approach utilizes an exact relation for the particle–particle pair distribution function fp

(2)

which is not the product of two independent distributions fp
(1) for correlated velocities. The correlation

between the colliding particle velocities in the turbulent eddy through which they are moving has to be
introduced in the distribution function. This important consideration was first stated and solved by
Lavieville et al. (1995) for two identical particles. Pigeonneau (1998) proposed an extension for particles
with different diameters with no empiricism required. Berlemont et al. (2001) recently proposed to use
that approach for particle Lagrangian tracking with particle collisions. The results are limited to nonde-
formable spherical particles. When the interface between the two phases is not rigid, interface tracking

�b cosα
�
�1��� b�2�

b sinα
��
�1��� b�2�si�n�2α�

x′Vrel

O

 z

x

Tracked particle
(a)
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�

z′

B x′ O
Ψ

Φ

x′

z′

B

(b) (c)

y
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y′ y′

x′′
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FIGURE 13.52 Sampling point of contact in particle collision.
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Modeling 13-83

methods are then used, namely, the volume of fluid method, or the front tracking method, or the Level
set method. The examples of calculations with dense-phase flows are provided in Section 13.2.2.

13.4.2 Eulerian Approach

Clayton T. Crowe

In the Eulerian approach, the particle or droplet cloud is treated as a continuous medium with properties
analogous to those of a fluid. For example, the bulk density, or mass of particles per unit volume of mixture,
is regarded as a continuous property. The particle velocity is the average velocity over an averaging volume.
The purpose of this section is to develop and present the governing equations for the Eulerian approach. In
that the continuous phase is a fluid, the use of the Eulerian approach for the dispersed phase is commonly
referred to as the two-fluid or Eulerian–Eulerian approach. The terms will be used interchangeably here.

A significant advantage of the Eulerian approach is that the equations for both phases have the same
form so the same solution techniques can be used for each phase.

There are several levels of description for the Eulerian approach. If the Stokes number is sufficiently
small, the particles and carrier fluid will have the same velocity (velocity equilibrium). If the characteris-
tic time used in the definition of the Stokes number is a time representative of the carrier-phase turbu-
lence, a small Stokes number implies that the particles will move with and disperse at the same rate as the
carrier flow. In this case, the two-phase mixture can be regarded as a single phase with modified proper-
ties (density, thermal capacity, etc.). If the Stokes number is based on some characteristic time of the flow
field, a small Stokes number implies that the particles will move with the mean motion of the carrier flow
but may not disperse at the same rate due to turbulence.

Of more practical interest is the situation where the velocities of the carrier fluid and particles are not
the same. This could be the result of velocity gradients in the mean flow field, turbulent fluctuations, and
body forces acting on the particles. The local particle velocity is regarded as the average velocity of parti-
cles in an averaging volume

{v} � (13.149)

where N is the number of particles in the volume and { } is used to denote volume averaging. Another
possibility would be the mass-averaged velocity defined by

v∼ � (13.150)

where mk is the mass of particle k in the averaging volume. This type of averaging is referred to as Favre
averaging.

The Eulerian dispersed-phase equations are obtained by summing the conservation equations for indi-
vidual particles (or droplets) over all particles in the control volume to obtain equations for a particle cloud.
A cloud of particles or droplets in a Cartesian control volume is shown in Figure 13.53. The fundamental
finite-difference equations are derived by taking into account the flux of properties over all faces. The finite-
difference equations are then divided by the control volume and the limit is taken as the volume approaches
the limiting value. More details are available in Crowe et al. (1998). Index notation is used throughout.

13.4.2.1 Continuity Equation

The basic continuity equation for each dispersed-phase element is dm/dt � m. . Summing the rate of mass
change of all the elements in the computational cell and equating it to the net efflux of droplet mass
through the control surfaces plus the rate of change of mass in the cell yields

(αdρd) � (αdρdv∼i) � �
k

m·
k/V (13.151)

∂
�∂xi

∂
�∂ t

�k mkvk
�

�k mk

�kvk
�

N
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13-84 Multiphase Flow Handbook

where v∼i is the mass-averaged velocity of the dispersed phase, αd the volume fraction of the dispersed
phase, and ρd the material density of the dispersed phase. The summation is carried out over all droplets
in the control volume V. The last term in the equation is the mass source term for the dispersed phase,
which can be written as � Smass. The minus sign comes from the fact that Smass is the mass source term for
continuous phase that is negative for the dispersed phase.

If the simple average velocity is used in lieu of the mass-averaged velocity, the continuity equation has
to be formulated differently. In this case, the velocity in the averaging volume is expressed as

vi � {vi} � v�i (13.152)

where vi
�is the deviation of the velocity from the averaged value. Similarly, the bulk density, ρd, is written as

ρ�d � ρ�d,0 � ρ��d (13.153)

where ρ�d,0 is the bulk density at the central point and ρ��d the deviation in bulk density at adjacent points,
so the average mass flux is

�ρ�dvi� � �ρ�d��vi� � �ρ��dv�i� (13.154)

The additional term can be regarded as a mass diffusion term. In a flow with homogeneous bulk density
or uniform particle velocities, this term would be zero. Turbulence, however, will produce a distribution
of particle velocities, which will give rise to a net mass flux in nonhomogenous particle density fields.

The gradient transport model is used in the two-fluid formulation to simulate dispersion of particles
in turbulent flows. With reference to Fick’s law it is assumed that

�ρ∼dv�i� � �Dd (13.155)

where Dd is the dispersion coefficient for the dispersed phase. The value for the dispersion coefficient has
to be determined from experiment or through some auxiliary analysis. Picard et al. (1986) predicted a dis-
persion coefficient based on an early analysis of particle motion in turbulence reported by Tchen (1949).
Adjustments are necessary to account for crossing trajectory effects. Rizk and Elghobashi (1989)
employed a semiempirical correlation suggested by Picard et al. Unfortunately, there are no simple analy-
ses or models, which will provide Dd as a function of particle properties and flow turbulence, so the
choice of an appropriate value depends on finding or reducing a value from an experiment which is

∂ρ�d
�∂xi

Back
face

North
face2

East
face

1

South
face

West
face

Front
face

3
∆X2

∆X3

FIGURE 13.53 Three-dimensional control volume for dispersed-phase elements.
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considered representative of the flow field to be simulated. Reeks has shown through the PDF approach
(Section 13.4.3) that the gradient diffusion model is not universally applicable.

A further problem exists with boundary conditions. If the particles bounce specularly from a wall, it is
probably appropriate to set the gradient of the bulk density normal to the wall equal to zero. If the bounc-
ing is not specular, another approximation must be made. If droplets impact the wall and there is no reen-
trainment, setting bulk density equal to zero at the wall does not represent a realistic boundary condition
for the bulk density field. The choice of suitable boundary conditions is addressed in Section 13.4.3 for
reflecting and perfectly absorbing walls.

The final form for the two-fluid continuity equation using the volume-averaged velocity is

(αdρd) � (αdρd{vi}) � 
Dd �� Smass (13.156)

If Favre (mass averaging) is used, the diffusion term is eliminated.

13.4.2.2 Momentum Equation

The momentum equation for an individual dispersed-phase element of mass m is’

m � Fi � mgi (13.157)

This equation is valid for an reacting droplet, provided the mass is leaves the surface uniformly. That is,
it does not contribute to the momentum of the droplet. Adding m

.
vi to each side gives

� m· vi � Fi � mgi (13.158)

The forces acting on the element are

Fi � �Vd � Vd � Li (13.159)

where {pc} and {ΤC,IJ} are the average pressure and shear stress in the continuous phase, respectively. The
force Li includes all the other forces including the lift force, the steady-state drag, the virtual mass force,
and the Basset force. In flows with heavy particles, only the steady-state drag may be important.

The momentum equation can also be developed by summing over every dispersed-phase element in
the computational cell. The resulting differential equation is

(αdρdv∼i) � (αdρdv∼iv
∼

j) � �
k

m·
kvi,k/V � αd (13.160)

αd τij � �
k

Li,k � αdρdgi � αd 
�
k

ρ�d,kv�i v�k,j�
where v

∼
i is the mass-averaged velocity and the fluctuation velocity v�i,k is the deviation of the velocity of

the kth particle from the mass average velocity.
The first term on the RHS of Eq. (13.158) is the momentum source due to mass exchange between

phases. This term is expressed as �Smom,i, namely,

��
k

m.
kvi,k/V � �Smom,i (13.161)

This term represents the momentum associated with the mass issued from the surface of the droplets
moving at velocity Vi,k. The negative sign is chosen so that momentum addition to the carrier phase is
defined as positive.

The last term is analogous to a Reynolds stress

τ R
d,ij � ��

k

ρ�d,kv�k,iv�k,j (13.162)

∂
�∂xj

∂
�∂xi

∂p
�∂xj

∂
�∂xj

∂
�∂ t

∂ {τc,ij}
�∂xj

∂ {pc}
�∂xi

dmvi
�

dt

dvi
�
dt

∂ρ�d
�∂xi

∂
�∂xi

∂
�∂xi

∂
�∂ t
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13-86 Multiphase Flow Handbook

and is identified as the dispersed-phase Reynolds stress. This term arises because the mass-averaged
velocity is not a momentum-averaged velocity. Traditionally, the dispersed-phase Reynolds stress has
been modeled using the Boussinesq approximation (stress proportional to the rate of strain):

τ R
ij � µs
 � � � µs δij (13.163)

where µs is an solids viscosity. It is very difficult to select a solids viscosity, since the particle velocity fluc-
tuations depend not only on local turbulence but also on the particle properties and particle history.
Chung et al. (1986) related the solids viscosity to the eddy viscosity of the carrier fluid through a func-
tion, which depends on the Stokes number based on the integral time scale of the carrier-phase turbu-
lence. Rizk and Elghobashi (1989) simply used a constant ratio between the solids viscosity and the fluid
eddy viscosity. The problem with the Boussinesq approximation is that one can visualize a Reynolds stress
without a gradient in the mean velocity field (no rate of strain), because the turbulent fluctuations of par-
ticles will give rise to a nonzero value for the dispersed-phase Reynolds stress.

The momentum equation, Eq. (13.158), is also valid for a field of bubbles. In the same way, the
Reynolds stress term relates to the fluctuations in bubble velocity. A similar form of the dispersed-phase
momentum equation is presented in Zhang and Prosperetti (1997).

If the forces acting on the particles or droplets are only the drag forces and the unsteady terms can be
neglected, then the momentum equation becomes

(αdρdv∼i) � (αdρdv∼iv
∼

j) � � αd �Smom,i� αd (τij)

(13.164)
� �

k

dk fk (ui � vi)k � αdρdgi � αd τ R
d,ij

where mk is the mass of particle k, λk the ratio of the drag to Stokes drag, and τV the velocity response time.
If all the droplets have the same mass and evaporate at the same rate, the momentum equation reduces to

(αdρdvi) � (αdρdvi vj) � �αd � nm
.
vi

(13.165)� αd (τij � τ R
d,ij) � n3πµcdf (ui � vi) � αdρdgi

The dispersed-phase Reynolds stress can arise from several sources, particle velocity fluctuations due to
the carrier-phase turbulence, and particle–particle collisions. Even with no carrier-phase turbulence or
collisions, the Reynolds stress term would appear due to particle velocity variations arising from a distri-
bution in particle size. Such a situation would occur for a particle-laden flow at the throat of a venturi,
where the smaller particles would tend to move at a velocity near the local fluid velocity, while the larger
particles would exhibit a larger velocity lag. In this special case, the Reynolds stress due to velocity varia-
tion could be circumvented by introducing a momentum equation for each particle size category.

Kinetic theory models have been used to derive relationships for the solids viscosity and other param-
eters for dense phase flows. An additional equation is included for the kinetic energy of the fluctuating
motion of the particulate phase. Because of the similarities between particle–particle interactions and
molecular interactions in a gas, the concepts from kinetic theory can be used to develop the governing
equations for dense-phase flows. This approach is nominally credited to Bagnold (1954), who derived an
equation for repulsive pressure in uniform shear flow. Many others, particularly Savage (1983), have fur-
ther contributed to this approach. Complete details of the derivations and applications to dense-phase
flows can be found in Gidaspow (1994). The basic concept is that particle–particle collisions are respon-
sible for momentum and energy transfer in the dense-phase flow in the same way as the molecular inter-
actions are responsible for pressure wave propagation and viscosity in a single-phase fluid.
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The kinetic energy associated with the particle velocity fluctuations is called the granular temperature
and defined as

Θ � �C 2� (13.166)

where C is the fluctuational velocity of the particle motion. Granular temperature can be produced by a
shearing action in the granular flow and by hydrodynamic forces. Dissipation can occur through inelas-
tic particle–particle and particle–wall collisions and dissipation in the fluid. Granular temperature can
also be diffused in the same manner as heat. The stress term in the momentum equation based on kinetic
theory becomes (Gidaspow, 1994)

τ d,ij � ��ps � ξs �δij � µs
 � � � δij (13.167)

where ps is the solids pressure, ξs the solids phase bulk viscosity, and µs the solids shear viscosity. These
three parameters are functions of the granular temperature as well as the particle restitution coefficient,
particle diameter, material density, and volume fraction. The solids pressure is

ps � ρdαdΘ[1 � 2(1 � e)goαd] (13.168)

where go is referred to as a radial distribution function

go � �1 �
 �
1/3

�
�1

The solids-phase bulk viscosity assumes the form

ξs � α 2
dρsdgo(1 � e)
 �

1/2

(13.169)

and the shear viscosity is

µs � �1 � (1 � e)goαd�
2

� α 2
d ρsdgo(1 � e)
 �

1/2

(13.170)

where µs,dil is the solids-phase dilute viscosity given by

µs,dil � ρddΘ 1/2 (13.171)

An additional equation is needed for Θ which relates the change in Θ to the generation by velocity gra-
dients, the dissipation with collisions and the diffusion due to gradients in Θ. The details are available in
Gidaspow (1994).

Several numerical models have been implemented for dense-phase flows using the two-fluid models
based on granular temperatures. These include flow in chutes, fluidized beds, and sedimentation. Sinclair
and Jackson (1989) have used the two-fluid model for modeling dense flows in vertical tubes.
Section 13.5.3 provides an application of two-fluid modeling for predicting flow in a fluidized bed using
kinetic theory for the constituitive equations. There are several advantages in using the two-fluid model
for dense-phase flows. The most significant advantage is that there is no need to consider the dynamics 
of individual particles, so large systems can be modeled. Also, the numerical formula-
tions used for single-phase flows can be applied to the two-fluid equations for the solid phase. However,
there is a level of empiricism that must be introduced in establishing the constitutive equations.
Also, features such as particle–particle sliding, particle rotation, and particle size distribution are not
included.
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13-88 Multiphase Flow Handbook

The granular temperature model should also extend to dilute flows. In this case, the hydrodynamic effects
on particle oscillation in turbulence would have to be more accurately modeled. Extensions of the two-fluid
model to dilute flows have been reported by Bolio and Sinclair (1996). In dense flows, the particle–particle
contribution to particle fluctuation energy is more significant than that due to local turbulence in the con-
tinuous phase.

The PDF approach introduced in Section 13.5.3 provides a more rational approach to evaluating the par-
ticle-phase Reynolds stress due to carrier-phase turbulence and particle–particle collisions. This approach,
still in development, will yield more reliable models for the Reynolds stress with minimal empiricism.

13.4.2.3 Thermal Energy Equation

The energy equation for an individual dispersed-phase element is

(mid) � �m.
� (Sdσ) �m·hs �Q

.
d (13.172)

where ps is the pressure at the surface, Sd the surface area of the element, σ the surface tension, hs the
enthalpy of the matter leaving the surface, and Q

.
d the heat transfer rate to the dispersed-phase element,

including both conductive and radiative heat transfer. The first term on the RHS is usually small and neg-
lected.

The Eulerian thermal energy equation for the droplet cloud can be derived in the same way as the con-
tinuity and momentum equations by summing up the droplets in a control volume. By following the
development in Crowe et al. (1998), the multidimensional thermal energy equation is

(αdρdι
∼

d) � (αdρdv∼inι∼d) � � 
�
k

ρ∼d,kv�j ,ki�d,k� (13.173)

��
k

E
.
σ,k�V � �

k

m
.

khs,k�V � �λkdk
(Tc � Td)k � �

k

Q
.

r,k�V

where ι∼d is the mass-averaged droplet internal energy. The first term on the RHS, �k
ρ∼d,kv�j ,ki�d,k is analogous

to the Reynolds stress term and has to be modeled based on, for example, a gradient diffusion term.

� 
�
k

ρ∼d,kv�j ,ki�d,k� � 
ks,eff � (13.174)

where Td is the dispersed-phase temperature and ks,eff the effective thermal conductivity, which, currently,
must be chosen empirically or through kinetic theory for dense flows. In future, PDF modeling will
provide more accurate models for this term. The second term is the energy change associated with the
surface tension; the third term is the energy (enthalpy) flux from the droplet surface, where hs,k is the
enthalpy of the matter emerging at the surface of droplet k and is equal to �Smasshs; the fourth term is the
convective heat transfer between the droplets and the carrier fluid, where

λk � Nuk/Nuo (13.175)

is the ratio of the Nusselt number to the Nusselt number at zero Reynolds number (νο � 2 with no 
free convection effects) and τT,k the thermal response time of particle k; the last term is the radiative heat 
transfer. In specific applications, many of these terms can be neglected. Particularly, the first and third
terms on the RHS are zero for solid particles. These terms would generally be small compared with 

∂Td
�∂xj

∂
�∂xj

∂
�∂xj
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Modeling 13-89

convective heat transfer for droplet flows. For nonreactive particles, the source term associated with mass
flux from the dispersed-phase surface would also be zero. Also, for many applications, radiative heat
transfer may not be significant.

The internal energy is the product of both temperature and specific heat, so the energy equation writ-
ten in terms of dispersed-phase temperature is

(αdρdcdTd) � (αdρdv∼icdTd) � 
ks,eff ��Smasshs (13.176)

��
k

E·σ,k/V � �λkdk
(Tc � Td)k � �

k

Q
.

r,k/V

where cd is the specific heat of the dispersed-phase. If all the elements have the same size, same specific
internal energy, and evaporation rate, and if the first and third terms are neglected, the thermal energy
equation becomes

(αdρdcdTd) � (αdρdvicdTd) � �Smasshs � 2πnkcλd(Tc � Td)

� 
ks,eff �� nQ
.

r (13.177)

where n is the number density. In dense flows there is also a heat transfer due to particle–particle contact,
which is not included here.

13.4.2.4 Advantages and Disadvantages of the Two-Fluid Model

In general, the advantages are:

1. The numerical scheme used for the carrier phase can be used for the dispersed phase, so the two-
fluid model may be more computationally efficient.

2. The model is limited by modeling large numbers of particles or droplets.

The disadvantages are:

1. The constituitive equations, which include the effects of carrier-phase turbulence, particle–parti-
cle collisions, and size distribution, are not well established.

2. The boundary conditions for mass, momentum, and energy are not straightforward.
3. The equations are not applicable as the flow becomes increasingly dilute.

As PDF methods and similar analyses are forthcoming, the disadvantages will be minimized.

13.4.3 PDF Models

M. Reeks and O. Simonin

13.4.3.1 Introduction

The PDF approach has proved very useful in studying the behavior of stochastic systems. Examples of its
usage occur in the study of Brownian motion (Chandrasekhar, 1943) and in the kinetic theory of gases
(Chapman and Cowling, 1952). In more recent times, it has been used extensively by Pope and others to
model both turbulence (Pope, 1985) and turbulent-related phenomena such as combustion (Pope, 1991)
and atmospheric dispersion (MacInnes and Bracco, 1992). In this section, the use of PDF approaches to
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13-90 Multiphase Flow Handbook

model the behavior of a particle-laden turbulent gas is described, where like kinetic theory for modeling
gas flows, it may be regarded as a rational approach. This means : first there exists an underlying equation
(a master equation) containing terms that can be traced back in a rational manner to the underlying equa-
tions of motion of the individual particles themselves. Second, this master equation, in a strictly formal
way, can be used to derive both the continuum equations and constitutive relations of a gas or dispersed
phase of particles while at the same time handle the natural boundary conditions at the wall (the so-called
near-wall behavior). In kinetic theory, the master equation is the well-known Maxwell–Boltzmann equa-
tion, while in dispersed flows, it is known as the PDF equation.

There are currently two forms of the PDF equation in use. In the first form, the PDF, as in kinetic the-
ory, refers to the probability density that a particle has a certain velocity and position at a given time. This
PDF approach is referred to as the kinetic method (KM). Originated by Buyevich (1971, 1972a, 1972b),
and has been developed since by a number of workers, most notably Reeks (1980, 1991, 1993), Hyland et
al. (1999a, 1999b), Swailes and Darbyshire (1997), Derevich and Zaichik (1988), Zaichik (1991), Pozorski
and Minier (1998) as well as Zhou and Li (1996) . In all these developments the PDF approach was
restricted to inert, nonreactive particles. More recently, this approach has been extended to reactive con-
densing or evaporating particles in a turbulent gas (Pandya and Mashayek, 2001, 2003) and in polydis-
persed combusting sprays (Laurent and Massot, 2001).

In contrast, the second form of the PDF equation, first proposed by Simonin et al. (1993), is a more
general PDF which includes the velocity of the carrier flow local to the particle as a phase-space variable
as well as the particle position and velocity. It is a development of the PDF approach used by Haworth
and Pope (1986) based on a generalized Langevin model (GLM) for the equation of motion of the
carrier flow encounterd by a particle. It is referred here as the GLM approach.

As far as two-fluid modeling is concerned, the application of the PDF approach is different from what
has been discussed earlier. In the past, for instance, it has been traditional to assume that the particle
phase behaves as a simple Newtonian fluid (Elghobashi and Abou Arab, 1983), i.e., the particle Reynolds
stresses are assumed to be proportional to the mean symmetric rate of strain of the particle flow via some
particle eddy viscosity that is related to that of the carrier flow in some empirical way. Now, using the 
PDF approach, one can examine the validity of these assumptions within the context of a more reliable
and complete framework using techniques that are well tested and understood and ultimately replace
them with more legitimate relationships that do not rely on intuition and empiricism. Perhaps, more 
importantly, an approach that is crucial to the formulation of particle–wall interactions is now available.
The particle–wall interactions are referred to here as the natural boundary conditions of a 
gas–particle flow.

In this section, it is shown how the PDF approach deals with both aspects of a two-fluid model 
with and without interparticle collisions; namely, how it generates the equations for mass, momentum
and energy (the so-called continuum equations) and constitutive relations for the dispersed phase 
(that would be appropriate for the far-wall solution of a gas–particle flow) and how it generates 
near-wall solutions that take into account the inhomogeneity of the flow and the natural boundary 
conditions.

The section has been divided into two parts. The first part deals with a dilute suspension of particles
in a turbulent gas and the second part with a dense suspension where interparticle collisions play an
equally important part as the underlying turbulence of the gas. In the first part, a basic introduction to
PDFs and PDF equations is provided and how they are derived in principle from the underlying particle
equations of motion. This introduces the problem of closure of PDF equations, which is the essential
problem of all stochastic systems involving turbulence. As an example, it is shown how this has been tack-
led for the particular case of nonreactive particles in a turbulent gas, examining how it has been dealt with
as a closure approximation in the KM approach or through a model for the carrier flow velocity fluctua-
tions encountered by a particle in the case of the GLM approach. This important aspect constitutes the
subject of Section 13.4.3.2.

Section 13.4.3.3 deals with the continuum equations and constitutive relations derived from the PDF
equations, where the focus is on transport equations for the particle velocity covariance (kinetic stresses)
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Modeling 13-91

and the particle fluid covariances. In either case, there is a need for closure approximations for the particle
turbulent kinetic energy flux and that of the particle-fluid covariance flux which are tackled using the
Chapman–Enskog approach. Predictions are compared with measurements of the particle dispersion of
particles in nonuniform unbounded flows, where the local strain rate of the continuous phase introduces
a strong anisotropy in the particle kinetic stresses.

Section 13.4.3.4 is concerned with the application of the PDF approach to the prediction of near-wall
behavior; in particular, natural boundary conditions involving partial absorption and both specular and
diffuse reflection are considered. Finally, the solutions for the well-known problem of particle deposition
in a turbulent boundary layer with perfectly absorbing walls are addressed (this is a much studied system
both theoretically and experimentally) which highlights the break down of so-called gradient transport
due to both strong inhomogeneity of the flow near the wall and the strong departure of the velocity dis-
tribution at the wall compared with that in the far wall (bulk flow).

The remaining part of the section is devoted to the treatment of interparticle collisions using the PDF
approach and follows largely the approach adopted by Lavieville et al. (1995).

13.4.3.2 PDFs and PDF Equations

As an example of how PDFs and their equations are obtained, consider the motion of evaporating or con-
densing particles in a dilute suspension in which there are no inter-particle collisions. Let X(t) be the
phase-space vector at time t of a single particle as it moves through phase space. So in this case,

X � [m, Θ, v, x] (13.178)

where m is the mass of the particle, Θ the temperature, and v, x are the velocity and position of the par-
ticle center of mass at time t. The number n of independent variables that defines the phase-space dimen-
sion is thus n � 8. For a single realization of the underlying carrier flow velocity field u(x,t) and
temperature field T(x, t), the number of particles in an elemental volume dnX of phase space located
at X will be given by W(X, t)dn X, where W(X, t) is the phase-space density, i.e., the number of particles
per unit volume in phase space. So for conservation of particle number within that elemental volume at
X with respect to W, one has

� [WX
.
] � 0 (13.179)

So, for the case of the evaporating droplet one would have explicitly

X
.

� [m. , Θ
.
, v., x. ] (13.180)

where the components of X
.

represents the particle equations of motion in the most general sense and are
derived from the mass, momentum and energy conservation equations for an individual particle-droplet.
However, because the underlying carrier flow field is turbulent, X

.
has a random component, so one can

only usefully refer to the PDF corresponding to a set of values X at any given time. This is represented by
the ensemble average of W over all realizations of the system, symbolically as 〈W 〉. The equation for 〈W 〉
(the PDF equation) can be found by ensemble averaging the conservation equation for W (Liouville
equation). For convenience, the instantaneous components of X

.
are separated into their mean �X

.
� and

fluctuating components X
.
�, noting that X

.
� v, so the explicit PDF equation for the evaporating-con-

densing particle is

� 
 �m. � � �Θ
.
� � .v � .�v.���W� (13.181)

� � �m.
�W � � �Θ

.
�W � � .�v.�W �

∂
�∂ v

∂
�∂ Θ

∂
�∂m

∂
�∂ v

∂
�∂ x

∂
�∂Θ

∂
�∂m

∂�W �
�∂ t

∂
�∂ X

∂W
�∂ t
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13-92 Multiphase Flow Handbook

where on the LHS one has the convective part (the transport in the absence of the turbulence) and on the
RHS, the dispersive part involving the gradients of the net fluxes due to the turbulence. To close the 
equation, one needs to relate the turbulent fluxes in some way, directly or indirectly, to 〈W 〉 and its deriv-
atives. Thus, there is a closure problem to resolve, which is the most important element of the PDF
approach.

To illustrate the way in which the values of X
.

depend upon the properties of the particle and the under-
lying carrier flow, consider the case of the evaporating droplet in more detail. From mass conservation of
a spherical droplet of diameter dp evaporating in a gas of mass density ρg, the general relationship is (see
Section 1.4)

m.
� πρgdpDvSh(Rep, Sc)ln� � (13.182)

where αv is the mass fraction of vapor emitted by the particle in the locally undisturbed gas flow, αvs the
(saturated) vapor mass fraction at the droplet (or particle) surface assumed to be in equilibrium with the
particle (so it depends directly on the temperature Θ of the particle), Dv the molecular diffusion coeffi-
cient of the vapor, and Sh the droplet Sherwood number for mass transfer of vapor to or from the droplet
which is a function of the vapor Schmidt number, and the local particle Reynolds number Rep given by

Rep � , Sc �

where vg is the kinematic viscosity of the gas.
Similarly, the changes in particle-droplet velocity and temperature also depend on the local particle

Reynolds number. A point to note here is that the equations of motion are all coupled and all depend
upon the instantaneous particle Reynolds number which, in turn, depends on the relative velocity
between particle and locally undisturbed gas.

13.4.3.2.1 PDF Equation for Inert Particles
As stated previously, there are currently two PDF approaches in use: the KM and GLM. To illustrate the
differences and similarities between these approaches, let us consider the simplest case of the transport of
inert nonreacting solid particles in a turbulent gas flow. To simplify the situation still further the drag act-
ing on the particle is linearized with respect to the relative velocity, i.e.,

FA � η��(u � v) (13.183)

where η�� is the net friction coefficient and given by

η
�

� ρgACD(R�e�p)|u� � v�| (13.184)

where v� is the net particle velocity and R�e�p the value of the particle Reynolds number based on net rela-
tive velocity between particle and local carrier flow. The equations of motion for a particle are

� v (13.185a)

and

� β
�

� (u � v) (13.185b)

where β
�

is the inverse particle response tensor and given by m�1η�
�

for a particle of mass m. In the case of
Stokes drag, the elements of β

�
are constants of the motion and those of βij

�1 are the corresponding parti-
cle response times to changes in flow. In addition to the particle equations of motion, the equation of

dv
�
dt

dx
�
dt

1
�
2

Dv
�
vg

dp|v � u|
�

vg

1 � α v
�
1 � αvs
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Modeling 13-93

motion of the carrier flow velocity u along a particle trajectory is included, namely,

� Fi(v, u, x, t) (13.186)

In the KM approach, one considers the continuum equations derived from an equation for the phase-
space density W (v,x,t), in which u (x,t) is a random function of x, t, and v and x the independent ran-
dom variables. In the GLM approach, the continuum equations are derived from a conservation equation
for the phase-space density P(v,u,x,t), where v,u,x form a set of independent variables. The transport-
conservation equations for W (v,x,t) and P(v,x,u,t) are, respectively,

� � vi � βij(uj(x, t)� vj)�W(v, x, t) � 0 (13.187)

and

� � vi � βij(uj � vj) � Fi(v, u, x, t)�P(v, u, x, t) � 0 (13.188)

Note that integrating the equation for P over all u gives the equation for W. The functions ui(x,t) and
Fi(v,u,x,t) are resolved into mean and fluctuating parts:

ui � �ui� � u��i, Fi � �Fi� � F��i

where 〈....〉 represents an ensemble average. Then, the transport equations for mean values of W and P,
namely, 〈W〉 and 〈P〉, are

� � vi � βij(�uj� � vj)��W � � � βij�u��j W� (13.189)

� � vi � βij(uj � vj) � �Fi���P� � � �F��i P� (13.190)

When suitably normalized, 〈W 〉 and 〈P〉 represent the probability density at time t, for which a particle
has (v,x) and (v,u;x), respectively. To solve these equations, closure relations for �u��i W � and �F��i P� are
required. For simplicity, only the case where βij � βδij will be considered.

13.4.3.2.2 Closure Approximation for a Nonreactive Gas–Particle Flows
13.4.3.2.2.1 Kinetic model. Based on either the LHDI approximation (Reeks, 1993) or the
Furutsu–Novikov formula (Swailes and Darbyshire, 1997), the closure approximation for the net flux
�u��i W � for particles with velocity v and position x at time t, is given by

�u��i W� � �
 �ui(x, t)∆vj� � �ui(x, t)∆vj���W � (13.191)

�� ∆xj��W �

where explicitly ∆xj(x,v,t|0) and ∆vj(x,v,t|0) denote changes in the particle position and velocity for a par-
ticle starting somewhere in the particle phase space at some initial time s�0 and arriving at the point v,x
at time s�t The result is exact for a process in which the displacements ∆xj(x,v,t|0), ∆vj(x,v,t|0) form a
Gaussian process. The averages 〈ui(x,t)∆xj〉 and 〈ui(x,t)∆vj〉 shall be referred to as the fluid-particle
dispersion coefficients for spatial and velocity gradient diffusion in phase space.

The value of the dispersion coefficients in uniform shear flow are used as approximate values for the
general case of nonuniform flows by choosing the local shearing of the flow at x in the flow and assum-
ing the turbulence is quasi-homogeneous. In this instance, one can express ∆v and ∆x in Eq. (13.187) in
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13-94 Multiphase Flow Handbook

terms of a set of response functions Gji (s) which are the displacements of the particle in the x̂i direction
in response to an impulsive force δ

�
(s) applied in the x̂j direction of the mean flow (in the absence of the

turbulence). Thus if u�(s) is the fluctuating value of the carrier flow velocity with respect to its mean
encountered by a particle along its trajectory measured at time s, then

∆xi(t) � β�t

0

u��j (s)Gji(t � s) ds ; ∆vi(t) � β�t

0

u��j (s)G
.

ji(t � s) ds (13.192)

because the mean flow field is linear in x, and where Gji(t) is the solution of the equation

G
.

ji � βG
.

ji � βG
.

jkS � δjiδ(t) (13.193)

13.4.3.2.2.2 Generalized Langevin model (GLM). Simonin and Deutsch, Minier (SDM) (1993) derive an
equation of motion for the fluid velocity along a particle trajectory by starting from the Langevin equa-
tion that Pope (Harworth and Pope, 1986) has used as the analog of the Navier–Stokes equation for fluid
point motion. Thus along a fluid point trajectory

� αij(X)(�ui� � uj) � fi(X) � f��i (t) (13.194)

where fi(x) is the net viscous and pressure force per unit mass of fluid and f��i(t) is a white noise function
of time. Both SDM and Pope consider the equation of motion in differential form because the white noise
is assumed to be nondifferentiable. For convenience, it is assumed that the white-noise, like all turbulence
related functions is differentiable. The equation of motion has white-noise properties simply because it
has a time scale much shorter than the time scale over which u(t) varies along a fluid point trajectory
O(α�1). For future reference it is noted that

fi(x) � � (13.195)

where

� � �uj� (13.196)

SDM use this relationship to derive an equation of motion for the fluid velocity along a particle trajec-
tory. Hence if dp/dt is the time derivative of the fluid velocity along a particle trajectory and similarly if
df /dt is along a fluid point trajectory, then

� 
 � vj �ui(x, t) (13.197)

� (vj � uj) �

� (vj � uj)

� αij(�uj� � uj) � fi(x) � f��i(t)

SDM consider only the contribution from the gradient of the mean fluid velocity in this equation of
motion for the fluid velocity along a particle trajectory i.e., they consider the equation

� (vj � uj) � αij(�uj� � uj) � fi(x) � f��i (t) (13.198)
∂�ui(x, t)�
�∂xj

dpui
�

dt

∂ui(x, t)
�∂ xj

df ui
�

dt

∂ui(x, t)
�∂ xj

∂
�∂ xj

∂
�∂ t

dpui
�

dt

∂
�∂xj

∂
�∂ t

Df
�Dt

∂�u��j u��i�
�∂xj

Df �ui�
�Dt

dui
�
dt

∂�ui�
�∂xk
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Modeling 13-95

In effect, this is equivalent to assuming that the contribution of the fluctuating fluid velocity gradient is
absorbed into the white-noise function f��i (t). By using the white-noise function , the equation for 〈P〉 can
be closed exactly, namely,1

�F��i (x, t)P(v, x, u, t)� � � f��i (t)P(v, u, x, t)� (13.199)

� ��


i

� f��i (0)f��i (s)� ds

Then from Eq. (13.193), the equation for 〈P〉 used by SDM is:

� vi�P� � βij(uj � vj)�P� (13.200)

� �αij(�uj� � uj) � fi(x) � (vj � uj) ��P�

� ��


i

� f��i(0)f��j(s)� ds

13.4.3.3 Continuum Equations and Constitutive Relations for the Dispersed Phase
(Without Collisions)

The continuum equations refer to the transport equations of mass, momentum, and kinetic stress of the
particle phase and can be generated from the PDF equations for 〈P〉 or 〈W〉 by multiplying them by an
appropriate power of mv�pv�qv�r and then integrating overall u and v (for 〈P〉) and over all v (for 〈W 〉),
where m is the mass of a particle (assuming that all the particles for the sake of simplicity have the same
mass m) and v�i the fluctuating value of vi relative its mean density weighted value v�i. Thus

mass(�ρ�) � m��P�(v, u, x) dv du (13.201a)

momentum�ρ�v�i � m��P�(v, u, x) dv du (13.201b)

and

kinetic stress�ρ�v���i�v���j� � m��P�(v, u, x)v�iv�j dv du (13.201c)

So the quantities v�i and v���i�v���j� are the particle mass density weighed mean and covariance of the particle
velocities at (x,t). The continuum equations are from Eq. (13.189):

� �ρ�v�i � 0 (13.202a)

�ρ� v�i � � �ρ�v���i�v���j� � �ρ�βij(�uj� � v�j) � βij�ρ�u�����j� (13.202b)

and

�ρ� v���i�v���j� � � �ρv�kv�jv�i� � ρv���j�v���k� � �ρ�v���j�v���k� (13.202c)

��ρ�βik(v���k�v���j� � v���k�v���j� � v���k�v���j�)

∂ v�i
�∂xk

∂ v�i
�∂xk

∂
�∂xk

Dp
�Dt

∂
�∂xj

Dp
�Dt

∂
�∂xi

∂�ρ�
�∂ t

∂ 2�P�
�∂uiuj

∂�ui�
�∂xj

∂
�∂ui

∂
�∂ vi

∂
�∂xi

∂�P�
�∂ t

∂�P�
�∂uj

1Note the closure is also exact if f �(t) is Gaussian nonwhite but will include gradients of 〈P〉 in x and v as well.
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where u�i � ui � u�i and Dp /Dt is the particle substantial derivative i.e.,

� � v�j (13.203)

Closed expressions are required for:

1. u��i the average fluid velocity relative to 〈u〉 encountered by a particle
2. u���k�v���j� the carrier-particle velocity covariances
3. �ρv�kv�jv�i� the turbulent kinetic energy flux

Note the distinction here between variables u�i and u�i. Herein after, double prime and prime refer to
random variables relative to 〈u〉 and density-weighted averages, respectively, For example, v� � v � 〈u〉;
and v� � v � v�.

13.4.3.3.1 Constitutive Relations Based on Kinetic Model
By using Eq. (13.189) with Eq. (13.191), and suitably integrating it over all particle velocities to form
transport equations for the particle phase momentum and particle kinetic stresses, and comparing the
resulting equations with Eqs. (13.202b) and (13.202c), one obtains the identities

u�����i� �ρ� � � (�u��i (x, t)∆xj(x, t/0)��ρ�) � � ∆xj��ρ� (13.204)

u���i�v���j� � �u��i(x, t)∆vj(x, t/0)� � �u��i(x, t)∆xm(x, t �0)� (13.205)

where the displacements ∆v and ∆x refer to all particle trajectories arriving at x at time t irrespective of
their velocity. The average �u��i(x, t)∆vj(x, t/0)� is the fluid–particle velocity diffusion coefficient and
�u��i (x, t)∆xj (x, t/0)� is the fluid–particle spatial diffusion coefficient.

It is apparent from Eq. (13.191) that the turbulent interfacial momentum transfer term β.u����ρ� will
contribute an interfacial surface force to the particle-phase momentum equation, which combines with
the particle Reynolds stresses to give a pressure tensor ρ whose components are expressible in terms of an
equation of state, namely, at x:

pji/�ρ� � �v�iv�j� � βik�u��k(x, t)∆xj(x, t �0)� (13.206)

where v� is the particle velocity fluctuation relative to the mean v� at x. Equation (13.206), in turn, encap-
sulates a fundamental relationship between the components of p and a set of particle diffusion coeffi-
cients εij, leading to the relationships

pji/�ρ� � βik ε kj � �v�iv�j� � βik�u��k(x, t)∆xj (x, t �0)� (13.207)

It is clear from the momentum equation that when the intertial term Dv�i /Dt is small compared with the
other terms, the transport is described by a simple convection gradient transport equation, in which the
diffusion coefficients are identical to εij and the convection velocity is given by

v_ D � β �1F � v_ d (13.208a)

v_ d � β �1� v���v��� �� � �
 ∆x(x, t �0)�u��(x, t)� (13.208b)

The first term on the RHS of Eq. (13.208b) has sometimes been referred to as the turbophoretic or
stressphoretic velocity (Reeks, 1993; Ramshaw, 1979). The additional contribution from the second term
is entirely due to the structure of the flow and should be zero for inertialess particles which follow the
flow. According to this approach, gradient diffusion is always the case for particles, which follow the flow.

∂
�∂ x

∂
�∂ x_

∂ v�j
�∂xm

∂u��i
�∂xj

∂
�∂xj

∂
�∂xj

∂
�∂ t

Dp
�Dt
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Modeling 13-97

In fact, the set of diffusion coefficients ε ij reduces to the local average

ε ij � �u��i (x, t)∆xj(x, t �0)� (13.209)

One should note that these are not the same as the diffusion coefficients Dij for the dispersion in a sim-
ple linear shear flow. For particles injected at the center of the shear with zero velocity in simple linear
shear flow, the dispersion can be described as

� Dij(t) �ρ� � δ(x) δ(t) (13.210)

In these rather special cases, the convection term �ρ� �u� (for the case of inertialess particles following the
flow) behaves like a diffusive term when the particles are released from the center of the shear with a dif-
fusion coefficient, which adds to the diffusion coefficients ρij to give the total diffusion coefficient Dij.
However, this result is only true for particles that follow the flow. For particles with inertia, while the
process is still diffusive (for particles released from the center of the shear) the inertial acceleration term
in the particle-phase momentum equation, Eq. (13.202b), also makes a finite contribution to Dij along
with normal gradient diffusion term. Indeed, for particles with small relaxation times, this term domi-
nates the diffusion as time increases, especially in the case of the rotating flow.

The carrier–particle velocity covariances u���k�v���j� are given by

u���i�v���j� � �u��i(x, t)∆vj(x, t �0)� � �u��i(x, t)∆xm(x, t �0)� (13.211)

where the displacements ∆v and ∆x refer to all particle trajectories arriving at x at time t irrespective of
their velocity.

Substituting the expressions for the carrier–particle velocity covariances in Eq. (13.211) into transport
Eq. (13.202.c) for the particle Reynolds stresses gives

�ρ� v���m�v���n� � � �ρv�iv�mv�n���ρ�� ρm � ρn�
��ρ��βnlv���l�v���m� � βmiv���i�v���n�� (13.212)

� �ρ��βml�u��l(x, t)∆vn(x, t �0)� � βnl�u��l(x, t)∆vm(x, t �0)��
Referring to the terms on the RHS of the equation, the second term in brackets represent �viscous� losses from
the action of surface forces P (as defined in Eq. (13.207) in changing the shape and size of an elemental vol-
ume of the dispersed flow as it moves through the mean shear gradients of that flow. The third and fourth
terms are net loss and production terms arising from an internal volume dissipative force �β v�(third term)
and driving force βu��(x, t) (fourth term). One note that at equilibrium in homogeneous turbulence,

v���2� � �u��i(x, t)∆vi(x, t �0)� (13.213)

all other terms being zero. Using the appropriate form for ∆vi (X, t|0) gives the correct analytic form
(Reeks, 1997)

v���2� � β�∞

0

e�βs�u��(0)u��(s)� ds (13.214)

where u″(s) is the fluctuating aerodynamic driving force along a particle trajectory. Thus, the Reynolds
stresses depend explicitly on the shearing of the dispersed phase (the term in square brackets in
Eq. (13.212) and the shearing of the carrier flow (terms involving 〈u�i (x,t) ∆vn (x,t�0)〉 in Eq. (13.212).

∂ v�m
�∂x l

∂ v�n
�∂x l

∂
�∂xi

D
�
Dt

∂ v�j
�∂xm

∂
�∂xj

∂
�∂xi

∂�ρ�
�∂ t
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13-98 Multiphase Flow Handbook

To illustrate this behavior still further, let us represent 〈u� (x,t) ∆v (x,t �0)〉 by ζ and divide it into a
homogeneous part ζ (0) (as if the flow was uniform and independent of the shearing of the carrier flow)
and a deviatoric part δζ linear in the local shearing of the carrier flow. Likewise, divide the particle
Reynolds stress into similar components. Consider the case when β �1is very small (almost fluid point
motion). Only a balance of the terms of order β are important in the Reynolds stress equation, so by
taking β to be isotropic for simplicity, one has

�2δ v���n�v���m� � �δζmn � δζnm� �ε mi �ε ni � 2v���n�v���m�
(0)

� �ζmn

(0)
� ζmn

(0)

� (13.215)

The terms on the LHS contain all the deviatoric terms and the terms of the RHS are all the homogeneous
terms. The whole equation must express the fact that in this limit, the particle velocity covariances are the
same as the carrier flow covariances: this is consistent with the bracketed terms containing all the homo-
geneous forms and the deviatoric terms being both zero. The implication for the sum of the deviatoric
terms being zero is that

2δ v���n�v���m�� �ε mi (v�n � u�n) �ε ni (v�m � u�m) β �1→ 0 (13.216)

The particle deviatoric Reynolds stresses in the limit of very small particles are linear in the relative
shearing between the carrier and dispersed phases. In the case of very large particles, the contribution
from the interfacial momentum transfer term to the deviatoric particle Reynolds stresses drops to zero
with no explicit dependence on the shearing of the carrier flow, i.e., the contribution is entirely viscous.

13.4.3.3.1.1 The turbulent kinetic energy flux 〈ρ v�kv�jv�i〉. An evaluation of the turbulent kinetic energy
flux is based on an application of the Chapman–Enskog approximation in which the nonequilibrium
state of the dispersed phase is approximated by slight deviations from the equilibrium state (Chapman
and Cowling, 1952). The analysis presented is based on that found in Buyevich (1972), where an equa-
tion similar to the classical Fokker–Planck equation was examined. It is also similar to that given by
Swailes and Sergeev (1998). As a first step, the KM PDF equation is used, Eq. (13.189), with Eq. (13.191)
to calculate the equilibrium distribution function, 〈W〉(0) This is found by setting all the time and space
derivatives to zero in the equation, and further assuming that the carrier phase is homogeneous, such that
the equation for 〈W〉(0) is


βijv�j�W �
(0)� � 
βik�u��k∆vj��W �

(0)� � 0 (13.217)

�W��
(0)

(k) is the Fourier transform of �W �
(0)

(v). If then

�W��
(0)

� �n�exp�� �u��i∆vj�Amnkikn� (13.218)

Now consider a state of the system that differs slightly from equilibrium. In this new state, the variables
describing the mean flow, are now functions of time and position, and consequently, unlike in the equi-
librium state, their derivatives are not identically zero. As in Chapman and Cowling (1952), it is assumed
that the deviation from the equilibrium solution is sufficiently small so a solution can be sought for the
nonequilibrium state in the form of a series solution with a small parameter, ξ , being employed to dis-
tinguish between the various orders of approximation (see also Buyevich, 1972). It should be remarked
that the parameter ξ has been introduced only for convenience as a way of ordering terms. Obviously, it
must be set equal to unity at the end of the calculations. To proceed, the KM-PDF equation is now writ-
ten in the form

M(�W � � L�W � (13.219)

1
�
2

∂ 2

�∂ v�i∂ v�j

∂
�∂ v�i

∂
�∂ xi

∂
�∂ xi

∂ v�m
�∂ xi

∂ v�n
�∂ xi
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Modeling 13-99

where

M � M
 ,v�,v�/�v�/�,�u��∆x��L � L
 �u��∆v��
and following both Chapman and Cowling (1952) and Buyevich (1972), 〈W〉 and L are both expanded in
terms of a small parameter ξ, namely,

�W � � �
∞

m�0

ξ m�W �(m) (13.220a)

L�W � � �
∞

m�0

ξ mL(m) (13.220b)

with

L(r) � L�W �(r) � 
βjk�u��k∆vi��W �
(r)� � 
βjk

v�j�W �
(r)�

and with a similar expansion carried out for M 〈W〉. Substituting these expansions into Eq. (13.219) gives

�v���i�v���j�v���k� � ε li �v���j�v���k� � ε lj v���i�v���k� � ε lk v���i�v���j� (13.221)

where the diffusion coefficients εij are the same as those defined in Eq. (13.207). See Swailes and Sergeev
(1998) for precise details.

13.4.3.3.2 Constitutive Relations Based on GLM
The closure expressions in this case are transport equations for u��� and u���k�v���j� derived from the GLM-PDF
equation for 〈P〉 (Eq. [13.200]). Multiplying Eq. (13.200) by ui and integrating over all v and u yields

�ρui� � (ρvjui) � �fi(x) � �ij u�����j� � (v�k � u�k) ���� (13.222)

The LHS can be rewritten as

�ρui� � (ρvjui) � ��� �ui� � ��� u�����i� � v���j�u���i���� (13.223)

Also from Eq. (13.196) and resolving the velocity into mean and fluctuating parts


 � u�j ��ui� � ui � u�����j� (13.224)

Finally by using the relationship given in Eq. (13.196) gives the transport equation for u�����i� , namely,

��� u�����i� � � v���j�u���i���� � ��� �u��ju��i�) (13.225)

�� � αij�u�����j����

A transport equation for u���k�v���j� can also be obtained by transforming the GLM-PDF equation into an equa-
tion for P(v�, u�, x, t), multiplying the resulting equation by ui�v j�and then integrating over all u� and v�.

∂ �ui�
�∂ xj

∂
�∂ xj

∂
�∂ x j

Dp
�
Dt

∂ �ui�
�∂ xj

Df
�
Dt

∂
�∂ xj

∂
�∂ t

∂
�∂ xj

Dp
�
Dt

Dp
�
Dt

∂
�∂ xj

∂
�∂ t

∂ �ui�
�∂ xk

∂
�∂ xj

∂
�∂ t

∂
�∂ xl

∂
�∂ xl

∂
�∂ xl

∂
�∂ v�i

∂ 2

�∂ v�i∂ v�j

1
�ξ

1
�ξ

∂
�∂ v�

∂
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D
�
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13-100 Multiphase Flow Handbook

This gives

��� u���i�v���j� � � ���u���i�v���j�v���k� � ���v���j�v���k� (13.226)

�
���u���i�v���k� � ��� v�j��l�u���k� �
����β
u���i�v���j� � u���i�u���j��

����αiku�������k�v���j�

13.4.3.3.3 Fluid-Particle Velocity Correlation Models
The general form of α in Popes GLM model is assumed to be linear in the local strain rates of the carrier
flow, i.e.,

αij � αij
(0) � β 2 (13.227)

where αij
(0) is the homogeneous (strain-rate independent) component and β 2 a constant whose value is

obtained from measured values of one-point statistics. In the case of the SDM model, the values of αij
(0)

are dependent on the particle itself, since they refer to fluid time scales viewed by the particle. In partic-
ular, SDM account for the influence of crossing trajectories by choosing the following form for αij

(0):

α ij
(0) � � � � �ninj (13.228)

where τfp,⊥ and τfp,�� are the turbulent characteristic time scale of the fluid velocity fluctuations viewed by
the particles in the direction normal and parallel to the mean relative velocity vector v�r between particle
and carrier flow. Adopting the same approach as Csanady for gravitational settling, the direction cosines
for the relative velocity are given by

τfp, �� � τf(1 � Cζ 2
r)

�1/2τfp, ⊥ � τf(1 � 4Cζ 2
r)

�1/2

where

ζ 2
r �

For closure of the transport equation for the fluid–particle covariances in Eq. (13.226) need a closed
expression for fluid–particle velocity �ρ�u���i�v���j�v���k�� turbulent flux. In the case of the scalar particle fluid
covariance u�.v�, Simonin (1996) has used a Boussinesq approximation

�ρu�.v�v�i� � ��ρ�ν t
fp �u�.v�� (13.229)

where ν t
fp is referred to as the fluid–particle turbulent viscosity written in terms of the time scale of the

fluid along a particle trajectory τfp, namely

ν t
fp � �u� . v��τp (13.230)

Using this gradient approximation for the particle fluid velocity fluxes and the expressions for αij, the
transport equation can, in principle, be solved for the linear form for αij in Eq. (13.227). Fevrier and
Simonin (1998), from a computational point of view, have derived an algebraic model for the off-diagonal
particle–fluid covariances, which they then use in conjunction with a transport model for of the scalar

1
�
3

∂
�∂ xi

3� V�r�
2

��u�.u��

1
�τfp,⊥

1
�τ fp,��

δij
�τfp,⊥

∂ u�i
�∂xj

∂ u�j
�∂ xk

∂ v�j
�∂ xk
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Modeling 13-101

fluid–particle covariance, 〈u�· v�〉. This algebraic model is derived from Eq. (13.226) by assuming equilib-
rium of the fluid–particle turbulent velocity correlation tensor in single-phase flow, namely,

�u�mv�m�� �u�iv�j � � Dij� � �u�i v�j�� �u�mv�m� � Dmm� (13.231)

where Dij refer to the diffusive component (gradient of the fluid–particle velocity flux) in the transport
equation for the fluid–particle covariance. Then from the fluid–particle correlations transport,
Eq. (13.226), one obtains the algebraic model

�u�i v�j � � �u� . v��δij � ��u�i u�j � � �u�2�δij� (13.232)

� ��u� . v����u�iv�k � � (1 � β2)�u�iv�k� �
��u�iv�j ���u�mv�n� � (1 � β2)�v�mu�n� ��

where 〈u�2〉 � 〈u�⋅u�〉. For practical applications, this algebraic expression may be used with the transport
equation for the fluid particle covariance 〈u�v�〉 obtained directly from Eq. (13.226). Fevrier and Simonin
go further and derive an even simpler model than the algebraic model by assuming that the fluid–parti-
cle covariance tensor anisotropy is small, so that, for instance, certain ratios in the algebraic model equa-
tion can be replaced by their local quasi homogeneous values. Thus

�

This sort of approximation gives a Boussinesq or eddy–viscosity model for the fluid–particle velocity
covariance, namely,

�u�i v�j� � �u�v��δij � � �u�i v�j� � �u� . v��� (13.233)

� � � div v� � (1 � β2)
 � div u���
In the following section, predictions for the dispersion of particles in particle laden jet are compared

with experimental results.

13.4.3.3.4 Comparison of Predictions with Experimental Results for Nonuniform Unbounded Flows
Here the GLM approach is used to predict the concentration, mean velocity and velocity covariances of
a dilute suspension of particles in a nonuniform flow as where near-wall behavior is not a feature. This is
the case for a particle-laden round turbulent jet, where the flow is strictly unbounded. It represents one
of the many examples where a comparison between model predictions and experimental measurements
have been made (see Simonin [2000] for details). However, it does provide very good examples of the
application of the transport equation for the particle kinetic stresses where the work done by the mean
shear of either phase introduces a significant anisotropy into the particle velocity covariance as is the case
of dispersion in a simple shear. The results are taken from Fevrier and Simonin (1998) for dispersion in
a particle-laden coaxial jet with properties: mean particle diameter = 80 µm, density ratio ρp/ρf � 237,
particle relaxation time β �1� 5 � 10�3sec, mass loading � 3.3 �10�2, and mean volume fraction 
1.4 �10�4. In such a flow, the fluid modulation by the particles and particle–particle collisions are
negligible. Computations were made on a 31 × 51 mesh using the full second-order model involving the
transport of the particle kinetic stress equation, Eq. (13.202), and the scalar fluid–particle covariance

δij
�
3

∂ u�i
�∂xj

	ij
�
3

∂ v�j
�∂xi

ν t
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�1 � βτfp
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�
3

βτfP
�

p1 � βτf

1
�
3
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�
1 � βτfp

�u��v��
��u�2�
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1
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(derived from Eq. (13.226) together with the algebraic models for the off-diagonal particle-fluid velocity
covariances (Eq. [13.232]). The results are also given using the eddy viscosity model for the fluid–parti-
cle velocity covariances Eq. (13.233). The inlet conditions on the fluid and particle mean velocity and
fluctuations are taken from the experimental data of Hishida and Maeda (1990). As experimentally
observed, the particle normal kinetic stresses are much more anisotropic than the corresponding values
of the carrier flow, due to the significant increase in the shearing of the flow in the axial direction than in
as radial direction (see Figures 13.54 and 13.55). Application of the algebraic model accurately predicts
the values in the particle velocity fluctuations in both the axial and radial directions for all measured axial
locations . The fluid–particle eddy–viscosity model is reasonably accurate in predicting the radial veloc-
ity fluctuations but clearly underpredicts the axial values.

13.4.3.3.5 Accuracy and Reliability of PDF Models
The PDF equation in its simplest and most practical form is an equation for the particle phase space distri-
bution in which the random force due to the turbulence along a particle trajectory is a Gaussian process or,
more appropriately, the velocity and spatial displacements ∆v(x,t�v�,0) and ∆x(x,t�v�,0) about a given point
x, t for a particle with an initial velocity of v� are Gaussian. This leads to a simple advection diffusion equa-
tion (ADE) for the net turbulent driving force in particle phase space. It is possible to extend this further to
non-Gaussian processes, but in doing so, we would require more knowledge; more statistics on the dis-
placements and ultimately on the forces that produce them information we rarely posses. Although the ADE
approximation is used, it is applied at the simplest level of the dynamics in which the underlying Liouville
equation, upon which the PDF equation is based, is a linear equation. This leads to a better chance of suc-
cess. Indeed, one might say that the PDF approach is more reliable than other approaches from several
points of view:

1. Simple closure based on a Gaussian process for turbulent driving force is used at a more basic level
of the dynamics. This leads to a non-Gaussian spatial ADE process, which admits all the higher
order gradient diffusion terms that are contained in an ADE process for a compressible non-
Gaussian random particle velocity field.

2. Provides valid criteria for the application of simple gradient diffusion (simple ADE) and in cases,
where this is not valid, a method of solution involving a hierarchy of continuum (moment) equa-
tions closed at a suitable level using closure approximations based on formal solutions to the PDF
equation itself.

Axial velocity fluctuation (m/sec)

1 20 1 20 1 20 20

0.00

0.01

0.02

0.03

−0.03

−0.02

−0.01

Z=0 mm Z=65 mm Z =130 mm Z=260 mm

r
(m

)

m/sec
Particle algebraic model 
Particle eddy-viscosity model
Fluid

Particles, measurements
Fluid, measurements

1

FIGURE 13.54 Radial profiles of axial fluctuations at different locations downstream of a nozzle for a coaxial round jet.
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Modeling 13-103

3. The PDF equation, or more appropriately the closure approximation involved, is asymptotically
exact in the limit of high inertia particle when the process is similar to Brownian motion.

4. Implementation of natural boundary condition, e.g., absorbing/partially absorbing surfaces is an
integrable part of the approach, where solution of the PDF equations is carried out directly near
and at the depositing wall. This is the subject of the following section.

13.4.3.4 Near–Wall Behavior

In this section the works of Devenish et al. (1999), Reeks and Swailes (1997), Swailes and Reeks (1994),
and Darbyshire and Swailes (1996) on the application of the PDF approach to near-wall behavior and the
influence of natural boundary conditions are briefly reviewed. The natural boundary conditions involve
some change in particle velocity together with possible deposition–absorption at the boundary and can-
not be prescribed in the standard two-fluid formulation. Only using a PDF method explicitly involving
the particle velocity distribution at the wall can this be achieved. Furthermore, the steep change in the
level of turbulence at the wall means that only for very small particles are the two-fluid equations (mass
momentum and energy) likely to apply i.e., the particle distribution of velocities at any position within
the turbulent boundary layer will not be locally related to the turbulence. Depending on its size, a parti-
cle will retain some memory of its behavior in the far wall or bulk flow. More precisely, this depends on
the variation of the turbulence over a particle mean free path defined as the distance a particle travels in
a time equal to its correlation time ε/v�. The same type of conditions apply to a gas at low pressure when
the dimensions of the container are comparable to the molecular mean free path. Under such circum-
stances the so-called continuum theory no longer applies. It is to be noted that even without the steep
change in turbulence, the boundary conditions at the wall are by themselves likely to invalidate the two-
fluid model equations simply because the particle–wall distribution is very much different from the nor-
mal distribution.

13.4.3.4.1 General Boundary Conditions at Wall
Referring to Figure 13.56, the general boundary condition for a particle impacting at a wall at x with
velocity u and rebounding with a range of possible velocities v is the flux condition

vP(v, x, t) � �
u.n�0

uP(v, u, t)Θ(v�u) du (13.234)

r 
(m

)
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FIGURE 13.55 Radial profiles of radial fluctuations at different locations downstream of a nozzle for a coaxial
round jet.
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where n is the direction normal to the wall at x, and Θ(v | u) the transition or scattering probability den-
sity that a particle will rebound with a velocity v after impacting the surface with velocity u. The veloci-
ties u and v are related deterministically (specular reflection) or stochastically (diffuse scattering as in the
case of a microscopically rough surface). Swailes and his co-workers (Darbyshire and Swailes, 1996; Reeks
and Swailes, 1997; Devenish et al., 1999) have obtained solutions for the PDF equation for simple flows
in both these cases. Both the cases involve duct flow, in which the turbulence is regarded as homogeneous
with uniform mean velocity in the streamwise direction. In these cases, therefore, the particle’s response
time is sufficiently large that it does not respond to the spatial variations in the mean flow and the tur-
bulence, especially near the wall. Also, it is the boundary conditions themselves which determine the near-
wall behavior, where the continuum equations are inappropriate and the behavior can be approximated
well by a simple steady-state solution of the PDF equation in 1D in x and in v The conditions for parti-
cle response times are consistent with the second gradients flux term in Eq. (13.191) being set to zero, in
which case the PDF equation can be normalized in a universal form under steady conditions as (Swailes
and Reeks, 1994)


v � v � g � ��W(y, v)� � 0 (13.235)

In this equation, y is the normal distance from the wall (y = 0) and positive velocities are directed toward
the wall, particles are acted upon by a gravitational force g directed toward the wall and velocities and dis-
tances are normalized on the particle rms velocity at equilibrium (perfectly reflecting walls) and on the
particle mean free path ε /v�.

In the simple flows considered by Swailes and Reeks (1994) and Reeks and Swailes (1997), the flow 
is divided into a far-wall region, which acts as a constant source of particles entering the near-wall 
region. The interface is set at some distance Y from the wall in particle mean free paths where the 
spatial distribution of the particles is uniform. It follows from Eq. (13.235) that this distribution will be
Gaussian

w(0, v) � (2π)�1/2exp
� v2� for v � 0 (13.236)

13.4.3.4.2 Method of Solution
The PDF equation is solved numerically using a spectral expansion in terms of Hermite polynomials,
looking for solutions in the form

w(y, v) 
 �
N

n�0

φn(y)Ψn(v) (13.237)

1
�
2

∂ 2

�∂ v2

∂
�∂ v

∂
�∂ v

∂
�∂y
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uv

n

FIGURE 13.56 Diffuse scattering from a rough surface where n is the unit vector normal to the surface at the point
of impact with the surface.
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where the Ψn are orthonormal functions based on the Hermite polynomials Hn. They are

Ψn(v) � 
 �
1/2

exp
� (bv)2�Hn(bv) (13.238)

The inclusion of the scaling factor b allows the placement of a set of collocation points vj (j � 0, 1, N), to
be optimized. At these collocation points, the approximation in Eq. (13.237) is exact. In this problem, the
collocation points are taken to be the zeros of the function ΨΝ�1, which provide discrete orthonormal
properties for Ψn(vs). Substituting the approximation Eq. (13.237) into Eq. (13.235) and making it exact
at these collocation points, one gets a system of first-order equations

W � AW (13.239)

where W is column vector whose elements are values of the PDF at the collocation points and A is a
matrix whose elements are functions of Ψs

n.
The boundary conditions given by Eqs. (13.234) and (13.236) are discretized at the points vj. If N∗ is

defined to be the integer such that vj � 0 for j � N∗ and vj � 0 for j � N∗, then the boundary condition
at the interface y � Y can be written as

�
N

n�0

ζjnwn � 1, j � N ∗ (13.240)

where wn � w(vn,Y) and

ζjn � δ jn(2π)1/2exp
 v2
j�, j � N ∗

The boundary condition at the wall y = 0 is

�
N

n�0

ζjnwn � 0, j � N ∗ (13.241)

where

ζjn � δ jnvn � hn
�1�

N

m�0

Ψn
mIm(vj), j � N ∗

with

Im(vj) � �∞

0

Ψm(u)uΘ(vj|u) du

The interface and wall boundary conditions represent standard two-point boundary conditions for the
solutions of Eq. (13.239) and can be solved by a standard numerical method. Figures 13.57–13.59 show
some of the results obtained by Swailes (Darbyshire et al., 1996; Reeks and Swailes, 1997) for the particle
deposition at a wall with or without gravity for specific examples of the wall scattering function Θ(vJ|u).
In each case, results are compared with those obtained from a random walk simulation that simulates the
system precisely. In this case it was assumed that upon impact there was energy loss that was conveniently
described by defining a critical impact velocity νc below which a particle adheres upon impact but above
which a particle will rebound with a prescribed rebound velocity v � Θ(u). Thus Θ(v|u) for specular
reflection is

Θ � � (13.242)

Modeling the dependence of ν � θ(u) from a constant energy loss upon impact as

v ���u�2���v�2
c� for u � vc (13.243)

0                    for 0 � v � vc

δ (v � θ(u) for v � vc

1
�
2

d
�
dy

1
�
2

b
�
2nn!�π�
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gives the simple form

W(v,0) � W(u,0) for u � vc, (13.244)

where v and u are related by Eq. (13.243). It is noted that νc � 0 (no absorption and energy loss) gives
the perfect reflection boundary condition w(ν,0) � w(�ν,0), while letting vc → ∞ gives the perfect
absorption case w(ν,0) � 0, ν � 0. The results were obtained for a range of values of the gravitational
settling velocity vg and critical impact velocities vc. Figure 13.57 shows the results of solving the PDF
equation(13.235) compared with those obtained from the simulation for the velocity distribution at the
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FIGURE 13.57 Particle–wall velocity distrubution for particles falling under gravity with reflection and absorption;
normalized critical impact velocity vc�5, gravitational settling velocity�5.
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FIGURE 13.58 Wall distribution of velocities for specular reflection; γ � 0°, vc = 1.
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wall for the specific case of a partially absorbing wall with νc � 5 and νg � 5 (in normalized units). Note
there are two peaks, one centerd at ν � νg and the other with its center slightly displaced from the origin.
The relative heights of these peaks depend upon the the ratio of νc/νg. For νc/v � 0 (zero absorption) the
latter peak has a maximum value ν � 0, with no contribution from the peak at ν � νg. In contrast, the
opposite is the case when νc/νg → ∞.

13.4.3.4.3 Diffuse Reflection with Deposition
As an illustration, suppose that particles arriving at the surface are still reflected with a deterministic
speed, but now, the velocity vector is directed at some random angle α to the surface. Since only with par-
ticle transport in the direction normal to the wall is of concern, the rebound velocity can be taken as
ν��r cos α where, as in Eq. (13.243), the deterministic speed is. r � �u�2��� v�2

c� . If u � νc then the parti-
cle is considered to adhere.

A variety of distributions Θ(v |u) can be constructed depending on the prescribed distribution of α.
For the purpose of illustration, Darbyshire and Swailes (1996) considered the simple case, where the
reflection angle α is uniformly distributed on (–γ,γ) in which case

Θ(v|u) � � (13.245)

where a(v) � �v�2
c��� v�2� and c(v) � �v�2

c��� v�2�se�c2� γ� .
Predictions for the velocity distribution at the wall compared with those obtained from random walk

simulations are shown in Figure 13.59 for γ � 75°. Compare this distribution with that for specular
reflection with the same critical impact velocity shown in Figure 13.58, which illustrates the essential
effect of diffuse reflection, namely, the reduction near the wall of the normal component of the particle
rms velocity, the effect becoming more pronounced with increasing γ. These features are accompanied
with an increase in particle–wall concentration as γ increases.

13.4.3.4.4 Particle Deposition in a Turbulent Boundary Layer to a Perfectly Absorbing Wall
Analysis of near-wall behavior in this circumstance is dominated by both the boundary conditions that
give rise to a wall PDF, which is far from Gaussian. Steep gradients of the turbulence near to the wall
imply that for a particle with inertia the assumption of local equilibrium (as if the flow was locally

γ �1(u2�a2)�1/2 for a � u � c
0 otherwise
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FIGURE 13.59 Wall distribution of velocities for specular reflection; γ � 75°, vc � 1.
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homogeneous) is invalid, i.e., even with perfectly reflecting boundary conditions, continuum approxi-
mations for particle transport is inappropriate. The influence of boundary conditions and changes in the
turbulence within the near-wall region is covered by the single condition that variations in PDF over a
particle mean free path must be small for the application of a traditional two-fluid model. It is therefore
not surprising to find that gradient diffusion models for particle deposition in a turbulent boundary layer
give generally poor agreement with experimental results, even the gradient diffusion is assumed to apply
up to one particle stop distance away from the wall (the so-called gradient diffusion/free-flight models).
See, for example the review by Papavergos and Hedley (1984). Reeks and Swailes (1993) have made pre-
dictions of the deposition velocity as a function of τ� (particle response time in wall units) by solving the
PDF equations using the same wall functions as in the particle tracking model of Kallio and Reeks (1989).
Values for k� were calculated from the asymptotic form of the PDF for large times downstream of the ini-
tial injection point of particles in the channel. In this case, the spectral collocation technique was used to
solve a time-dependent PDF equation of the form (Kallio and Reeks, 1989):


 � v �β v � µ(y) � λ(y) ��W(v, y, t)� � 0 (13.246)

in which the occurrence of spurious drift has been eliminated. The symbol y is the distance from the wall
in wall units and v the particle velocity (normalized with respect to the friction velocity) at y toward the
wall (in the –y direction) and

µ(y) � β�u(y, t)∆v(y, t �0)� λ(y) � β�u(y, t)∆v(y, t �0)�

are based on their homogeneous forms, by using the same forms for the turbulence intensity and time
scales normal to the wall used in Kallio and Reeks (1989). The predictions for κ� versus τ� compared
favorably with the experimental results of Liu and Agarawal (1974) shown in Figure 13.60. An important
point to note is that while gradient transport is inappropriate in a traditionally based two-fluid model, it
is acceptable in a PDF equation.

∂ 2

�∂ y∂ v

∂ 2

�∂ v2

∂
�∂ v

∂
�∂ y

∂
�∂ t
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FIGURE 13.60 Particle deposition in turbulent pipe flow.
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13.4.3.5 Particle Dispersion with Interparticle Collisions

Experimental and numerical simulations have indicated that inert particle collisions have a measurable
influence on coarse particle transport properties in gas–solid turbulent flows, even for small values of the
dispersed-phase volume fraction (αp � 0.01). In addition, detailed modelling of the interparticle colli-
sion rate is needed for accurate prediction of coalescence–agglomeration processes in dilute flows. By
neglecting hydrodynamic interaction, hard sphere kinetic theory can be used to account for interparticle
inelastic collisions in a PDF approach to particle flows. Thus, referring to Figure13.61 for an inelastic col-
lision between two identical spherical particles labeled 1 and 2,

v�1 � v1 � ec(v21k
)k , v�2 � v1 � ec(v21k

)k (13.247)

where v�1 and v�2 are the velocities of particles 1 and 2 after the collision related to the velocities v1 and v2

before the collision , involving the coefficient of restitution ec, the unit vector k directed from the center of
the first colliding sphere to the center of the second at impact and v21 is the relative velocity of particle 2
with respect to that of particle 1 at impact. Note that there is no interparticle friction.

While there are certain obvious similarities between molecular collisions and particle collisions in a
turbulent flow, there are, however, fundamental differences because the continuous-phase turbulence
plays an important role in the particle transport in a dilute mixture while dissipation induced by inelas-
tic collision controls the particle kinetic energy in a dense flow. Indeed, in the kinetic theory of dilute
gases, the statistics of binary collisions are derived by assuming that the velocities and positions of any
two particles are independent of each other (the molecular chaos assumption), whereas, in gas–solid flow,
the probable positions and velocities of colliding particles will definitely be correlated through their inter-
action with the same surrounding turbulent flow. In this section, we first describe the original approach
due to Simonin (1991), which ignores this correlation, and then the approach proposed by Lavieville et
al. (1995) that attempts to take it into account. A detailed description of the modelling approach can be
found in He and Simonin (1994), Lavieville et al. (1995) and more recently in Simonin et al. (2002), and
Vermorel et al. (2003).

13.4.3.5.1 Collision Integrals
If particle–particle interactions in which more than two particles take place are assumed to be negligible
in number and effect, the collisional PDF rate of change may be written in terms of particle–particle pair
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FIGURE 13.61 Kinematics of two colliding spherical particles.
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distribution functions ρ(2) (v1,x1,x1,x2,t) for particle 1 with velocity v1 at position x1 and particle 2 with
velocity v2 at x2, for which special closure assumptions are needed:


 �
collisions

� d2
p��v21k_ �0

∆ρ2
v1, x, x � dpk, t� v21 d k dv2 (13.248)

Where ρ � (v , x, t) � �w, v, x, t�

∆ρ(2) 
v1, x, v2, x � dpk, t� � ρ(2) 
v�
1, x, v�

2, x � dpk, t� � ρ(2) 
v1, x, v2, x � dpk, t�
and

v�
1 � v1 � (v21.k

)k, v�
2 � v2 � (v21.k

)k

assuming that both particles are identical spherical particles with diameter dp. The mean collisional rate of
change for some property ψ, e.g., kinetic energy, is the integral over all possible binary collisions of the change
in ψ in a particular collision multiplied by the probable frequency of such a collision and can be written as

c(ψ) � d2
p���v21k_�0

(ψ�
2 � ψ2)p2
v1, x, v2, x � dpk, t� v21.k

 d dv2 dv1 (13.249)

13.4.3.5.2 Collision Models
By using the approach adopted in kinetic theory, the pair distribution functions in the collision integral
is simply written in terms of the single-distribution function, assuming that colliding particle velocities
are completely independent; namely,

ρ(2) 
v1, x, v2, x � dpk, t� � P 
v1, x, t�P 
v2, x � dpk, t�

τp �� τe (eddy lifetime) (13.250)

The above assumption has been retained in the derivation of the collision integral used by Simonin
(1991) and is referred to as the random collision model.

This is also the assumption implicitly used by Oesterle and Petijean (1993) and Sommerfeld (1995).
However, this assumption is valid only when the particle response time is much larger than the eddy–par-
ticle interaction time. In contrast, when the particle response time is of the same order or smaller than
this interaction time, the approaching particle velocities will be correlated through interaction with the
same eddy.

To account for correlation between colliding particles, an extended collision model is developed 
by expressing the particle pair distribution function ρ(2)(v1,x,v2,x�dp,k ,t) in terms of the joint fluid–
particle–particle distribution function ρ(2)(u1,v1,x,v2,x�dpk) by assuming that the particle–particle 
velocity correlation is induced by particle interaction with the large-scale fluid turbulent motion. By 
definition

ρ(2)
v1, x, v2, x � dpk� � �ρ(12)
u, v1, x, v2, x � dpk, t� du (13.251)

and

ρ(2) 
v1, x, v2, x � dpk� � ρ(2) 
v1, x,�u, v2, x � dpk� ρ(2) 
v2, x � dpk�u, x� ρ(12) 
u, x� (13.252)

where (|) denotes a conditional PDF and explicitly p12(u,x) is the probability density of finding a carrier flow
velocity u conditioned upon there being any particle at x. By using these relationships, it is assumed that

ρ(2) 
v1, x,�u, v2, x � dpk� � ρ(2) 
v1, x,�u, x� (13.253)

1 � ec
�

2ec

1 � ec
�

2ec

1
�
e2

c

∂P
�∂ t
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and, if the characteristic length scales of the carrier flow turbulence is larger than the particle diameter,
then

ρ2 
v2, x � dpk�u, x� 
 ρ2 
v2, x � dpk�u, x � dpk� (13.254)

By using the relationship

ρ2 
v1, x,�u, x� ρ1/2 
u, x� � ρ12
u, v, x� (13.255)

the particle–particle pair distribution function may be written in terms of the fluid–carrier flow-particle
joint PDF as

ρ(2) 
v1, x, v2, x � dpk� � �ρ(2) 
u, v1, x) ρ(2) (u, v2, x � kdp� ρ1/2 
u, x� du (13.256)

13.4.3.5.3 Third-Order Moment Expansion (Grad’s Theory)
Following Grad’s theory of rarefied gases (1949), the distribution function in the collision term may be
approximated by its third-order expansion in Hermite polynomials:

P(v_, x_, t) � �1 � v�iv�j � v�iv�jv�j � v�i�P 0(v_, x_ , t) (13.257)

where using q2 to denote the mean the particle kinetic energy per unit particle mass

T2 � q2, a2,ij � 
u���k�,�i�u���k�,�j��2
� q2δij, a2,ijk � �v�iv�jv�k�

P(v_,x_ ,t) is the equilibrium PDF, the product of the local spatial density and a Maxwellian distribution for
the particle velocities i.e.,

P 0(v_, x_ , t) � exp
� � (13.258)

By using the hard sphere collision model, Jenkins and Richman (1985) derived the following collisional
terms in the transport equations for the particle mass (m), momentum (mv), kinetic stresses (1/2mv�2),
and kinetic energy flux, (mv�iv�jv�k) respectively:

C(m) � 0 (13.259a)

C(mv) � 0 (13.259b)

C(mv�iv�j) � ��ρ� 
�v�iv�j� � q2δij� � �ρ� q2δij (13.259c)

C(mv�iv�jv�k) � �ρ� (9aijk � aillδ jk � ajllδik � amllδij) (13.259d)

where τC is the time between particle collisions and σc � (1 � ec)(3 � ec)/5 and ξc � (1 � ec)(49 � 3ec)/100.
The collisional term in the kinetic stress transport equation is written as a return to isotropy term analogous
to the Rotta term in the Reynolds stress transport turbulence modeling approach. Elastic collisions (ec � 1)
lead to a destruction of the off-diagonal correlations and redistribution of energy among the various normal
stresses without modifying the total kinetic energy. The extension to inelastic collisions leads to a linear dis-
sipation rate in the kinetic stress transport equations proportional to the collision frequency and a function
of the coefficient of restitution.

ξc
�τc

5
�
12

2
�
3

(1 � e2
c)

�
2τ 2

c

2
�
3

σc
�τc

vr2

�
4q2/3

�p(x_, t)�
�
(4πq2/3)3/2

2
�
3

2
�
3

a 2,ijj
�
2T 2

2

a2,ijk
�
6T 3

2

a2,ij
�
2T 2

2

Modeling 13-111

© 2006 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n]
 a

t 1
2:

18
 3

0 
Se

pt
em

be
r 

20
15

 



Following Lavieville (1997), Grad’s theoretical approach may also be used for correlated collisions by
performing a Hermite polynomial expansion for the fluid–particle joint PDF. This eventually leads to a
generalized form for the collisional source term in the kinetic stress transport equation:

C(mv�iv�j) ��ρ� 
a 2,ij � a1,ij � a12,ij� ��ρ� (1 � ξ2
12) (13.260)

where

ak,ij � 
u���k,i�u���k�,�i� � q2
kδij

2a12,ij � 
u���l,i�u�2���,�j�� � 
u���l,�j�u�2���,�i� � q12δij

ξ 2
12 �

with k � 1 referring to the continuous phase and k � 2 the dispersed phase and u�k,i, is the fluctuating
velocity component of phase k with respect to its mean value. Likewise q2

k is the turbulent kinetic energy
of phase k and q12 are the particle fluid covariance 
u���1�,�i�u���2�,�i��.
13.4.3.5.4 Interparticle Collision Time
The interparticle collision frequency can be computed in terms of the binary particle distribution function as

� ���v_1 � v_2�p2(v_1, v_ 2) dv_1 dv_2

where n is the particle number density. Using the form for p2(v_1, v_2) derived for correlated collisions gives

τc � τ k
c(1 � ξ 2

12)
�1/2

where τ k
c is the standard kinetic theory interparticle collision time based on the molecular chaos assump-

tion and given explicitly by

(τ k
c)

�1 � nπd 2
p���q2

The above equations show that the effective interparticle collision rate based on the correlated collision
model is always smaller than the one given by standard kinetic theory and decreases with respect to the
ratio of the eddy–particle interaction time to particle relaxation time as a result of the increase of corre-
lation coefficient ξ12. This behavior was observed by Lavieville et al. (1995) in LES-Lagrangian simula-
tions in homogeneous isotropic turbulent flows showing that neighboring particles have correlated
turbulent velocities.

13.4.3.6 Conclusions and Future Developments

The PDF approach provides a rational framework in which the behavior of a flow of dispersed particles
can be formulated. The focus here is on the PDF equation itself, how it is derived and how it is used to
obtain the continuum equations and constitutive relations for the dispersed phase in a two-fluid model.
In addition, the approach can also be used to deal with the near wall behavior by incorporating the influ-
ence of boundary conditions in a natural and complete way. The example considered here was of parti-
cles impacting the wall with rebound and absorption (impact adhesion or sticking). This poses serious
problems in the traditional two-fluid approach not only because the boundary conditions have to be cast
in an artificial form (based on certain adhoc assumptions about the particle velocity distribution at the
wall), but also because the continuum equations break down close to the wall. Furthermore, the tradi-
tional two-fluid approaches make certain assumptions about the properties of the dispersed phase; i.e., it
behaves as a simple Newtonian fluid, which is strictly a heuristic assumption.

2
�
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16
�π
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�
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It is important to appreciate also that closure approximations for the PDF equations are necessarily
carried out in particle-phase space (particle velocity and position in the inert particle cases considered
here). This means that a single closure approximation in phase space implies closure at all levels of the
moment equations (i.e., closure of the continuum equations and higher order moment equations). All
these important features were discussed in the subsection on accuracy and reliability of PDF approaches.

In this section, the focus was on dilute flows and dense flows (through the influence of interparticle colli-
sions). The problem of two-way coupling and turbulence modification by the dispersed phase was not dis-
cussed. It is clear, however, that the closure terms in the mass, momentum, and Reynolds stress transport
equations for the continuous phase bear a relationship to two-way coupling and turbulence modification.
However, the crucial problem on how the particles influence the turbulence dissipation in the continuous
phase in terms of closure has not been dealt with adequately. This is all bound up with the way particles inter-
act with turbulent structures, in particular how particles influence their flow topology and persistence and how
this influences the internal dynamics of turbulence production and dissipation and the demixing and segre-
gation of the particles themselves in a turbulent flow. While these features have formed the basis of numerous
simulations and experiments, the problem of how these features can be incorporated in a strictly formal way
into a PDF formulation has not yet been achieved and remains a significant challenge for the future.

13.5 Applications

Th. Frank, Y. Onishi, and B. van Wachem

13.5.1 Lagrangian Prediction of Performance Parameters in Cyclone
Separators

Th. Frank

13.5.1.1 Introduction

Disperse multiphase flows are very common for processes in mechanical and thermal process technology
(e.g., gas–particle or gas–droplet flows, coal combustion, pneumatical conveying, and erosion pheno-
mena). Processes for the separation of solid particles from gases or fluids and the classification and particle
size analysis are an important field of interest in process technology. Most of the flow regimes in techni-
cal processes are real three-dimensional and cannot be restricted to two-dimensional numerical analysis.
Therefore, this section deals with a Lagrangian approach for the prediction of three-dimensional, disperse
gas–particle flows, and its application for flow simulation in cyclone particle separators.

The investigations of the precipitation of quartz particles were carried out for a series of four geomet-
rically similiar cyclones of different size and for a number of different gas inlet velocities. Numerical
results were compared with experiments by König (1990) and showed a very good agreement with exper-
imentally predicted particle precipitation rates.

13.5.1.2 Basic Equations of Fluid Motion

The three-dimensional, two-phase (gas–particle) flow in the cyclone separator is described by assuming
that the particulate phase is dilute and the particle loading is rather low. This assumption satisfies the neg-
lect of interparticle effects and contributing source terms in the Navier–Stokes equations due to parti-
cle–fluid interaction. Further, the two-phase flow is assumed statistically steady, incompressible, and
isothermal. Then, the time-averaged form of the governing gas phase equations can be expressed in the
form of the general transport equation :

(ρFuFΦ) � (ρFvFΦ) � (ρFwFΦ) (13.261)

� 
ΓΦ � � 
ΓΦ � � 
ΓΦ � � SΦ � SΦ
P

δΦ
�δz

δ
�δz

δΦ
�δy

δ
�δy

δΦ
�δx

δ
�δx

δ
�δz

δ
�δy

δ
�δx
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13-114 Multiphase Flow Handbook

were Φ is a general variable, ΓΦ a diffusion coefficient, SΦ a general source term, and S P
Φ the source term

due to particle–fluid interaction (SΦ
P ≡ 0 if coupling of the continous and disperse phase can be neg-

lected). The relationship among of SΦ, ΓΦ, SΦ and SΦ
P and the constants of the standard k–ε turbulence

model used for the present numerical simulation are given in Section 13.3.

13.5.1.3 Equations of Motion of the Disperse Phase

The disperse phase is treated by the application of the Lagrangian approach, i.e., discrete particle trajec-
tories are calculated. Each calculated particle represents a large number of physical particles of the same
physical properties, which is characterized by the particle flow rate N

.
P along each calculated particle tra-

jectory. The prediction of the particle trajectories is carried out by solving the ordinary differential equa-
tions for the particle location and velocities. By assuming that the ratio of fluid to particle density is small
(ρF /ρP �� 1), these equations read as follows:

� � � � � (13.262)

� � � 
vrelCD(Rep)� � (13.263)

� CA � �� � � �
with

Ω � rotvF Rep � vrel � �(u�F��� u�P)�2��� (�vF� �� v�P)�2� �� (�w�F��� w�P)�2�

These equations of motion of the disperse phase include, on the RHS, the drag force, the lift force due to
shear in the fluid flow field (Saffman force), the gravitational and added mass force. For the present
numerical investigation the Magnus force due to particle rotation is neglected because of there minor
importance in the study of the very fine particles in the particle diameter range.

The values for the coefficients CD and CA can be found in the literature of Frank et al. (1997), Frank
(2002), and Sommerfeld (1996). In addition, for the lift coefficient CA, the correction obtained by Mei
(1992) is taken into account. The effect of fluid turbulence on the motion of the disperse phase, which is
regarded to be very important for the particle diameter range under investigation, is modeled by the
Lagrangian stochastic–deterministic (LSD) turbulence model proposed by Milojević (1990). The parti-
cle–wall collisions are treated according to the irregular bouncing model by Sommerfeld (1992, 1996) in
the modified wall roughness formulation given by Tsuji et al. (1991), Frank et al. (1997), and Frank (2002).

13.5.1.4 Solution Algorithm

The time-averaged equations of fluid motion are solved by using the program package MISTRAL-
3D, initially developed by Peri�c (1992) and Schreck and Peri�c (1992). The program
MISTRAL/PartFlow-3D was extensively modified by the authors for gas–particle flow computations.
Further modifications involve the implementation of a standard k–ε turbulence model and the par-
allelization of the solution algorithm by application of a domain decomposition method. The most
fundamental features of MISTRAL/PartFlow-3D are :

● Use of nonorthogonal, boundary-fitted, numerical grids with arbitrary hexahedral control volumes
● Use of block-structured numerical grids for geometrical approximation of complex flow domains

dPvrel
�

vF

gx

gy

gz

ρP � ρF��
ρP �

1
2� ρF

(vF � vP)Ωz � (wF � wP)Ωy

(wF � wP)Ωx � (uF � uP)Ωz

(uF � uP)Ωy � (vF � vP)Ωz

2ν F
1/2

�

π�Ω�
1/2

uF � uP

vF � vP

wF � wP

ρF��

ρP �

1
2� ρF�dP

3
�
4

uP

vP

wP

d
�
dt

uP

vP

wP

xP

yP

zP

d
�
dt

© 2006 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n]
 a

t 1
2:

18
 3

0 
Se

pt
em

be
r 

20
15

 



● Parallelization using domain decomposition method for both the Eulerian and the Lagrangian
part of the computation

● Finite-volume solution approach of SIMPLE kind with colocated variable arrangement; Cartesian
vector and tensor components; and full multigrid solution approach

The solution algorithm for the equations of particle motion is based on the program package,
PartFlow, developed by the authors. A detailed description of the three-dimensional solution algorithm
and the developed parallelization methods for the Lagrangian approach can be found in Frank et al.
(1997), Frank and Wassen (1997), and Frank (2002).

13.5.1.5 Gas–Particle Flow in and Performance of a Standard Cyclone

The presented three-dimensional Lagrangian approach was applied to the gas–particle flow in a standard
cyclone shown in Figure 13.62. The calculations were based on experimental investigations carried out by
König (1990) on a series of geometrically similiar cyclones for a number of different inlet gas velocities.

13.5.1.5.1 Flow Geometry and the Numerical Grid
The cyclones Z10, Z20, Z40 and Z80 investigated in this paper were determined by the following geo-
metrical properties (see also Figure 13.62):

Z10 Z20 Z40 Z80

Diameter of the cyclon (mm) D 40 80 160 320
Height of the cyclon (mm) H 195 390 780 1560
Inlet cross-section (mm2) a � b 4.5 � 18 9 � 36 18 � 72 36 � 144
Diameter of the gas exit (mm) dT 10 20 40 80
Height of the gas exit (mm) HT 31 62 124 248
Diameter of the particle exit (mm) dB 10 20 40 80

Owing to the complex geometry of the cyclone, a numerical grid with 42 different grid blocks and about
250,000 finite-volume elements had to be designed for the numerical calculations of the gas–particle flow.
The numerical grid was originally designed for the Z10 cyclone and then proportionally scaled as 1 : 2 : 4 : 8
for the other three cyclones Z20–Z80.

13.5.1.5.2 Prediction of the Gas and Particle Flow, Pressure Loss
In the course of preliminary calculations of the gas flow field in the cyclones, it was found that the numer-
ical mesh needed further improvement and certain grid refinement in regions of large fluid velocity gra-
dients in order to get converged solutions. Grid refinement was applied to the gas inlet and to the region
in the vicinity of the lower end of the gas exit tube. But certain restrictions in the mesh generation algo-
rithm prevented an optimum arrangement and design of the finite-volume elements in some regions of
the flow geometry. Consequently, strong underrelaxation had to be applied for the solution algorithm in
order to obtain convergence, mainly due to the convergence behavior of the k–ε equations.

Calculated flow fields show the typical asymetrical main vortex in the upper cylindrical part of the
cyclone. In a more detailed view, a flow recirculation can be found along the lid of this cylindrical part of
the cyclone and further downward along the outer wall of the gas exit tube. This type of recirculating flow
is well known for cyclone separators from the literature. The flow field in the other parts of the cyclone
is also in qualitative agreement with the knowledge available for the flow in cyclone separators. The pre-
dicted trajectory of a particle in the Z10 cyclone is shown in Figure 13.63.

The pressure loss over the cyclone was predicted for various gas inlet velocities and compared with the
experimental data of König in Figure 13.64. The pressure loss data of König take only into account the dif-
ference of the static pressure before and after the cyclone. The figure shows that the numerical calculations
underpredict the pressure loss for all gas inlet velocities investigated. The reason for this is most likely due
to slight differences between the experimental setup and the flow geometry investigated numerically. The
numerical data for the pressure loss show a comparable increase with an increased gas inlet velocity.
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Particle trajectory calculations were carried out using the described Lagrangian approach with the pre-
dicted gas flow fields in order to obtain particle collection efficiencies for the four different cyclones (see
Figure 13.64). The main difficulties in the calculation of particle motion include :

1 The flow in the cyclone leads to a very large number of particle–wall collisions. The detection of a
particle–wall collision results in a decrease in the integration time step of the solution algorithm.
Therefore, the large number of particle–wall collisions lead to large computation times for pre-
dicting particle motion.

2 The large computation time needed for cyclone flow prediction is also determined by considering
the influence of gas flow turbulence on particle motion. In order to ensure accuracy, the integration

13-116 Multiphase Flow Handbook
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FIGURE 13.62 Scheme of the standard cyclone Z10.

© 2006 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n]
 a

t 1
2:

18
 3

0 
Se

pt
em

be
r 

20
15

 



Modeling 13-117

FIGURE 13.63 Particle trajectories in Z10 for gas inlet velocity UF � 10 m/sec, dP � 1,..., 5 µm.
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13-118 Multiphase Flow Handbook

time step is set to be less than one tenth of the turbulent time scale of the LSD turbulence model.
The resulting small time steps of the Runge–Kutta solver for the particle equations of motion con-
tribute to the large computational effort needed for the present simulation.

3 The larger geometrical size of the Z40 and Z80 cyclones lead to a substantial increase in particle
residence time in the cyclone and thus to larger computation time.

As a result, the calculation of about 10,000 particle trajectories in the cyclone separator takes about 
22 hours of CPU-time on a single MIPS R10000 processor of a Silicon Graphics CRAY Origin2000.

13.5.1.5.3 Calculation of the Particle Collection Efficiency
In accordance with the experiments by König (1990), investigations for the prediction of the particle pre-
cipitation rate were carried out for the physical properties of quartz particles. The original quartz dust
had a particle diameter distribution in the range of dP � 0 – 50 µm with a number mean particle diam-
eter of d�P� � 10.9 µm. The numerical simulations were carried out for 20 particle diameter classes in the
range between 0.5 and 15 µm. A total number of 670 particle trajectories with random initial conditions
in the inlet cross-section were calculated for each of the 20 particle diameter classes. A particle density of
ρP � 2500 kg/m3 was assumed for the quartz particles. For the coefficients of restitution and kinetic fric-
tion, typical values for quartz particles were used (k � 0.8, f � 0.35).

In a first series of calculations, the collection efficiencies for the quartz particles were predicted for all
four cyclones Z10, ..., Z80 with an inlet gas velocity of uF � 10 m/sec. The collection efficiency is defined
as

η(dP) � 1 �

where N
.

in (dP) and N
.
out (dp) are the particle flow rates for a given particle size in the inlet cross-section

and gas exit cross-section at the top of the cyclone, respectively. In the numerical prediction, particles are
assumed to be collected in the cyclone, if :

1. The particle trajectory reaches the bottom cross-section of the cyclone.
2. The particle sticks to the wall of the cyclone (which means the wall normal velocity of the particle

after a particle–wall collision is less than 10�5 m/sec).
3. The particle residence time in the cyclone is larger than the maximum allowed computation time,

which was set to Tmax � 150 sec for Z10, and Z20 and to Tmax � 250 sec for cyclones Z40 and Z80,
due to their larger geometrical size. The value for Tmax was choosen in a way, that the number of
particles with this very large residence time in the cyclone was less than 4–5% of the calculated
particle trajectories.

A comparison of the predicted and measured collection efficiencies for the Z20 cyclone operating at two
inlet velocities is shown in Figure 13.65. One notes that the shapes of the collection efficiency curves are
similiar. The higher inlet velocity leads to the collection of smaller particles. The numerical predictions for

N
.
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FIGURE 13.64 Comparison of pressure loss vs. gas inlet velocity for Z10,...,Z80 cyclones.
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Modeling 13-119

the 4.3 m/sec inlet velocity agree better with experimental results than those for the 10 m/sec inlet veloc-
ity. A further comparison of the predicted and measured collection efficiencies for the Z80 cyclone with an
inlet velocity of 10 m/sec is shown in Figure 13.66. One notes reasonably good agreement, although the
slopes of the efficiency curves differ somewhat near the cut-off diameter (50% efficiency). Numerical pre-
dictions for the other cyclone geometries can be found in Frank (2000, 2002).

This section illustrates the capability of the three-dimensional Lagrangian approach to predict multi-
phase flows in complex geometries. The predictions for pressure loss and collection efficiency agree well
with experimental results.

13.5.2 Slurry Flows

Yasuo Onishi

Slurry flows occur in many circumstances, including chemical manufacturing processes, pipeline trans-
fer of coal, sand, and minerals, mud flows, and disposal of dredged materials. In this section, we discuss
slurry flow applications related to radioactive waste management.
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FIGURE 13.65 Comparison of particle collection efficiencies for Z20 and gas inlet velocities uF � 4.3 m/sec and 
10 m/sec.
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FIGURE 13.66 Comparison of the particle collection efficiencies for the Z80 cyclone, uF � 10 m/sec.
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13.5.2.1 Tank Waste Characteristics and Waste Retrieval Operations

Two-hundred million liters of wastes containing 180 million curies of radioactivity are stored in single-
and double-shell underground tanks at the U.S. Department of Energy’s Hanford Site in southeastern
Washington State (Gephart and Lundgren, 1997). Much of this waste is removed from the tanks and
solidified at a waste treatment plant, then buried at disposal sites. These wastes are highly basic (pH
10–14), have high salt content, and are chemically and physically very complex. Sludges, saltcakes, liquids,
and vapors often coexist in the same tank. Sludges consist of an interstitial solution and solids that are
not dissolvable with water, while saltcakes contain an interstitial solution and water-dissolvable solids.

The solids in the sludges and saltcakes vary widely in chemical and physical characteristics (Onishi 
et al., 2003; Jewett et al., 2002). The solids contain primary particles to agglomerates, with sizes ranging
over five orders of magnitude. The smallest particles comprise many hydrous oxides, including ZrO2 and
FeOOH, whose diameters are 3–6 nm. Other particles such as boehmite (AlOOH) and apatite are 0.1–1
µm in size. These submicron primary particles found in many tanks form agglomerates that are typically
1–10 µm in size, but can reach 100 µm or more. Some of the largest primary particles are gibbsite
(Al(OH)3) and uranium phosphate, which can exceed 20 µm in size. Trisodium phosphate hydrates
(Na3(PO4)·12H2O) have a needle-like shape and exceed 100 µm in length (Onishi et al., 2002). Hydrated
sodium phosphate can interlock to form a gel if sufficient particles exist in the tank. The densities and
sizes of primary particles range from 2.26 g/mL for NaNO3 to 11.4 g/mL for pure PuO2, but agglomer-
ates and flocs tend to be around 1.5 ~ 2.5 g/mL (Onishi et al., 2002). The waste often contains radioactive
90Sr and 137Cs, whose radionuclide decay heats the waste, sometimes to above 100°C.

The sludge and saltcake are mostly non-Newtonian, and the supernatant liquid is Newtonian. The
slurry (mixture of sludge or saltcake and supernatant liquid) can be Newtonian or non-Newtonian.
Figure 13.67 shows the waste rheology in double-shell tank 241-SY-102, indicating that the sludge can be
represented as a Bingham flow, while the sludge diluted by 48 wt% supernatant liquid is Newtonian
(Onishi et al., 1996). Figure 13.68 presents the variation in viscosity of boehmite waste with pH, indicat-
ing that the viscosity can change with chemical conditions even without dilution.

One to four 300-hp mixer pumps are installed in 28 of the 4000m3 double-shell tanks at the Hanford Site
to stir radioactive sludge or saltcake and supernatant liquid. These mixer pumps withdraw the sludge or salt-
cake waste from near the tank bottom and inject it back into the tank waste through two 0.3-m-diameter

13-120 Multiphase Flow Handbook

7

6

5

4

3

2

1

0

S
he

ar
 s

tr
es

s 
(P

a)

0 100 200 300

Shear rate (sec −1)

100 wt% SY102 Tank Sludge 

99 wt% SY102 Tank Sludge 

52 wt% SY102 Tank Sludge

FIGURE 13.67 Rheology of Tank 241-SY-102 Newtonian and non-Newtonian wastes.
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nozzles at 18m/sec exit velocity. The pumps will rotate at 0.5–0.02 r/min to stir up the sludge or saltcake and
supernatant liquid in the tank, blending them into a slurry that will be pumped from the tank to a waste
treatment facility, as shown in Figure 13.69 (Onishi et al., 2003). In some cases, solvents (e.g., water or
sodium hydroxide solution) will be added to dissolve and thus reduce the amount of solids, decrease the
density and viscosity of the slurry, and make the waste easier to mix, retrieve, and transfer through pipelines
to other tanks or to the treatment facility.

When the sludge is mixed with supernatant liquid or solvent in the tank, physical and chemical changes
occur. Dilution alone changes important physical properties. This change can be observed from rheolog-
ical measurements of double-shell tank 241-SY-102 waste at Hanford (Onishi et al., 1996). As shown in
Figure 13.67, the original sludge is non-Newtonian, while the sludge diluted by 48 wt% supernatant liq-
uid is Newtonian. Thus, when the sludge is withdrawn to the mixer pump near the tank bottom and
injected back into the sludge layer, the jet is a non-Newtonian flow. The jet entrains the supernatant fluid
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FIGURE 13.69 Mixer pumps in a double-shell tank.
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as it penetrates and mixes with the waste. The resulting slurry becomes a Newtonian flow with signifi-
cantly reduced viscosity and shear stress. Furthermore, chemical reactions caused by waste mixing can
dissolve or precipitate solids. Thus, changing solid mass as well as the densities and rheologies of sludge,
saltcake, and the resulting mixed slurry and supernatant liquid affect waste mixing. For example, if chem-
ical conditions and solids concentrations are such that boehmite and its aggregates form, the waste
becomes a gel and the tank waste can neither be removed from the tank nor transferred into treatment
facilities through pipelines.

13.5.2.2 Waste Retrieval Assessment Model

Since waste retrieval and treatment cost is very high, the waste retrieval design and operation decision-
making must be scientifically defensible. To address the complex interactions among waste mixing, chem-
ical reactions, and rheology during the waste retrieval operation, waste assessment tools that accurately
simulate the flow field, turbulence, heat transfer, and chemical reactions are needed.

The ARIEL code (Onishi et al., 1995) is a reactive computational fluid dynamics code that is an example
of this type of tool and couples chemistry and fluid dynamics (Yeh and Tripathi, 1989; Steefel and Lasaga,
1994). It is a time-varying, three-dimensional code whose fluid dynamic portion uses integral forms of the
following fundamental conservation laws applied in a finite-volume formulation (Trent and Eyler, 1994):

● Conservation of mass (equation of continuity)
● Conservation of momentum (the Navier–Stokes equation)
● Conservation of turbulent kinetic energy and its dissipation (with the k–ε model)
● Conservation of energy (the first law of thermodynamics)
● Conservation of mass for solids, liquids, and gases

These equations are discussed in Sections 13.1 and 13.3. ARIEL has some built-in common Newtonian
and non-Newtonian rheology models (e.g., power law and Bingham model), but it can also accept a user-
input rheology model. In addition to the free solids settling, it also simulates hindered solids settling.

ARIEL also calculates chemical equilibrium and kinetics. The equilibrium chemistry submodel mini-
mizes the Gibbs free energy to simulate fast aqueous chemical reactions (Felmy, 1995). Since much of the
tank waste exists under high ionic-strength conditions, the excess solution free energy is modeled by the
Pitzer equations (Pitzer, 1991) in the aqueous-phase modeling. The governing equations to minimize the
Gibbs free energy subject to the mass and charge balance are

G � �
ns

j�1

µjnj (13.264)

subject to

�
ns

j�1

Aijnj � bi i � 1, p (13.265)

�
nas

j�1

zjnj � 0 (13.266)

nj � 0 for all j (13.267)

where G is the Gibbs free energy, µj the chemical potential of species j, nj the number of moles of species
j, ns the total number of the chemical species in the system, Aij the number of moles of component i in 1
mol of species j, bi the number of moles of each component i, p the number of linearly independent mass-
balance constraints, zj the charge of species j, and nas the number of aqueous species.

The kinetic chemistry in ARIEL simulates kinetic reactions of precipitation or dissolution. We used the
following rate law for the solid, i, and the associated aqueous species, j:

� {ki1 � ki2[Csi]}�1 � � (13.268)
Qi
�
Ki

d[Csi]
�dt
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� aij (13.269)

where [Csi] is the molality of solid i; ki1 is the reaction rate of solid i’s, which is independent of the solid
concentration, ki2 is solid i�s reaction rate, which is dependent on the solid concentration, Qi the activity
product, Ki an equilibrium constant, [Cwj] the molality of aqueous species j, and aij the number of moles
of aqueous species j produced from precipitation-dissolution of one mole of solid i.

13.5.2.3 Tank Waste Modeling

We present five simulation cases related to tank waste mixing: (1) generic solid erosion modeling, (2) tank
241-AN-105 sludge waste mixing, (3) tank 241-AZ-102 sludge waste mixing, (4) two-dimensional reactive
transport modeling, and (5) three-dimensional reactive transport modeling.

13.5.2.3.1 Generic Solids Erosion Modeling
We examined mobilization and settling of tank wastes having yield strengths of 200, 1000, 2000, or 3000 Pa
by simulating pump jet injection into saltcake and sludge and the subsequent mixing. The modeling indi-
cated that the slurry pump jets burrow rapidly into the saltcake and sludge bank, collapsing an overhanging
solids layer but eroding only those portions of the solids layer where the normal and shear stresses are greater
than or equal to the yield strength of the sludge.

Simulation results (Onishi and Trent, 1999) are shown in Figure 13.70 for saltcake and sludge wastes with
yield strengths of 200 Pa (a representative value of saltcake waste) and 1000 Pa (a representative value of
sludge waste). As shown on the left panel of the figure, the jet injected by the pump is strong enough to pen-
etrate the entire length of the weaker saltcake (200-Pa yield strength). Its lateral spread is still rather limited
because the saltcake resists being mobilized by the weaker jet-induced velocity at the peripheral of the jet.
With greater sludge strength of 1000 Pa, the jet did not penetrate the entire length of the sludge (right panel
of Figure 13.70). With the 2000 Pa sludge the jet mobilized even less, and the mixer pump mobilized none
of the 3000 Pa sludge. These tests showed that solids mobilization and immobilization are strongly con-
trolled by the yield strength of the saltcake and sludge. The solids were eroded little by shear stress but mostly
by normal stress; thus, in situ or laboratory measurements should obtain the strength of the saltcake and
sludge in resisting the combined forces of normal and shear stresses.

13.5.2.3.2 Tank 241-AN-105 Saltcake Waste Mixing
The ARIEL code was applied to Hanford double-shell tank 241-AN-105 to determine whether two 300-hp
mixer pumps could mobilize and mix the saltcake, which is 4.5-m thick (1850 m3) and overlain by 

d[Csi]
�dt

d[Cwj]
�dt

Modeling 13-123

FIGURE 13.70 Three-dimensional distributions of predicted velocity and erosion patterns of the saltcake and
sludge with yield strengths of 200 and 1000 Pa, respectively, at one simulation hour.
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5.5-m-deep supernatant liquid (2240 m3) and a 0.4m-thick crust at the top (185 m3) (Onishi et al.,
2003). The viscosity of this tank waste varies seven orders of magnitude from the saltcake to the super-
natant liquid, as shown in Figures 13.71 and 13.72. Figure 13.71 presents in situ saltcake viscosity meas-
ured by a falling ball rheometer at its first and fourth passes, while Figure 13.72 shows both in situ and
laboratory viscosity measurements (Onishi et al., 2003; Stewart et al., 1996; Herting, 1997). Since com-
monly used non-Newtonian rheology models do not fit the measured rheology well, we developed and
incorporated into the ARIEL code the following tank-specific rheology model (lines in Figure 13.72) as a

13-124 Multiphase Flow Handbook

105104103102101
Viscosity (Pa sec)

E
le

va
tio

n 
(m

)

4

3

2

1

0

First pass

0.1 cm/sec
1 cm/sec

10 cm/sec

Last pass
0.1 cm/sec
1 cm/sec
10 cm/sec

FIGURE 13.71 In situ viscosity of Tank 241-AN-105 waste.

Solid conc. =
Solid conc. =

19 vol%

7 vol%

2 vol%

0 vol%

Measurements

1219 vol%

137 vol%

1319 vol%

132 vol%

27 vol%

219 vol%

20 vol%

V
is

co
si

ty
 (

P
a 

se
c)

0.001
0.0001 0.001 0.01 0.1 1 10 100 1000 10,000

Strain rate (sec−1)

0.01

0.1

1

10

100

1000

10000

100,000

FIGURE 13.72 Viscosity measurements and rheology model for Tank 241-AN-105 waste.

© 2006 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n]
 a

t 1
2:

18
 3

0 
Se

pt
em

be
r 

20
15

 



function of solids concentration and strain rate (Onishi et al., 2003).

µ � µL exp
A�1 � a1�1 � arctan(a2ln λγ � a3)��� (13.270)

A � , and β �

where αi are constants, CV a solid volume fraction, CVmax the maximum solid volume fraction, µ the vis-
cosity (in Pa sec) at solid volume fraction of CV, µL the viscosity, and λ a time constant of the fluid.

The saltcake in all these tanks has a yield strength of about 100 Pa, which was also assigned to this tank
model. The simulation results indicate that two mixer pumps would erode all the saltcake and mix the
suspended saltcake uniformly with the supernatant liquid. This waste retrieval assessment also provided
the resulting waste conditions for the subsequent waste pipeline transfer and waste treatment.

13.5.2.3.3 Tank 241-AN-102 Sludge Waste Pump Jet Mixing
The tank sludge waste contains nonwater-dissolvable solids and is chemically less saturated than saltcake
waste. It tends to have greater yield strength but less viscosity. The yield strength of the sludge was meas-
ured as about 1540 Pa. The following viscosity model was used to fit measured waste viscosity (Onishi 
et al., 2000):

µ � µL� �
β

(13.271)

where µS is the viscosity of the sludge layer (0.426 Pa sec at a strain rate of sec–1).
The ARIEL code was applied to this tank to determine the amount of solids two 300-hp mixer pumps

would mobilize. This tank also has 22 airlift circulators and heating coils installed to mix and control waste
conditions. One of the airlift circulators is shown in Figure 13.73 (the right panal), which shows the model
prediction along two vertical planes. This figure indicates that only half of the sludge would be eroded by
the two rotating mixer pumps and the suspended solids in that half would be uniformly distributed.

µS
�µL

Cv
�
Cv max

a4β(1 � 4β)
����
1 � a5β(1 � 2β � a6β 2)

2
�π
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FIGURE 13.73 Predicted distributions of velocity and solid concentrations for Tank 241-AZ-102 at two simulation
hours.
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13-126 Multiphase Flow Handbook

ARIEL thus provided useful information on retrieval design and waste feed delivery planning for the
treatment plant. The main limitation of ARIEL for these three applications is that waste rheology is not
correlated with chemical conditions during the simulation, while actual tank waste rheology is clearly
affected by chemical conditions in addition to the physical conditions.

13.5.2.3.4 Two-Dimensional Reactive Transport Modeling:
We tested the interaction between waste chemistry and mixing by simulating an axisymmetric pump jet
mixing the saltcake overlain by water (Figure 13.74). Adding water to saltcake waste tanks is the current
base retrieval process. Since approximately half of Hanford’s double-shell tank waste consists of sodium
nitrate and nitrite, we considered their chemical reactions. Six aqueous species (Na�, NO2

�, NO3
�,

NaNO2[aq], NaNO3[aq], and H2O) and three solids [NaNO2[s], NaNO3[s], and nonreactive solids repre-
senting nondissolvable solids] were examined. The non-Newtonian viscosity was assigned to be a func-
tion of solids volume fraction and strain rate, as expressed by

µ � µL� �
β

γ b (13.272)

where b = 0.75, representative of some Hanford tank wastes. Other viscosity parameters were the same as
those of Eq. (13.173).

The axisymmetric reactive transport model predicted that, as water penetrated into and mixed with
the saltcake, NaNO2(s) and NaNO3(s) would be dissolved and only the nonreactive solids remain as
solids. As these solids dissolved, the viscosity of the saltcake decreased and the total amount of Na�,
NO2

�, NO3
�, NaNO2(aq), NaNO3(aq) in the solution increased. These changes are shown in Figure 13.75

(left panel) for NaNO2(s) concentrations predicted at 45 simulation seconds. As the simulation time pro-
gressed, all NaNO2(s) and NaNO3(s) eventually dissolved. Thus, in the actual retrieval operation no slurry
pipeline transport would be needed, and much easier liquid pipeline transport would be performed.

Without the chemical reactions (see Figure 13.75, right panel), solids concentration changes are due
solely to mixing. Thus, in accounting for the chemical reactions, the mixer pump will encounter a smaller
amount of solids and slurry with less viscosity to mobilize. This results in an improved waste mixing and
transfer efficiency. This simple numerical test reveals the importance of accounting for the chemical reac-
tions and associated rheology changes to determine the effectiveness of mixer pumps to mobilize the
sludge.

13.5.2.3.5 Three-Dimensional Reactive Transport Modeling
The ARIEL code was applied to a more realistic tank waste condition. This case represents non-Newtonian
saltcake waste mixed with overlaying water by two 300-hp mixer pumps (see Figure 13.69). Chemical reac-
tions simulated are those in a Na–OH–Al(OH)4–CO3–SO4–NO2–NO3–NaNO2(aq)–NaNO3(aq)–H2O sys-
tem with solids of Na2CO3

.H2O, Na2SO4, and Al(OH)3. Most of the Na2CO3⋅H2O and Na2SO4 are expected
to be dissolved with water, based on experiments and our chemical modeling. The viscosity of this tank
waste varies seven orders of magnitude from saltcake to supernatant liquid, as shown in Figure 13.72.

µS
�µL

Water

3.92 m

H
ei

gh
t (

m
)

Distance (m)

1.960

0.000
0.000 1.960

Vmax = 20 m/sec

Water

1.96 m 

Sludge
NaNO2(s): 205 kg/m3

NaNO3(s):166 kg/m3

FIGURE 13.74 Axisymmetric reactive transport model setup.
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Modeling 13-127

ARIEL began to simulate this case, as shown in the earlier predicted distribution (ten simulation sec-
onds) of thermonatrite (Na2CO3

.H2O) in Figure 13.76 (Onishi et al., 1999). Although it simulated more
realistic chemical reactions occurring in the tank, it revealed the following limitations:

It takes about ten times the computational time as the same case without chemical reactions. 

● It does not account for water mass changes due to dissolution and precipitation of hydrate solids; for

example Na2CO3⋅H2O dissolves, and the water is released to the solution. 
● Some of these hydrates may form agglomerates and gels. 

The solution density and slurry rheology are affected by the aqueous chemical species and solids.
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FIGURE 13.75 Predicted NaNO2(s) concentrations at 45 simulation seconds with (left plot) and without (right
plot) chemical reactions.
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FIGURE 13.76 Predicted thermonatrite (Na2CO3⋅H2O) volume fractions.
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13-128 Multiphase Flow Handbook

13.5.2.4 Summary and Conclusions

Complex interactions occur among waste mixing, chemical reactions, and waste characteristics during
radioactive tank waste mixing. We applied the non-Newtonian reactive transport code ARIEL to simulate
waste mixing to illustrate these complex interactions. ARIEL couples chemical reactions, multiphase
hydrodynamics and transport, and non-Newtonian or Newtonian waste rheology.

The simulation results indicate that (1) the waste has a very complex combination of Newtonian and
non-Newtonian rheology, (2) the interaction between waste chemistry and fluid dynamics is important to
assess tank waste mixing, and (3) ARIEL is applicable to idealized tank waste conditions — pure crystal
solids, no agglomerates, and fast and simple kinetics. The limitations of ARIEL include an extensive com-
putational requirement to simulate waste chemistry and difficulty in handling realistic waste conditions,
especially when dealing with hydrates and their associated complexity. Reactive transport modeling of
ARIEL represents the first step in developing a scientifically based waste retrieval assessment methodology.

13.5.3 Fluidized Bed

B. van Wachem

This section describes numerical simulations of fluidized systems. The predictions of CFD simulations of
bubbling fluidized beds, slugging fluidized beds, and bubble injection into fluidized beds incorporating
various models are compared with the �benchmark� experimental data of Hilligardt and Werther (1986),
Kehoe and Davidson (1971), Darton et al. (1977), and Kuipers (1990).

13.5.3.1 Frictional Stress

At high solid volume fraction, sustained contacts between particles occur, and the stresses predicted by
kinetic theory of granular flow are insufficient. Hence, the additional frictional stresses must be
accounted for, in the description of the solid-phase stress. Zhang and Rauenzahn (1997) concluded that
particle collisions are no longer instantaneous at high-solid volume fractions, as is assumed in kinetic the-
ory. Several approaches have been presented in the literature to model the frictional stress, mostly origi-
nated from geological research groups. Typically, the frictional stress is written in a Newtonian form and
has a deviatoric stress-like contribution and a normal stress-like contribution. The frictional stress is
added to the stress predicted by kinetic theory for αs � αs,min, where the subscript min stands for thres-
hold value:

ps � pkinetic � pfrictional (13.273)

µs � µkinetic � µfrictional (13.274)

Johnson and Jackson (1987) propose a semiempirical equation for the normal frictional stress:

pfrictional � Fr (13.275)

where Fr, nn, and pp are empirical material constants, and αs � αs,min, αs,min being the solid volume frac-
tion when frictional stresses become important. The frictional shear viscosity is then related to the fric-
tional normal stress by the linear law proposed by Coulomb (1776) or the approach proposed by
Schaeffer (1987):

µfrictional � (13.276)

where φ is the angle of internal friction. Values of αs,min are typically in the range 0.55–0.6. Values for the
empirical parameters are dependent on the material properties; some examples are given in Table 13.6.
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Modeling 13-129

13.5.3.2 Simulations

The test cases described in this section are a freely bubbling fluidized bed, a slugging fluidized bed, and a
single-bubble injection into a fluidized bed. A sketch of the flow configurations for the three cases is given
in Figure 13.77.

The particles in a fluidized bed move due to the action of the fluid through the drag force, thereby
resulting in bubbles and complex solids mixing patterns. Typically, the average solid volume fraction in
the bed is fairly large, averaging about 40%, whereas in the the free-board of the fluidized bed (the top)
there are almost no particles.

The simulations in this work were carried out with the commercial CFD code CFX 4.2. For solving the dif-
ference equations, the higher order total variation diminishing (TVD) scheme Superbee is used. This TVD
scheme incorporates a modification to the higher-order upwind scheme (second order). The time discretiza-
tion is done with the second-order back-ward difference scheme. The solution of the pressure from the
momentum equations requires a pressure-correction equation, correcting the pressure and the velocities after
each iteration; for this, the SIMPLE (Patankar, 1980) algorithm is employed. The calculated pressure is used
to determine the density of the fluid phase; the simulations are performed allowing for compressibility of the
gas phase. Compressibility is an important effect in fluidized beds, as the gas density varies with 10–30% over
a typical fluidized bed. The grid spacing was determined by refining the grid until average properties changed

TABLE 13.6 Values for the Empirical Parameters in Eq. (13.174) as Suggested by Various Re-searchers.

Fr (N/m2) Nn PP αs,min φ ds (µm) ρs (kg/m3) Material Reference

0.05 2 3 0.5 28° 150 2500 Not Specified Ocone et al. (1993)
3.65 � 10�32 0 40 – 25.0° 1800 2980 Glass Johnson and Jackson (1987)
4.0 � 10�32 0 40 – 25.0° 1000 1095 Polystyrene Johnson and Jackson (1987)
0.05 2 5 0.5 28.5° 1000 2900 Glass Johnson et al. (1990)

(a) (b) (c)

FIGURE 13.77 Flow configurations for the three test cases: (a) fluidized bed; (b) slugging fluidized bed; and 
(c) bubble injection into a fluidized bed.
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by less than 4%. Due to the deterministic chaotic nature of the system, the dynamic behavior always changes
with the grid. The simulations of the slugging fluidized bed and the freely bubbling fluidized bed were car-
ried out for 25 sec of real time. After about 5 sec of real time, the simulation has reached a state in which aver-
aged properties stay unchanged. Averaged properties, such as bubble size and bed expansion were determined
by averaging over the last 15 sec of real time in each simulation. A bubble is defined as a void in the solid phase
with a solid volume fraction less than 15%. The bubble diameter is defined as the diameter of a circle having
the same surface as the void in the solid phase; this is called the equivalent bubble diameter.

13.5.3.2.1 Boundary Conditions
All the simulations are carried out in a two-dimensional rectangular space in which front and back wall
effects are neglected. The left and right walls of the fluidized bed are treated as no-slip velocity boundary
conditions for the fluid phase, and free-slip velocity boundary conditions are employed for the particle
phase. A possible boundary condition for the granular temperature follows Johnson and Jackson (1987):

n.(κ∇Θ) � �ϕ��vslip�2
� (1 � e2

w)� (13.277)

where the LHS represents the conduction of granular energy to the wall, the first term on the RHS rep-
resents the generation of granular energy due to particle slip at the wall, and the second term on the RHS
represents dissipation of granular energy due to inelastic collisions. Another possibility for the boundary
condition for the granular temperature is proposed by Jenkins (1992):

n.(κ∇Θ) � � vslip
. M � D (13.278)

where the exact formulations of M and D depend upon the amount of friction and sliding occurring at
the wall region. Simulations which are done with an adiabatic boundary condition at the wall (∇Θ � 0)
show very similar results.

The boundary condition at the top of the free-board (fluid-phase outlet) is the so-called pressure bound-
ary. The pressure at this boundary is fixed to a reference value, 1.013 � 105 Pa. Neumann boundary condi-
tions are applied to the gas flow, requiring a fully developed gas flow. For this, the free board of the fluidized
bed needs to be of sufficient height; this is validated through the simulations. In the free board, the solid vol-
ume fraction is very close to zero and this can lead to unrealistic values for the particle velocity field and poor
convergence. For this reason, a solid volume fraction of 10�6 is set at the top of the free board. This way the
whole free board is seeded with a very small number of particles, which gives more realistic results for the par-
ticle-phase velocity in the free board, but does not influence the behavior of the fluidized bed itself.

The bottom of the fluidized bed is made impenetrable for the solid phase by setting the solid-phase
axial velocity to zero. For the freely bubbling fluidized bed and the slugging fluidized bed, Dirichlet
boundary conditions are employed at the bottom with a uniform gas inlet velocity. To break the symme-
try in the case of the bubbling and slugging beds, initially a small jet of gas is specified at the bottom LHS
of the geometry. In the case of the bubble injection, a Dirichlet boundary condition is employed at the
bottom of the fluidized bed. The gas inlet velocity is kept at the minimum fluidization velocity, except for
a small orifice in the center of the bed, at which a high inlet velocity is specified. Finally, the solids-phase
stress, as well as the granular temperature, at the top of the fluidized bed are set to zero.

13.5.3.2.2 Initial Conditions
Initially, the bottom part of the fluidized bed is filled with particles at rest with a uniform solid volume
fraction. The gas flow in the bed is set to its minimum fluidization velocity. In the freeboard a solid vol-
ume fraction of 10�6 is set, as explained above. The granular temperature is initially set to 10�10 m2 sec�2.

13.5.3.3 Test Cases

With an increase in gas velocity above the minimum fluidization velocity, Umf, bubbles are formed as a
result of the inherent instability of the gas–solid system. The behavior of the bubbles significantly affects

3Θ
�

2

πρsεs�3Θ�
���

6εs,max�1 � 
�εε
s,m

s

ax

��
1/3

�
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Modeling 13-131

the flow phenomena in the fluidized bed, for example, solids mixing, entrainment, and heat and mass
transfer. The test cases in this comparative study are used to investigate the capabilities of the closure
models and governing equations to predict fluidization behaviour, for example, bubble behavior and bed
expansion. Simulation results of each test case are compared to generally accepted experimental data and
(semi) empirical models. The system properties and computational parameters for each of the test cases
are given in Table 13.7.

13.5.3.3.1 Slugging Fluidized Beds
In the case of the slugging fluidized beds, coalescing bubbles eventually reach a diameter of 70% or more of
the column diameter, resulting from either a large inlet gas velocity or a narrow bed. The operating condi-
tions employed in the simulations correspond to the conditions reported by Kehoe and Davidson (1971),
who present a detailed study of slug flow in fluidized beds. The experiments of Kehoe and Davidson (1971)
were performed in slugging fluidized beds of 2.5, 5, and 10 cm diameter columns using Geldart B particles
from 50 to 300 µm diameter and with superficial gas inlet velocities up to 0.5 m/sec. X-ray photography was
used to determine the rise velocity of slugs and the bed expansion. Kehoe and Davidson (1971) use their
data to validate two different equations for the slug rise velocity, both based on two-phase theory:

uslug � U � Umf � �gD�T� (13.279)

and

uslug � U � Umf � �2g�D�T� (13.280)

where ϕ is the analyitcally determined square root of the Froude number of a single rising bubble.
Equation (13.179) is the exact two-phase theory solution; Equation (13.180) is a modification of
Eq. (13.179), based on the following observations:

1. For fine particles (�70 µm), the slugs travel symmetrically up in the fluidized bed, thus the slug
rise velocity is increased by coalescence.

2. For coarser particles (�70 µm), the slugs tend to move up along the walls, which also increases
their velocity.

According to Kehoe and Davidson (1971), Eqs. (13.179) and (13.180) give an upper and lower bound on
the slug rise velocity. Furthermore, Kehoe and Davidson (1971) measured the maximum bed expansion

ϕ
�
2

ϕ
�
2

TABLE 13.7 System Properties and Computational Parameters

Parameter Description Freely Bubbling Slugging Bubble Injection
Fluidized Bed Fluidized Bed into Fluidized Bed

(Kuipers, 1990)

ρs (kg/m3) Solid density 2640 2640 2660
ρg (kg/m3) Gas density 1.28 1.28 1.28
µg (Pas) Gas viscosity 1.7 � 10�5 1.7 � 10�5 1.7 � 10�5

ds [µm] Particle diameter 480 480 500
e(-) Coefficient of restitution 0.9 0.9 0.9
εmax (-) Maximum solid volume fraction 0.65 0.65 0.65
Umf (m/sec) Minimum fluidization velocity 0.21 0.21 0.25
D (m) Inner column diameter 0.5 0.1 0.57
H (m) Column height 1.3 1.3 0.75
Hmf (m) Height at minimum 0.97 0.97 0.5

Fluidization
εs,mf (-) Solids volume fraction 0.42 0.42 0.402

At minimum fluidization
∆x (m) x mesh spacing 7.14 � 10�3 6.67 � 10�3 7.50 � 10�3

∆y (m) y mesh spacing 7.56 � 10�3 7.43 � 10�3 1.25�10�2
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13-132 Multiphase Flow Handbook

(Hmax) during slug flow. They validated their theoretical analysis which led to the result that

� (13.281)

where ubub is the rise velocity of a slug without excess velocity:

ubub � �gD�T� (13.282)

or

ubub � �2g�D�T� (13.283)

corresponding to Eqs. (13.179) and (13.182). Hence, they also propose upper and lower bounds on the
maximum bed expansion.

13.5.3.3.2 Freely Bubbling Fluidized Beds
In the freely bubbling fluidized-bed case, the gas flow is distributed across the inlet of the bed. Small bub-
bles form at the bottom of the fluidized bed which rise, coalesce, and erupt as large bubbles at the bed
surface. Hilligardt and Werther (1986) have done many measurements of bubble size and bubble veloc-
ity under various conditions using the probe developed by Werther and Molerus (1973) and have corre-
lated their data in the form of the Davidson and Harrison (1963) bubble model. Hilligardt and Werther
propose a variant of the Davidson and Harrison (1963) model for predicting the bubble rise velocity as
a function of the bubble diameter:

ub � ψ (U � Umf) � ϕv�gd�b� (13.284)

where ϕ is the analytically determined square root of the Froude number of a single rising bubble in an
infinitely large homogeneous area. Pyle and Harrison (1967) have determined that ϕ � 0.48 for a two-
dimensional geometry, whereas in three dimensions the Davies–Taylor relationship gives ϕ � 0.71. ψ and
ν, added by Hilligardt and Werther (1986), are empirical coefficients based on their data, that are depend-
ent upon the type of particles and the width and height of the fluidized bed. For the particles and geom-
etry employed in this study, Hilligardt and Werther (1986) proposed ψ 
 0.3 and ν 
 0.8. Proposals of
values for ψ and ν under various fluidization conditions, determined by simulations, are given by van
Wachem et al. (1998).

13.5.3.3.3 Bubble Injection in Fluidized Beds
Single jets entering fluidized bed operated at the minimum fluidization velocity through a narrow single
orifice provide details of bubble formation and growth. Such experiments were carried out by Kuipers
(1990). Kuipers (1990) reported the shape of the injected bubble as well as the quantitative size and
growth of the bubble with time by using high-speed photography. The superficial gas inlet velocity from
the orifice was U � 10 m/sec, and the orifice was d � 1.5 � 10�2 m wide.

13.5.3.4 Results

The governing equations used are those given by Jackson (1997) or by Ishii (1975), and the default clo-
sure models are the solid-phase stress of Hrenya and Sinclair (1997), the radial distribution function of
Lun and Savage (1986), the frictional model of Johnson and Jackson (1987) with empirical values given
by Johnson et al. (1990), and the drag coefficient model by Wen and Yu (1966).

13.5.3.4.1 Slugging Fluidized Beds
Simulations of the slugging bed case were performed with both the Ishii (1975) and the Jackson (1997)
governing equations. In some kinetic theory models, a correlation between the gas-phase and particle-
phase velocity fluctuations, called Js , is taken into account. Figure 13.78 shows the predicted maximum

ϕ
�
2

ϕ
�
2

U � Umf
�

ubub

Hmax � Hmf
��

Hmf
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Modeling 13-133

bed expansion with an increase in gas velocity during the slug flow and the two correlations by Kehoe and
Davidson (1971). Figure 13.79 shows the increase in slug rise velocity with an increase in gas velocity.
Clearly, the exact formulation of the governing equation or the correlation for Js do not have any signif-
icant influence on the prediction of these macroscopic engineering quantities, and all CFD models do a
good job at predicting these quantities.

13.5.3.4.2 Bubbling Fluidized Beds
The exact solid-phase stress description does not influence either the freely bubbling or the slugging flu-
idized bed predictions. Figure 13.80 shows the predicted bubble rise velocity employing different drag
models in a freely bubbling fluidized bed, compared with the empirical correlation of Hilligardt and
Werther (1986). All of the investigated drag models are in fairly good agreement with the empirical cor-
relation.

13.5.3.4.3 Bubble Injection
Figure 13.81 shows the quantitative bubble size prediction for a single jet entering a fluidized bed oper-
ating at the minimum fluidization velocity on the drag models of Wen and Yu (1966) and Syamlal et al.
(1993), which are compared with the experimental data of Kuipers (1990). Frictional stresses can increase
the total solid-phase stress by orders of magnitude and is an important contributing force in dense
gas–solid modeling, although the size of the bubble is not significantly influenced by the frictional stress,
as shown in Figure 13.81. Moreover, Figure 13.82 shows the resulting qualitative predictions of the bub-
ble growth and shape and also compare these with photographs of Kuipers (1990). The Wen and Yu
(1966) drag model yields better agreement with findings of Kuipers (1990) for both the bubble shape and
size than the Syamlal et al. (1993) drag model. The drag model of The Syamlal et al. (1993), underpre-
dicts the bubble size and produces a bubble that is more circular in shape than in the experiments of
Kuipers (1990) and in the simulations with the Wen and Yu (1966) drag model.
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Model of Kehoe and Davidson (1971)
Jackson (1997) Governing Equations
Ishii (1975) Governing Equations
Jackson (1997) Governing Equations with Js

FIGURE 13.78 Predicted maximum expansion of a slugging fluidized bed with an increase in gas velocity the gov-
erning equations of Jackson (1997) and Ishii (1975). The predictions are compared with the two-phase theory as pro-
posed and validated by Kehoe and Davidson (1971). (Reprinted from AIChE J., 46, p. 1035, 2001. With kind
permission from John Wiley & Sons, Hoboken NJ, USA.)
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FIGURE 13.80 Predicted bubble rise velocity as a function of the bubble diameter at U � 0.54 m/sec based on dif-
ferent drag models and compared to the experimental correlation of Hilligardt and Werther (1986). The vertical lines
indicate the spread of the simulated bubble rise velocity. (Reprinted from AIChE J., 46, 1035, 2001. With kind per-
mission from John Wiley & Sons, Hoboken NJ, USA.)
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FIGURE 13.79 Predicted slug rise velocity with increasing gas velocity with the govening equations of Jackson
(1997) and Ishii (1975). The predictions are compared with the two-phase theory as proposed and validated by Kehoe
and Davidson (1971). The constant ϕ � 0.48. (Reprinted from AIChE J., 46, 1035, 2001. With kind permission from
John Wiley & Sons, Hoboken NJ, USA.)
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(a) (b) (c)

(a) (b) (c)

t = 0.20 sec

t = 0.10 sec

FIGURE 13.82 Experimental and simulated bubble shape associated with a single jet at U 5 10 m/s and at t 5 0.10s
and t 5 0.20s. Comparison is made between the (a) experiment of Kuipers (1990), (b) simulation using the interphase
drag coefficient of Wen and Yu (1966), and (c) simulation using the interphase drag coefficient of Syamlal et al.
(1993). (Reprinted from AIChE J., 46, 1035, 2001. With kind permission from John Wiley & Sons, Hoboken NJ, USA.)
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FIGURE 13.81 Bubble diameter as a function of time for a bubble formed at a single jet of U � 10 m/sec. A com-
parison is made between the experiments of Kuipers (1990), simulations using the drag coefficient of Wen and Yu
(1966) with and without frictional stress, and simulations using the interphase drag coefficient of Syamlal et al.
(1993). (Reprinted from AIChE J., 46, 1035, 2001. With kind permission from John Wiley & Sons, Hoboken NJ, USA.)
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Nomenclature

Latin

A Area
A Added mass force
cd, cp Specific heat of dispersed phase
CL Lift coefficient
CD Drag coefficient
Dg Molecular diffusion coefficient
E(κ) Energy sepctra
f Ratio of drag to Stokes drag
fc Summation of continuous forces
fp Summation of fluid forces
F Force vector
gi, g Acceleration due to gravity vector
G Gibbs free energy
Gij Relative velocity between particles "i" and "j"
h Enthalpy
hL Latent heat
i Internal energy
k Thermal conductivity, turbulence energy, reaction rate
le Eddy length scale
LE Eulerian length scale
L Lift force vector
m Mass
m. Mass flow rate
m.

k Mass exchange rate for particle "k"
M Summation of torques
M
.

Total mass flow rate
n Number density, number of moles
ni Unit normal vector
n. Number flow rate
N Total number of particles
p Pressure
ps Solids pressure
Pij Collision frequency
qi Heat transfer vector
Q
.

Heat transfer rate
Re Reynolds number
R(τ) Velocity correlation function
S Force due to shear gradient
Sh Sherwood number
Stk Stokes number
Smass Mass source term
Smom Momentum source term
t Time
T Temperature, inertial time scale
T(κ) Spectral energy transfer rate
ui, u, Ui Velocity vector
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Modeling 13-137

v Particle velocity
V Volume
Vi Bubble phase velocity
w Relative velocity vector
W(x, t) Phase space density
xi Coordinate vector
X Phase space vector

Greek Symbols

α Volume fraction
αm Mass loading ratio
β– Inverse particle response time
β Ratio of Lagrangian to Eulerian time scales
ε Void fraction, dissipation rate
ε(κ) Spectral viscous dissipation rate
η Kolmogorov length scale
Θ Granular temperature, temperature, wall scattering function
κ Wave number
λk Ratio of heat transfer to heat transfer at zero Reynolds number
µ Viscosity
ν Kinematic viscosity
ξs Solids phase bulk viscosity
ρ Density
σ Surface tension
τb Bubble response time
τe Eddy transit time
τK Kolmogorov time scale
τL Lagrangian time scale
τp,τV Particle response time
τT Thermal response time
τij Stress tensor
φ Conversion rate of mechanical to thermal energy
Ψ(κ) Spectral two-way coupling
ωA Mass fraction of species "A"
Ω Rotational velocity vector

Subscripts

c Continuous phase
coll Collision
d Discrete phase
D Drag
eff Effective
f, F Fluid
i Coordinate direction, vector
p, P Particle
rel Relative
surf Surface
0 Initial
@p At particle position
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