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CHAPTER 5

Blood Flow in Heart, Lung,
Arteries, and Veins

5.1 Introduction

The next five chapters are concerned with flow inside the bodies of man and
animals. By internal flow of blood, water, and gases, the cells of the body
obtain water, oxygen, and nutrients. To understand the health and disease of
these organisms, it is necessary to know the mechanics of internal flow.

A great variety of things happen in the circulatory and respiratory systems.
To observe them we use a variety of tools. Most important are our eyes. To
help our eyes we use x-rays, cinematography, CAT scan, NMR, ultrasound
imaging, etc. For smaller things, we use optical microscopes, x-rays, electron
microscopes, scanning tunneling microscopes. At different levels of scale,
different objects come into view. Together they reveal the phenomenon of
living. It is the function of mechanics to analyze and integrate the phenomena
at different scales. If the mechanics of a phenomenon at one level of scale is
called macroscopic, and that at a smaller level of scale is called microscopic,
then in biomechanics one often attempts to connect the microscopic to
macroscopic mechanics. For example, the dimension of an endothelial cell
is much smaller than the diameter of the aorta. The mechanics of the endo-
thelial cells is microscopic relative to the mechanics of the aorta. But they are
connected when atherosclerosis is concerned. Again, the diameters of the
collagen and elastin fibers are much smaller than the diameter of the arteries,
but fiber mechanics and arterial mechanics are connected.

In the following, we shall first study blood flow at the scale of the heart and
large arteries. Then (in Chapter 6) we focus on small blood vessels and attempt
to clarify the connection between the micro- and macrohemodynamics. In
Chapter 7 we do the same for the phenomena of respiration. In Chapters 8
and 9, the flow of water and other constituents from blood vessels to extra-

155
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vascular space, the fluid movement in the tissue space, and the fluid exchange
between interstitium and cells are discussed. The presentations in Chapters 5
and 6 are rather condensed. Interested readers are referred to the author’s
book Biodynamics: Circulation (Springer-Verlag, 1984) for a more thorough
treatment. The material in Chapters 7, 8 and 9 is presented at a more leisurely
pace.

5.2 The Geometry of the Circulation System

Every animal’s circulation system is special, but we shall consider typical
features of man, dog, and cat. In these animals, blood flows from the superior
and inferior vena cava into the right atrium, then through the tricuspid valve
into the right ventricle, then through the semilunar valves into the pulmonary
artery, the lung, the pulmonary veins, the left atrium, the mitral valve, the left
ventricle, and finally through the aortic valve into the aorta. The peripheral
circulation begins with the aorta, perfuses various organs, and returns to the
right atrium. In each organ, flow begins in the arteries, perfuses the micro-
circulatory bed, then drains into veins. The vena cava collect blood from
various organs, and send it to the heart.

Figure 5.2:1 shows the heart in greater detail. The two thin-walled atria are
separated from each other by an interatrial septum. The two ventricles are
separated by an interventricular septum. The left ventricle is thick-walled. In
systolic condition, the pressure of blood in the left ventricle is higher than that
in the right ventricle; hence the interventricular septum bulges out toward the
right ventricle. The left ventricle can be represented as an ellipsoid; the right
ventricle can be represented as a bellow. The four valves are seated in a planc
and their bases are connected into an integrated structure, so that the enlarge-
ment of two opening valves is accompanied with the reduction in size of the
other two closing valves. The mitral and tricuspid valves are attached to
papillary muscles, which contract in systole, pulling down the valves to
generate systolic pressure rapidly, and prevent the valves from inversion into
the atrium.

The lung consists of three trees; see Fig. 5.2:2. The airway tree is for
ventilation. The trachea is divided into bronchi which enter the lung, subdivided
repeatedly into smaller and smaller branches called bronchioles, respiratory
bronchioles, alveolar ducts, and alveoli. The alveoli are the smallest units of
the airway. The walls of the alveoli are capillary blood vessels. Every wall of
an alveolus is exposed to gas on both sides, so each wall is called an interal-
veolar septum. The entire lung is wrapped in a pleural membrane like a
balloon. The chest wall also has a pleura. The pulmonary pleura and the
visceral pleura are apposed to each other with a very small gap (a few pm
thick) between them. The sealed compartment of space between the pleura
is called the intrapleural space. The pressure in the intrapleural space is
ordinarily lower than atmospheric. The chest wall and the transpulmonary
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FIGURE 5.2:1 Blood flow through the heart. The arrows show the direction of blood
flow. The symbols are: SVC, superior vena cava; IVC, inferior vena cava; RA, right
atrium; RV, right ventricles; PA, pulmonary artery; LV, left ventricle. The valves are
T, tricuspid, P, pulmonary, AO, aortic, M, mitral. From Folkow and Neil (1971)
Circulation, Oxford Univ. Press, New York, p. 153, by permission.

FIGURE 5.2:2 The three “trees” of the lung.
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pressure (= the difference of the alveolar gas pressure and the pleural pressure)
distends the lung.

The second tree is the pulmonary arterial tree. Beginning with the pul-
monary artery, the tree bifurcates again and again until it forms capillary
blood vessels which separate the alveoli.

The third tree is the venous tree. Beginning with the capillaries, the blood
vessels converge repeatedly until they form pulmonary veins which enter the
left atrium.

Such a sketch of the circulation system cannot give the needed details.
Greater details can be found in Fung (1984) and other references listed therein.

5 Blood Flow in Heart, Lung, Arteries, and Veins

5.3 The Materials of the Circulation System

The heart is a muscle. The lung is blood vessels and airways. All organs are
perfused by blood via blood vessels. Blood vessels consist of smooth muscles,
endothelial cells, and connective tissues. External to blood vessels are body
fluids, cells, and interstitium. The circulation system also includes the lym-
phatic and nervous systems. The blood is a multiphase fluid composed of cells
and plasma. Thus, the variety and complexity of the materials of the circula-
tion system is truly monumental.

A detailed discussion of the chemical composition, molecular and higher
structures (biochemistry, histochemistry), quantitative determination of the
geometrical features of the internal structure of the tissue (morphometry,
stereology, histology, anatomy), and the mechanical properties of the tissue
(biomechanics) and its components (micromechanics) of any of the tissues and
organs of the circulatory system would require much space, and is beyond
the scope of this book. The reader is referred to the literature listed in the
Bibliography at the end of this chapter. The author’s book Biomechanics:
Mechanical Properties of Living Tissues is a convenient reference. In the
following sections, only the essential data required for immediate discussion
are presented.

It is important to realize that the mechanical properties of many biological
materials are very different from those of familiar engineering materials. For
example, the incremental Young's modulus of the blood vessel wall or the
relaxed muscles vary with the stress acting in the tissue; they do not remain
constant as engineering materials do. For the heart, it is important to know
that the maximum active tensile stress which can be generated in an isometric
contraction of a cardiac muscle varies with the length of the sarcomere. See
the length-tension curve in Fig. 5.3:1. If a heart normally operates at a
sarcomere length marked by the point 4 in the figure, then when the sarcomere
is lengthened, the maximum muscle tension will increase, and consequently,
the systolic pressure, p;, will increase. Since the number of sarcomeres in a
heart muscle is fixed, the sarcomere length is proportional to the muscle
length, and by implication, to the radius of the heart. Thus, if the radius of the
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FIGURE 5.3:1 The “length-tension” curve of a skeletal muscle. The sarcomere length is

plotted on the abscissa. The maximum tension achieved in isometric contraction at
the length specified is plotted on the ordinate.

heart is increased, the muscle tension will increase, and so will be the systolic
blood pressure. This is known as Starling’s law of the heart. This law ceases
to be valid when 4 moves off the upward-sloping leg of the curve shown in
Fig. 5.3:1.

A similar length-tension curve exists for the vascular smooth muscle. Since
the length of a muscle cell in a tissue depends on the strain at the place where
the muscle cell is located, it becomes clear that the mechanical properties of
the tissues of the circulatory system depend on the strain in the organ.

Another remarkable property of the blood vessels and the heart is the
existence of large residual strains in these organs. Residual strains remain in
an organ when all the external loads are removed; e.g., when the transmural
pressure in a blood vessel is reduced to zero. This is discussed in Chapters 11
and 13. See Secs. 11.2 and 13.8.

5.4 Field Equations and Boundary Conditions

The basic equations of biomechanics are the equation of conservation of mass,
the equation of motion, the constitutive equations specifying the mechanical
properties of the materials, and, if heat and transfer and chemical reactions
are involved, the energy equation and reaction rate equation. These and the
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equatiqns describing the boundary conditions are all that are allowed in a
theoretical analysis of circulation.

The conservation of mass is expressed by the equation of continuity (Sec.
1.7). For a segment of a blood vessel, it says that

The difference of inflow and outflow + the rate of change

of the volume of the segment = 0. 1)

The eguation of motion is a statement of Newton’s law, which takes the
following form when applied to a fluid or solid:

Density x (transient acceleration + convective acceleration)
= —pressure gradient + force due to stress tensor

+ body force per unit volume. )

Here density refers to the density of the fluid or solid, the transient acceleration
refers to the rate of change of the local velocity with respect to time, and the
conv.ectiue acceleration refers to the rate of change of velocity of a material
partlclf: caused by the motion of the particle from one place to another in a
nonuqurm velocity field. Pressure gradient is the rate of change of pressure
versus distance. The force due to stress tensor refers to the force per unit
yolume due to the rate of change of stresses, taken their directions and areas
Into account in a proper way. See Sec. 1.7.

For the blood, the body force consists of inertial forces due to gravitational
accelera.tion, Coriolis acceleration, and the acceleration of the body due
to w.alkmg, jumping, swimming, flying, or other motion; the stress tensor
consists of shear stresses caused by the viscosity of the fluid. For the blood
vt':ssel, the body forces are similar, the stress tensor is mainly caused by
distension of the vessel due to blood pressure.

The constitutive equation of the blood describes the law of viscosity of the
blood, which is, in fact, quite complex (see F ung, 1981). Whole blood is
non-Newtonian, whose viscosity changes with the strain rate.

‘The constitutive equation of the blood vessel is the stress-strain relation-
ship of the vessel wall material. It is also quite complex because it does not
obey Hoolfc’s ]?.W (see Fung, 1981, and Chapters 10 and 11 of this book).

In _specxal situations, it is permissible to use approximate constitutive
€quations to simplify the analysis. For example, in large animals such as cat
and man, the shear strain rate of the blood at the walls of the heart and the
pul.monary and systemic arteries and veins exceeds 100 sec™! so that in that
region the coefficient of viscosity of blood may be regarded as a constant. The
non-Newtonian feature is important only in a region near the centerline of
the t-)lgod vessel. The integrated effect of the non-Newtonian feature is quite
negligible so that flowing blood in these vessels may be treated as Newtonian.
. For tfge blood vessel wall, the stress-strain relationship can be linearized
(into an incremental Hooke’s law) if the amplitude of deformation is very
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small. For pulmonary arteries and veins, the pressure-diameter relationship
has been found to be linear because these vessels are embedded in an elastic
medium—the lung parenchyma (see Fung, 1981, 1984, and Sec. 5.15, Figs.
5.15:4 and 5).

The boundary condition between a viscous fluid and a solid is the no-slip
condition: there is no relative movement of material particles of the fluid at
the boundary and the material particles of the solid at the same interface.

For an ideal fluid whose viscosity is zero, slip must be permitted, the
boundary condition is then reduced to the condition that the materials on the
two sides of an interface must remain contiguous: they must have the same
velocity normal to the interface.

Across any surface on the boundary, the stress vectors on the two sides
of the boundary surface must be equal and opposite by the condition of
equilibrium.

In the analysis of blood flow in any particular blood vessel, one must not
forget the two ends of the vessel. The entry and exit conditions with regard
to pressure and velocity distributions at the ends must be specified.

These are the basic equations and principles. Some special problems are
formulated, solved, and their physiological meaning discussed in the following
sections.

5.5 Blood Flow in Heart and Through Heart Valves

5.5 Blood Flow in Heart and Through Heart Valves

The direction of blood flow in the heart is shown schematically in Fig. 5.2:1,
the venous blood flows into the right atrium, through the tricuspid valve into
the right ventricle, and then is pumped into the pulmonary artery and the
lung, where the blood is oxygenated. The oxygenated blood then flows from
the pulmonary veins into the left atrium, and through the mitral valve into
the left ventricle, whose contraction pumps the blood into the aorta, and then
to the arteries, aterioles, capillaries, venules, veins, and back to the right
atrium.

An aortic valve with the sinus of Valsalva behind it is sketched in Fig. 5.5:1.
According to model experiments by Bellhouse and Bellhouse (1969, 1972) and
Lee and Talbot (1979), the flow issuing from the ventricle, immediately upon
opening of the valve during systole, is split into two streams at each valve
cusp, as shown in the figure. One part of the flow is directed into the sinus
behind the valve cusp, where it forms a vortical flow before reemerging out of
the plane of the figure, to rejoin the main stream in the ascending aorta.

When the aortic pressure rises sufficiently so that deceleration of the flow
occurs, an adverse pressure gradient is produced, p, at the valve tip exceeds
the pressure p, at a station upstream. The higher pressure p, causes a greater
flow into the sinus which carries the cusp toward apposition. The peak
deceleration occurs just before the valve closure. The vortical motion estab-
lished earlier upon the opening of the valve has the merit of preventing the
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FIGURE 5.5:1 Flow pattern within the sinus of Valsalva.

valve cusp from bulging outward to contact the walls of the sinuses. The open
sinus chamber thus can be supplied with fluid to fill the increasing volume
behind the valve cusps as they move toward closure.

Other heart valves and the valves of the veins and lymphatics are operated
by hydrodynamic forces in a similar way, although they do not have sinuses.
In closing these valves, deceleration of the fluid is the essence, not backward
flow.

5.6 Coupling of Left Ventricle to Aorta and Right Ventricle
to Pulmonary Artery

As the heart muscle contracts periodically, blood is pumped from the left
ventricle into the aorta through the aortic valve, and simultaneously from the
right ventricle into the pulmonary artery through the pulmonary valve. The
aorta and the pulmonary artery, being elastic, expand when they receive blood
at a rate faster than the rate at which they send blood away into the peripheral
organs and the lung, respectively. Expanding an elastic vessel causes an
increase of the circumferential strain and stress in the vessel wall. A blood
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vessel with an increased circumferential stress in its wall will press harder on
the blood it contains. As a result the blood pressure is increased. The increased
blood pressure in the aorta acts on the aortic side of the aortic valve, tending
to close it. An additional tendency to close the valves comes from the decelera-
tion of the blood in the aorta. The deceleration occurs when the inflow exceeds
the outflow. A consequence of the deceleration is the creation of a longitudinal
pressure gradient through the aortic valve, again tending to close the valve.
Eventually the valve is closed, blood continues to flow from the aorta into the
periphery. By this mechanism the blood flow in the aorta does not have large
swing of pressure as it has in the left ventricle. Similar events occur in the lung.

The process described above can be presented mathematically in various
levels of generality. To be rigorous, it seems evident that the heart, aorta,
arteries, and veins should be represented by three-dimensional network, and
the special geometry and materials of construction of various organs must be
described and incorporated in the mathematical model. In practice it is useful
to consider simplified, crude models first, learn the general features, identify
the important parameters, and then add details when needed. Accordingly,
we shall consider the Windkessel model in this section, and the long wave,
small amplitude pulse waves in the next section. Other features are added in
following sections.

The Windkessel theory is Otto Frank's (1899) interpretation of Stephan
Hale’s (1733) explanation of why the pressure fluctuation in the aorta has a
much smaller amplitude than that in the left ventricle. In this theory, the aorta
is represented by an elastic chamber and the peripheral blood vessels are
replaced by a rigid tube of constant resistance. See Fig. 5.6:1. Let 0O be the
inflow (cm3/sec) into this system from the left ventricle. Part of this inflow is
sent to the peripheral vessels and part of it is used to distend the elastic
chamber. If p is the blood pressure in the elastic chamber (aorta), then the flow
in the peripheral vessel is assumed to be equal to p/R, where R is a constant
called peripheral resistance. For the elastic chamber, its change of volume is
assumed to be proportional to the pressure. The rate of change of the volume
of the elastic chamber with respect to time, ¢, is therefore proportional to dp/dt.
Let the constant of proportionality be written as C and called compliance.
Then, on equating the inflow to the sum of the rate of change of volume of
the elastic chamber and the outflow p/R, the differential equation governing
the pressure p is

- dp
Q—Ca+p/R. 1)

—_ Elastic \.
—/\ chamber s

FIGURE 5.6:1 The “windkessel” model of the aorta and peripheral circulation.
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To solve this equation, we can use the method of integration factor. Divid-
ing Eq. (1) by C and multiplying it by ”*<, we obtain
L t/RC dp t/RC 1 t/RC d t/RC
c2@0e"™ = e Trere =g (e’ )
Integrating both sides from ¢t = 0 to ¢ and writing the dummy variable as r,
we have

plr)er™ = fo GO0 s + g, 3)

where p, is the value of p at ¢ = 0. If we take the instant of time when the valve
opens as t = 0, then p, is the systolic pressure in the ventricle at the instant
when the valve opens. Multiplying both sides with e~"RC, we get

i N
p(t) — e-:l-(nc)f EQ(T)et/(RC) dt + poe—x/(RC) (4)
o

which gives the pressure in the aorta as a function of the left ventricular
ejection history Q(r).

An analog electric circuit can be formulated to represent the differential
equation (Eq. 1). When this electric model is driven by a current I = Q(t) of
the shape of an experimentally determined flow through the aortic value at
the ascending aorta, the voltage V obtained is the analog of the blood pressure
in the aortic arch. On comparing the analog results with an experimentally
determined blood pressure curve, it is found that the actual pressure pulse
deviates from the calculated results in several details: the experimental curve
has a superimposed 3-6 cps oscillation apparent from midsystole throughout
diastole, and a more prominent “incisura” marking aortic valve closure
and a more abrupt rise, often with an “anacrotic” wave. In addition, the
Windkessel model fails to explain the changes of the form of pressure wave
occurring along the arterial network. These limitations of the Windkessel
theory can be alleviated by an improved model such as the one presented in
the next section.

The analysis also applies to the coupling of the right ventricle and pul-
monary artery. The pulmonary circulation, however, is a lower pressure
system. The wall of the right ventricle is thinner than that of the left ventricle;
its systolic pressure is lower. The systolic and diastolic pressures in the
pulmonary artery are much lower than those in the aorta. Since the flows in
the aorta and pulmonary artery are about the same, the shape of p(f) given
by the first term on the right-hand side of Eq. (4) can be similar (except for
the amplitude) only if the values of RC are approximately the same in both
circuits. Hence the low pressure in pulmonary circulation must be achieved
by a lower right ventricular pressure Po, a lower resistance R, and a higher
compliance C of the pulmonary circuit.

The right ventricle and the left ventricle are two pumps working in series.
The flow in them must be matched perfectly, otherwise all the blood would

O
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eventually be accumulated either in the lung or in the periphery. The matchiqg
is stabilized by Starling’s law of the heart (Sec. 5.3), namely, if the diastolic
volume is increased, the contracting force of the muscle will increase to pump
harder.

5.7 Pulsatile Flow in Arteries

The weakness of the Windkessel theory is that it allows only one degree of
freedom. The pressures in the aorta and arteries are represented by a single
number. It ignores the change of pressure along the vascular tree. To improve
the understanding of events occurring in the arteries, we go to the next simplest
model: considering each artery as a long, isolated, circular cylindrical elastic
tube, allowing an infinite number of degrees of freedom, approximating the flow
to be one dimensional, and blood as a homogeneous, nonviscous, incompressible
Sluid. The flow in each tube is excited at one end by the heart. The excitation
is propagated in the form of elastic waves, much as an earthquake generates
seismic waves. At the distal end each tube bifurcates, and the waves are
partly transmitted to the daughter branches and partly reflected. This theory
was originated by Euler (1775) and Young (1808, 1809), and developed by
many others. It explains many things, but must be supplemented by three-
dimensional theories when one wants to know the velocity profile, flow
separation, stenosis, microcirculation, etc., which are important to the under-
standing of atherosclerosis, hypertension, etc.

To present this theory in the simplest form, it is further assumed that the
wave amplitude is small and the wave length is long compared with the tube
radius, so that the radial and circumferential velocity components are neg-
ligibly small compared with the longitudinal velocity component u(x, t), which
is a function of the axial coordinate x and time ¢ only. Then the basic field
equations (Sec. 3.2) are: the equation of motion,

du du 1 3p;

— —+——=0 1)
ot g “ax + p Ox (
and the equation of continuity,
0A @
—+ = 0. 2
o + 7% (ud) 2

Here A(x,t) is the cross-sectional area of the tube and p;(x, ) is the pressure
in the tube. The relationship between p; and 4 may be quite complex. For
simplicity we introduce another hypothesis, that 4 depends on the transmural
pressure, p; — p,, alone:

pi — p. = P(4), 3

where p, is the pressure acting on the outside of the tube. Equation (3) is a
gross simplification. In the theory of elastic shells we know that the tube
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deformation is related to the applied load by a set of partial differential
equations and that the external load includes the inertial force of the tube wall.
Hence Eq. (3) implies that the mass of the tube is ignored, and that the
partial differential equations are replaced by an algebraic equation. The
viscoelasticity of tube wall is ignored also.

Equation (1) is the one-dimensional case of the Eulerian equation of motion
(Eq. (1.7:1)). Equation (2) can be obtained by integrating Eq. (1.7:5) over a
tube. A special example of Eq. (3) is the pressure—diameter relationship of the
pulmonary artery or vein (Yen et al., 1980, 1981):

20; £ 2a.~o + ap;. (4)

Here 24, is the vessel diameter, p; is the blood pressure, a; and « are constants
which depend on the pleural pressure pp. and airway pressure p,, but are
independent of blood pressure p;. a is the compliance constant of the vessel,
and a,q is the radius when p; = 0.

Let us solve a linearized version of these equations. Consider small distur-
bances in an initially stationary liquid-filled circular cylindrical tube. In this
case u is small and the second term in Eq. (1) can be neglected. Hence

o, 1on

ot p6x=0' ©)

The area A is equal to ma?. Substituting na? for A in Eq. (2), remembering the
hypothesis that the wave amplitude is much smaller than the wave length, so
that da,/dx « 1, then, on neglecting small quantities of the second order, we
can reduce Eq. (2) to the form

du 2 0a;

5;4‘;:5: - (6)

Combining Egs. (4) and (6), we obtain
0 op;
u, o

5—.; a; ot A (7)

Differentiating Eq. (5) with respect to x and Eq. (7) with respect to t, sub-
tracting the resulting equations, and neglecting the second order term («/a?)
(8a;/dt) (Op;/ot), we obtain

azpi 1 azp.'
Rl i ey @®
where
.
c o 9

Equation (8) is the famous wave equation. The quantity c is the wave speed.

=
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By direct substitution, one can verify that Eq. (8) is satisfied by the solution
(10)

where f and g are arbitrary functions of the variables x — ct and x + ct. The
function f(x — ct) represents a wave propagating to the right (increasing x)
whereas g(x + ct) represents a wave propagating to the left.

pi = flx —ct) + g(x + ct),

Velocity, Pressure, and Wall Displacement Waves

The velocity u is linearly related to p through Egs. (5) and (7), and small change
of the radius a is linearly related to changes in p through Eq. (4). Hence by
eliminating p, it is seen that u and a are governed by the same wave equation

with the same wave speed. If we write
p = pof(x — ct) + pog(x + ct), (1)
u = g f(x — ct) + upg(x + ct),

then on substituting Egs. (11) into Egs. (5) and (7), one sees that the amplitude
Po and uy are related by the simple relationship

Po = pcug (12)
for a wave that is moving in the positive x direction, and
Po = —PpClo (13)

for a wave which moves in the negative x direction.

Equations (12) and (13) show that the amplitude of pressure wave is propor-
tional to the product of wave speed and velocity disturbance and the fluid density.
The pressure and velocity are in phase in an advancing progressive wave; they
are out of phase in the reflected wave.

5.8 Progressive Waves Superposed on a Steady Flow

It can be shown that the equations of Sec. 5.7 are applicable to tubes carrying
a steady flow, provided that we adopt a coordinate system that moves with
the undisturbed flow, and interpret u as the perturbation velocity superposed
on the steady flow and c as the speed of perturbation wave relative to the
undisturbed flow. The proof is as follows.

Let U be the velocity of the undisturbed flow, and u the small perturbation
superposed on it. Treating u as an infinitesimal quantity of the first order, we
see that the equation of motion, Eq. (5.7:1), can be linearized into

o
at 0x

This can be reduced to Eq. (5.7:6) by introducing a transformation of variables

1op:
p ox’

¢Y)
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from x, t to x’, t”:

x'=x— Ut, t'=t. )
From Eq. (2) we have
2, ar’ + i ox" 0 0
o ora  ox ot ar ax .
o 0 z d ox" @
x o dx | ox dx  ox"
Hence, a substitution into Eq. (1) reduces it to
ou 1 op
Fyohe '-; %’ @)

which is exactly Eq. (5.7:5) in the new coordinates,
The equation of continuity, Eq. (5.7:2), now becomes

da; da; a;du

a +U I + TN i 0 5)
when ra? is substituted for A, U + u is substituted for u, and the equation is
linearized for small perturbations. Under the transformation Eq.(2), and using
Eq. (3), Eq. (5) becomes

Oa; a; du

—_—t ——

o T2 =0 ©)

which is exactly Eq. (5.7:7).

The pressure-radius relationship, Eq. (5.7:4), is independent of reference
coordinates. Thus all the basic equations are unchanged. But x’ and ¢’ are the
distance and time measured in the moving coordinates which translate with
the undisturbed flow. Hence what we set out to prove is done.

5.9 Reflection and Transmission of Waves at J unctions

Anarterial tree is composed of segments of cylindrical tubes. Consider a single
Junction as shown in Fig. 5.9:1 in which a tube branches into two daughters.
A wave traveling down the parent artery will be partially reflected at the
junction and partially transmitted down the daughters. At the junction, the
conditions are: the pressure is a single-valued function and the flow must be
continuous. Expressing this mathematically: p, denote the oscillatory pressure
associated with the incident wave, Pr that associated with the reflected wave,
and pr, and py, those associated with the transmitted waves in the two
daughter tubes; then the single-valuedness of pressure means

Pt + Pr = pr, = pr,- (1
Similarly, let Q denote the volume—flow rate, and let the subscripts, I, R, T3,

1
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FIGURE 5.9:1 A bifurcating artery.
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T, refer to the various waves as before; then the continuity condition means
0;—0p= Qr. + Qr,- 2
But Q is the product of the cross-sectional area A and the mean velocity u,

which is related to p by Egs. (12) and (13) of Sec. 5.7. Thus, the flow—pressure
relationship is:

A
) = Ay = +-— 3
Q-Au-ipcp. €

Here p is the density of the blood and c is the wave speed. The. + §ign applies
if the wave goes in the direction of flow; the — sign applies if the wave
goes the other way. ;

The quantity pc/A is an important characteristic of the artery, and is called
the characteristic impedance of the tube. It is denoted by the symbol Z:

= Pc 4
Z—A. O]

Equation (3) shows that Z is the ratio of oscillatory pressure to oscillatory
flow when the wave goes in the direction of flow:

=P 5 = )
Z ==, VA )
) Q=p

Z has the physical dimensions [ML™4T '], and can be measured in units of
kg m™ sec™!. With the Z notation, Eq. (2) can be written as

PI"PR=@+£T_1' 6)
ZO Zl ZZ
Solving Egs. (1) and (6) for the p’s, we obtain

pr_Zo —Zi+Z)_ g, )
P Zy' +(Z7M + Z3Y)
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and

Pr, _Pr, _ 2Z! 0
pr b Zgt+(Z7+Z7Y)

The right-hand sides of Egs. (7) and (8) shall be denoted by # and 4,
respectively. Hence the amplitude of the reflected pressure wave at the junction
is 2 times that of the incident wave, the amplitude of the transmitted pressure
waves at the junction is # times the incident wave. The amplitude of the
reflected velocity wave is, however, equal to —2 times that of the incident
velocity wave, because the wave now moves in the negative x-axis direction,
and according to Eqs. (12) and (13) of Sec. 5.7, there is a sign change in the
relation between u and p depending on whether the waves move in the + or
— x-axis direction.
If the incident wave is

F ®)

Pr = Pof(t — x/co) )]

and the junction is located at x = 0, so that x is negative in the parent tube
and positive in the daughter tubes, then at the junction x = 0, the pressure is

pr = pof(0). (10)
The reflected and transmitted waves are, therefore,
Pr = Apo f(t + x/cq),
Pr, = Fpoflt — x/cy), (11)
pr, = Fpof(t — x/c3).

Here, c,, c,, ¢, are the wave speeds in the respective tubes. The wave in the
parent tube is

P =Ppr + Pr = Pof(t — x/co) + Apo f(t + x/co)- (12)
5 APo ) _ _gApPo
0 = 58 1~ xfeq) = 5T fe + xfea). (13

Equations (12) and (13) show that with a reflection, the pressure and flow wave
forms are no longer equal.

5.10 Velocity Profile of a Steady Flow in a Tube

Having analyzed the aortic blood flow by lumped parameter method (Sec.
5.6), and pulse wave in arteries as one-dimensional nonstationary flow of a
nonviscous fluid in an elastic tube (Secs. 5.7-5.9), we shall now consider the
effect of viscosity of blood on the flow. We shall first consider blood as a
Newtonian fluid.

Consider first a steady flow of an incompressible Newtonian fluid in a rigid,
horizontal channel of width 2h between two parallel planes as shown in Fig.

@
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5.10 Velocity Profile of a Steady Flow in a Tube = 1m
FIGURE 5.10:1 Laminar flowin VY z /
a channel. ()

u
P b4
2h
x

5.10:1. The channel is assumed horizontal so that the gravitational effect (a
body force) may be ignored.
We search for a flow,

u=u(y), v=0, w=0, 1)
which satisfies the no-slip conditions on the boundaries y = +h:
u(h) =0, u(—hy=0. )

The function u must satisfy the Navier—Stokes equation and the equation of
continuity (Sec. 1.7). It is seen that the equation of continuity is satisfied
exactly. The Navier—Stokes equation is simplified to:

ap d*u
0= “ax + #E'y—z, (3a)
‘6p
0= @ (30

z

Equations (3b) and (3c) show that p is a function of x only. If we differentiate
Eq. (3a) with respect to x and use Eq. (1), we obtain 92p/dx* = 0. Hence dp/dx
must be a constant. Equation (3a) then becomes

d*u 1ldp
& " pax @
which has a solution
1y*dp
u—A+By+—7:i—£. (5)

The two constants 4 and B can be determined by the boundary conditions,

Eq. (2), to yield the final solution
., 2. dp
= ——(h* — y*)—. 6
w= = (8 =y ©)

Thus, the velocity profile is a parabola.
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Next consider a flow through a horizontal circular cylindrical tube of radius
a. Using polar coordinates, it is easy to show that the solution is [see Fung
(1984), p. 83]
| 2. dp
= 4# (a r )d—;
This is the famous parabolic velocity profile of the Hagen—Poiseuille Sflow.
From the solution (7) we obtain the rate of flow through the tube by
integration:

™

. B na* dp
0 =2 L urdr = 8 dx’ (8)

This classical solution has been subjected to innumerable experimental
validation. It was found to be invalid near the entrance to a tube. It is
satisfactory at a sufficiently large distance from the entrance but is again
invalid if the tube is too large or too long if the velocity is too high. The
difficulty at the entry region is due to the transitional nature of the flow in
that region so that our assumption v =0, w = 0, is not valid. The difficulty
with too large a Reynolds number, however, is of a different kind: the flow
becomes turbulent.

Osborne Reynolds demonstrated the transition to turbulent flow in a
classical experiment in which he examined an outlet from a large water tank
through a small tube. At the end of the tube there was a stopcock used to vary
the speed of water through the tube. The Junction of the tube with the tank
was nicely rounded, and a filament of colored fluid was introduced at the
mouth. When the speed of water was slow, the filament remained distinct
through the entire length of the tube. When the speed was increased, the
filament broke up at a given point and diffused throughout the cross-section.
Reynolds identified the governing parameter u,,d/v—the Reynolds number—
where u,, is the mean velocity, dis the diameter, and v is the kinematic viscosity.
The point at which the color diffuses throughout the tube is the transition
point from laminar to turbulent flow in the tube. Reynolds found that transi-
tion occurred at Reynolds numbers between 2,000 and 13,000, depending on
the smoothness of the entry conditions. When extreme care is taken, the
transition can be delayed to Reynolds numbers as high as 40,000. On the other
hand, a value of 2,000 appears to be about the lowest value obtainable on a
rough entrance. Turbulence is one of the most important and difficult prob-
lems in fluid mechanics.

5.11 Steady Laminar Flow in an Elastic Tube

If the tube is elastic (Fig. 5.11:1), then the high-pressure end would distend
more than the low-pressure end. The diameter of the tube is, therefore,
nonuniform (if it were uniform originally) and the degree of nonuniformity
depends on the flow rate.

@
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I nitial External pressure = 0

p =0 no flow

L
With flow
External pressure = 0
j
L
Po ’ P <P
Fi1GURE 5.11:1 Flow in an elastic tube of length L.
Vessel as an
elastic body
Elastic
deformation
Y
Flow Vessel as Pressure )
—_—

fluid conduit

FIGURE 5.11:2 A hemoelastic system analyzed as a feedback system of two functional
units: an elastic body, and a fluid mechanism.

If we wish to determine the pressure—flow relationship for such a system,
we may break down the problem into two familiar components. Thi§ .is
illustrated in Fig. 5.11:2. In the lower block, we regard the vessel as a rigid
conduit with a specified wall shape. For a given flow, we compute the pressure
distribution. This pressure distribution is then applied as loading on the elastic
tube, represented by the upper block. We then analyze the deformation of the
elastic tube in the usual manner of the theory of elasticity. The result of the
calculation is then used to determine the boundary shape of the hydrodynamic
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problem of the lower block. When a consistent solution is obtained, the
pressure distribution corresponding to a given flow is determined.

In Sec. 5.10 we derived Poiseuille’s formula under the assumption of a
laminar steady flow in a circular cylindrical tube of constant radius. If the
radius a(x), as a function of the axial coordinate x, is not a constant, but the
slope da/dx is small, then the fluid dynamic problem can be solved by pertur-
bation method as a power series of the small parameter da/dx. Under an
additional assumption that the Reynolds number is so small that the inertial
force term pu du/dx is negligible in the zeroth order equations, the solution is
the Poiseuille’s formula

dp 8u .

dx  na* M
in which Q is the volume—flow rate and is a constant for the whole tube, a(x)
is the local radius, dp/dx is the local pressure gradient. For an elastic tube, the
radius a is a function of pressure. Hence we can rewrite Eq. (1) as

dp 8u .
4 —_— = ——— =
a*(p) Ix - Q = const. )

This is very easy to integrate if the function a(p) is known. For the pulmonary
arteries and veins it is known that the pressure-radius relationship is given
by Eq. (5.7:4)

o
a=a, +5p, 3)

where a, is the radius when p is zero, and « is the compliance constant.
Substituting Eq. (3) into Eq. (2), and integrating, we obtain

dp da 2a4éﬂ= _gﬁQ )

dadx a dx n

Since the right-hand side term is a constant independent of x, we obtain the
integrated result

20ua .
[a(x)]° = ——% Qx + const. (5)
The integration constant can be determined by the boundary condition

that when x = 0, a(x) = a(0). Hence the constant = [a(0)]°. Then by putting
x = L, we obtain from Egs. (5) and (3) the elegant result (Fung, 1984)

0 = 35,0z (20T ~ [T}

== [{a0+2p0) — (00 +%0.)
-ZOuaL 0 2Po Qo sz .

(6
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Thus the flow varies with the difference of the fifth power of the tube radius
at the entry section (x = 0) minus that at the exit section (x = L). If the ratio
a(L)/a(0) is &, then [a(L)]® is only about 3% of [a(0)]° and is negligible by
comparison. Hence when a(L) is one-half of a(0) or smaller, the flow varies
directly with the fifth power of the tube radius at the entry, whereas the radius
(and the pressure) at the exit section has little effect on the flow.

This analysis applies very well to the lung, in which the phenomenon just
described has an important effect. See Sec. 6.8 infra.

For flow in large blood vessels with Reynolds number much greater than
1, the inertial force terms must be added. Let us consider the case of a steady
flow of Newtonian fluid in an elastic tube whi which is initially a circular
cylinder. Assume that the flow is predominantly one-dimensional. Let g
represent the average velocity in the tube. The convective inertial force is
pq(0g/dx). The pressure drop due to blood viscosity is given by Eq. (1) even
if the flow is turbulent, provided that the coefficient of viscosity u is reinter-
preted as the “apparent” coefficient of viscosity which is a function of the
Reynolds number, see Sec. 5.13 infra. Then the equation of motion is

dq dp 8u . )

Here p is the density of the blood, x is the axial coordinate, p is the pressure,
0 is the volume flow rate, and p is the apparent coefficient of viscosity of the
blood corrected for turbulence, secondary flow, or entrance effect, i.e. it is a
function of Reynolds number. Finally, a is the radius of the tube, which is a
linear function of pressure as given by Eq. (3). When the transmural pressure
is zero the tube is assumed to be cylindrical, a = const. The equation of
continuity is

naq = const = Q. 8)
By differentiation, one obtains
a*dq + 2qada = 0. 9)

On solving Eq. (8) for g, and substituting into Eq. (9) multiplied by q/a?, we
have

20?
= ———da. 10
qdg = ——3-5da (10)
Substituting Eq. (10) into Eq. (7) and reducing, one obtains
(a‘ ”“Q> LY} (1
dx T
Integration yields
32
a5 = P ina= 2% 6 + const. (12)
T
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The boundary condition a = a(0) when x = 0 yields the integration constant.
On putting this constant into Eq. (12), and then letting x = L where a = a(L),
we obtain

5 p_al) |5 _ = 5 5
0- [mlna(—o)]Q = S0z (2OP ~ WP} (13
This is a modification of Eq. (6). The effect of inertial force is embodied in the
second term. If the elastic deformation is small, a(L) = a(0), then the second
term tends to zero, and the solution is the same as Eq. (6) except that the
apparent viscosity ¢ must now be considered as a function of the Reynolds
number. If the elastic deformation is significant, in that a(L) differs consider-
ably from a(0), then the second term must be considered. For a given set of
values a(L), a(0), we now have two solutions of §. Conversely, for a given 0
we now have multiple solutions of a(L), a(0). This is possible at high Reynolds
number, because the inertial force and the viscous dissipation influence the
pressure gradient in opposite ways.

5.12 Velocity Profile of Pulsatile Flow

To obtain the velocity profile of nonstationary flow in a blood vessel, one
must solve the equations of motion and continuity of both the blood and the
blood vessel wall, and boundary conditions that match the displacements,
velocities, and stresses. The calculation is usually lengthy. References to the
literature can be found in Fung (1984), McDonald (1974), Patel and Vaishnav
(1980), Pedley (1980). In the following, a simple example is given.

Assume that the fluid is homogeneous, incompressible, and Newtonian; the
vessel wall is rigid, circular, and cylindrical; the motion is laminar, axi-
symmetric, and parallel to the longitudinal axis of the tube. A pressure
gradient drives the flow, the vessel is horizontal, and gravitation has no effect
on the flow. Then the field equations are the Navier-Stokes equations, and
the equation of continuity. They are simplified to the following under the
conditions named above:

0= _%, (1)
0= _a%, @)
% -0 @

A

.\_r_

£

\
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The boundary conditions are the axisymmetry condition at the center and
no-slip on the wall, at radius a:

% =0 when

u=0 when

r=0, (5)

r=a. (6)

Here p stands for pressure; (x, r, ©) are cylindrical polar coordinates wi'th x in
the axial direction; u is the velocity component in the direction of X; ¢ is time.
According to Egs. (1) and (2), p is a function of x and ¢ only. According to (4),
uis a function of r and t. On differentiating Eq. (3) with respect to x, one obtains

9 (o) _ 7
() ™

This shows that the pressure gradient must not vary with x. It can be a function
of t. For a general periodic motion, one can write

ap N i
—= Y C,e™. ®)
0x ..Z:o
On substituting into Eq. (3), one obtains
au y inot azu l .a_u 9
pa=—ngoc,,e +ﬂ(w+rar . 9)

The term n = 0 corresponds to a steady pressure gradient imtestigated in Sec.
5.10; the solution is given by Eq. (5.10:7). To the other terms in (7), we can try

u(r,t) in the form

v,(r)e™" (10)

u=

=

which is periodic. Substituting Eq. (10) into Eq. (9) we see that the resulting
equation is satisfied if we set

) d?v, 1dv, a1
ipnwv, = —C, + u F-}-;—dT .
The boundary condition, Eq. (6), is satisfied if
v,=0 when r=aq, 12)
9 =0 when r=0.
or
The general solution of Eq. (11) is
ro.,. T o iC,
v,(r) = A,J, (a;nlﬂxm) + B,Y, (a;nllzt ) + —pnw ; (13)
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Here Jy(kr) is the Bessel function of the first kind of order zero of kr, Y,(kr) is
the Bessel function of the second kind of order zero of kr, k being a constant.
A,, B, are arbitrary constants, and a is a dimensionless quantity known as the
Womersley number (Sec. 5.13):

(14)

w
a=4a [—.
v

To determine A,, B,, the boundary conditions, Eq. (12), are used. As r
approaches zero, the derivative J; approaches zero and Y; approaches infinity.
Hence B, must vanish, and the first of Eq. (12) requires
1/2:3/2 iC"
A, Jo(an#i%*) + — = 0. (15)
pnw

Solving this equation for 4, and substituting into Eq. (13) together with

B, = 0, we obtain
iC Jo(aEni2i32
-2 | (16)
pnw Jo(an'2i3?)

The problem is solved by substituting Eq. (16) into Eq. (10). The velocity
profile depends on Womersley number a. An illustration is given in Fig. 5.12:1.

va(r) =

a=3.34 a=472 a=5.78 o= 6.67
180°
180°
165°
165°
150° 150°
135° 135
120" 150
105° .
90" e
75° 75°
60° 60"
45’ 45°
30’ 30’
15° 15°
o 1 1 ] ] ] ) 1 0o
10 05 © 10 05 0 10 05 0 10 05 0

Fractional Radial Position

FIGURE 5.12:1 Theoretical velocity profiles of a sinusoidally oscillating flow in a pipe,
with pressure gradient varying like cos wt. « is the Womersley number. Profiles are
plotted for phase angle steps of Awt = 15°. For wt > 180°, the velocity profiles are of
the same form but opposite in sign. Reproduced with permission from D.A. McDonald,
Blood Flow in Arteries, copyright © 1974, the Williams & Wilkins Co., Baltimore.
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5.13 The Reynolds Number, Stokes Number, and
Womersley Number

The general equations of hemodynamics appear formidable. Some essential
features can be identified when different terms are compared. The Navier—
Stokes equation

-aﬁ +plu % +u % +u —aﬂ
Par TP\ Max, T Y2ax, T M35k,
ap PER TR
=X, =k L L2 L % 1
Xi ox; + ﬂ(axf + ox3 + dzx3 i M

represents the balance of four kinds of forces. Term by term, they are

transient convective body pressure viscous
inertial + inertial = force + force + force .
force force

Not all the forces are important all the time. In a steady flow the transient
inertial force vanishes. In an ideal fluid the viscous force vanishes. In hydro-
static equilibrium all but the body and pressure forces vanish. Simplifications
are recognized for these cases.

Compare the transient inertial force term with the viscous force term.
To make an estimate, let U be a characteristic velocity, w a characteristic
frequency, and L a characteristic length. Then the first term in Eq. (1) is of the
order of magnitude pwU, and the last term is of the order of magnitude uUL™2.
The ratio is

transient inertial force  poU  pwL? oL? @
viscous force TuUL? T g v

This is a dimensionless number. If it is large, the transient inertial force
dominates. If it is small, the viscous force dominates.

The dimensionless number wL?/v is a frequency parameter, and is called
the Stokes’ number because its significance was pointed out by George Stokes
in 1840. It is better known by its square root,

Ny=L (3) 3)

\4

which is called Womersley number in honor of J.R. Womersley, who made
extensive calculations on pulsatile blood flow in the 1950’s. If L is taken to be
the radius of the blood vessel, then Womersley’s number is often written as a:

3N y=D <-“3) @)

D being the blood vessel diameter. In large arteries of all but the smallest
mammals, the value of a, calculated from the circular frequency of the heart-
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beat in rad/sec, is considerably larger than 1. For example, a typical value of
a in the aorta of man is 20, in a dog it is 14, in a cat 8, and in a rat 3. Hence
in these aortas the inertial force dominates in pulsatile flow.

If a is large, the effect of the viscosity of the fluid does not propagate very
far from the wall. In the central portion of the tube the transient flow is
determined by the balance of the inertial forces and pressure forces (first and
fourth terms in Eq. 1), and the elastic forces in the wall (through the boundary
conditions), as if the fluid were nonviscous. We, therefore, expect that when
the Womersley number is large, the velocity profile in a pulsatile flow will be
relatively blunt, in contrast to the parabolic profile of the Poiseuillean flow,
which is determined by the balance of viscous and pressure forces. This is
shown in Fig. 5.12:1.

Now compare the convective inertial force term with the viscous force term.
With characteristic velocity U and characteristic len gth L, the order of magni-
tude of the inertial force is pU?, that of the viscous force is pU/L. The ratio is

inertial force  pU? _pUL
viscous force ~ pU/L

= Reynolds number. 5

A large Reynolds number signals a preponderant inertial effect. A small
Reynolds number signals a predominant viscous force effect. In aorta of man
the Reynolds number based on vessel diameter can be 2,000-3,000, large
enough to cause possible turbulence (Sec. 5.10). In the capillary blood vessels,
the Reynolds number is in the order of 0.001 to 0.01, so small that it suggests
complete insignificance of the inertial force.

The occurrence of turbulence in a pulsatile flow in the aorta could be
transient. Even when the condition of flow favors the transition of a laminar
flow into turbulent, the actual transition into turbulence would require a
certain amount of time to develop. Hence if the flow velocity fluctuates too
fast, the turbulence may not develop. Similarly, if a flow is turbulent but the
condition has changed to favor a transition into laminar flow, the actual
transition may lag behind for a while.

Quantitative studies of the laminar—turbulent transition may seek to
express the critical Reynolds number as a function of the Womersley number.
Experimental results can be plotted as shown in Fig. 5.13:1. The ordinate is
the peak Reynolds number. The stippled area indicates the conditions under
which the flow is stable and laminar.

In the experiments whose results are shown in Fig. 5.13:1, the wide varia-
tions of velocity and heart rate were obtained with dru gs and nervous stimuli
in anesthetized dogs. In normal, conscious, free-ranging dogs the peak
Reynolds number usually lies in an area high above the stippled area of Fig.
5.13:1. This suggests that some turbulence is generally tolerated in decelera-
tion of systolic flow in the dog.

Turbulence in blood flow implies fluctuating pressure acting on the arterial
wall, and fluctuating, increased shear stress. These stresses are implicated in
murmurs, post-stenotic dilation, and atherogenesis.

O
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FIGURE 5.13:1 The stability of blood flow in the descending aorta of anesthetized dogs
is influenced by the peak Reynolds number and the Womersley number. Points joined
by the lines refer to the same animal. Open circles: laminar flow; filled circles: turbulent
flow; half-filled circles: transiently turbulent flow. From Nerem, R.M., and Seed, W.A.
(1972), by permission.

5.14 Equation of Balance of Energy and Work

According to the principle of conservation of energy, the rate of gain of energy
of a material system (the sum of the kinetic, potential and internal energies)
must be equal to the sum of the rate at which work is done on the system and
heat transported in. Apply this principle to a body of blood contained in a
blood vessel between two arbitrary cross sections, 1 and 2, perpendicular to
the vessel axis, as illustrated in Fig. 5.14:1. Let p denote the pressure, u denote
the axial component of the velocity of flow, g denote the magnitude of the
velocity vector, Q denote the volume rate of flow. Let d4 denote a small
element of area in a cross section. At the left end, section 1, the outward normal
vector of the cross section points to the left, the force acting on the area dA
due to the pressure, pdA, points to the right. The positive direction of the axial
velocity u point to the right. The rate of work done by the force due to pressure
is pudA. The total work done by the force over the entire cross section is,
therefore

J pudA 1)

where the integral is taken over the area A4, of the cross section No. 1.
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FIGURE 5.14:1 Two arbitrary cross sections, 1 and 2, of a blood vessel. At an instant
of time ¢, a control volume of blood is bounded by the plane sections 1 and 2 and the
wall of the biood vessel shown by solid lines. An infinitesimal time At later, the
boundary of the control volume becomes that shown by the dotted line: consisting of
two paraboloidal surfaces at sections 1 and 2, and a distended blood vessel wall. The
equations of motion, continuity, and energy are written for the fluid in the control
volume. The symbols u, and u, represent axial component of the velocity at stations
1 and 2, respectively.

The kinetic energy per unit volume of blood is 4pg® where p is the density
of the blood. The total kinetic energy of the blood contained in the volume
between the sections 1 and 2 is, at time ¢,

|
L 5P9 dv. ()

A short time At later, the same body of fluid would occupy a slightly different
volume which is bounded by the dotted lines shown in Fig. 5.14.1. The side
wall distends a little because of vessel wall elasticity. The fluid particles
composing the cross section 1 are displaced by a distance uAt to the right.
The plane cross section No. 1 becomes curved and bulges to the right. The
particles at Section 2 are also displaced to the right by the amount uAt. During
the time interval At, therefore, the total kinetic energy of the blood is changed
by the amount

a1 , 1 1
—(=pg? |AtdV — | =pqPultd -~ pq? .
J; 6t(2pq ) t L‘ Pq°u tdA + Lzzpq uAtdA (3)

Where V' is the volume bounded by the dotted lines. The rate of change of
kinetic energy is obtained by dividing the quantity above with At. The — and
+ signs in the expression (3) should be carefully noted.

A similar consideration should be given to the work done by force imposed
on the blood by the blood vessel wall, the potential energy change due to

.
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gravitation, the internal energy change due to temperature change, the heat
transported through the boundary, and the rate of heat generation due to
internal friction equal to the sum of all the products of stress components and
the corresponding strain rates. The last term, the heat dissipation, is denoted

by 2:
9=j%%@- @
| 4

Where g;; is the stress tensor and Vj; is the strain rate tensor. 1
Now, on equating the change of energy with the work done, and dividing
through by the volume flow rate Q:

Q'=J udA )
A

we obtain, if gravitational effect and heat transfer were negligible, the following

equation:
A_~_L~» 14 - 2 1[ofl , dv. (6
pl—pz=§pqz—§pql+pyhz pgh1+Q-+Q- L 3\3PT )4 (6)

LA
Here the velocity-weighted pressure/pfand the square of velocity g are
defined by dividing Eqgs. (1) and (2) by Q:
~_1 J ~_1 .[ 2
= udA, q* == | q*udA. U
) Q Ap 0 Ja

Note that?and %p? have the dimensions of pressure. o
The energy equation (6) was given by Pedley et al. (1977) and derived in
full detail in Fung (1984), pp. 15-20. It is used frequently in this book.

5.15 Systemic Blood Pressure

If we apply the results derived in the preceding sections to a circuit of blood
vessels beginning at the aortic valve and ending in the right atrium, take the
average of the pressure-flow relationship of every segment over a period of
time which is long compared with a single heart beat, and synthesize the
segments into a whole circuit, then we obtain the result:

Average pressure at aortic valve — average pressure
at right atrium = integrated frictional loss. (1)
This is often written as:
Systemic arterial pressure = flow x resistance. 2)

Here the systemic arterial pressure is the difference between the pressure at
the aortic valve and that at the vena cava at the right atrium, the flow is the
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cardiac output, 'and the resistance is the total peripheral vascular resistance.
Hence, writing in greater detail, we have

Pressure at aortic valve — pressure at right atrium

= (cardiac output) x (total peripheral vascular resistance), 3)
where

integrated frictional loss
cardiac output “

T.he'last term in Eq. (3) represents the sum of the pressure drops due to the
fnct.lon loss along all segments of blood vessels. Since there are millions of
caplllary. blood vessels in the body, there are millions of pathways along which
one can Integrate the equation of motion to obtain Eq. (3), so the final result
Eq: (3) is useful only if the pressures at the aortic valve and right atrium are
::sliorm no matter which path of integration is used. Fortunately, this is the
The integrated frictional loss is the sum of frictional losses in all segments
of ve§sels of the circuit. To compute the frictional loss of a segment, let us first
cgnsnder a sfeady laminar flow (i.e., one that is not turbulent) in a iong, rigid
cxrcu_lar, cylindrical vessel. To such a flow, Poiseuille’s formula, Eq. (5 1(g)'8;
applies. Let the vessel length be L and the vessel diameter be d, t,hen. o

nd* Ap
128 uL” )

Here u is the coefficient of viscosit i i
L y of the fluid, and Ap is th
Equation (5) can be written as { e it

Total peripheral vascular resistance =

0=—

Ap = (laminar resistance in a tube) x (flow in the tube), 6

from which we obtain th i
m Wl e resistance of a steady laminar flow i i
cylindrical vessel: { p

128uL

laminar resistance i =
in a tube = T )]

If the nth gcncratlon Of a VaSCLl]aI tree 1
consists Of N lde tlcal VCSSC]S n
n

Pressure drop in the nth generation of vessels

= (resistance in N parallel tubes) x (total flow in N tubes)

_ (resistance in one tube)
= N x (cardiac output). ®

mote that 'accordin.g to I;‘.q. (7) the laminar flow resistance is proportional to
e cocf}'icxent of viscosity u and the length of the vessel L, and inversely
proportional to the fourth power of the diameter d. Obviously the vessel

.
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diameter d is the most effective parameter to control the resistance. A reduc-
tion of diameter by a factor of 2 raises the resistance 16-fold, and hence leads
to a 16-fold pressure loss. In peripheral circulation the arterioles are muscular
and they control the blood flow distribution by changing the vessel diameters
through contraction or relaxation of the vascular smooth muscles.

Equation (7) gives the resistance to a Poiseuillean flow in a pipe and for a
given flow rate Q is the minimum of resistance of all possible flows in the pipe.
If the flow becomes turbulent, the resistance increases. If the blood vessel
bifurcates, the local disturbance at the bifurcation region raises resistance. In
these deviations from the Poiseuillean flow the governing parameter is the
Reynolds number. If a flow is turbulent, then

5.16 The Veins and Their Collapsibility

Resistance of a turbulent flow in a vessel
= (laminar resistance)-(0.005 N3*). )

Thus, if the Reynolds number is 3,000, the resistance of a turbulent flow is
over two times that of the laminar resistance. In the ascending and descending
aorta of man and dog the peak Reynolds number does exceed 3,000. The
energy loss that occurs at points of bifurcation, entry flow, flow separation,
etc., are also functions of Reynolds number. In these cases one writes the

pressure—flow relationship as
1 nd* Ap

Q=Z(—NR—)'@#—L, (10)

where Z(Ng) is a dimensionless function of the Reynolds number. Equation
(9) shows that for a turbulent flow Z(Ng) is equal to 0.005 N3*. Other examples
are given in Sec. 7.2, especially Egs. (7.2:4)—(7.2:6). All the results of fluid
mechanics research on flow resistance in pipes can be packed into the function
Z(Ng).

Equation (3) or (8) shows the basic factors that control the systemic blood
pressure. The resistance is proportional to the blood viscosity. Hence lowering
the coefficient of viscosity will promote the flow. Hemodilution is thus a
practical clinical tool. The resistance is sensitive to the diameter of the blood
vessel. The diameter is controlled by the vascular smooth muscle. Hence the
control of smooth muscle behavior is the key to the treatment of hypertension.

5.16 The Veins and Their Collapsibility

Veins are similar to arteries in size and construction, but veins have valves
and smaller wall thickness to diameter ratio. In fact the wall thickness of veins
is often quite nonuniform around the circumference. Because veins have
thinner walls, they are more compliant than the arteries. Because the blood
pressure is low in the veins, they are more sensitive to external pressure. If the
external pressure exceeds the internal pressure by an amount known as the
critical buckling pressure, then a vein will collapse. Normally, 807, of a man’s
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blood is in the veins. For this reason veins are said to be capacitance vessels.
The capacitance is sensitive to internal and external pressures. Thus raising
one’s leg or moving the leg muscles will reduce the blood volume in the legs,
pushing blood to the heart and circulating to other parts of the body.

The collapsibility of the vein gives the venous blood flow some unique
features. In dynamic condition the transmural pressure (Ap = internal —
external pressures) acting on a vein may be a) positive throughout, b) negative
and exceeding the critical buckling pressure throughout, or c) positive at the
entry section, but negative and exceeding the critical buckling pressure at the
exit section. Then in condition a) the vein is patent, in b) it is collapsed, whereas
in ¢) something special will happen. If in condition c) the exit end is collapsed,
then the flow would stop, the pressure drop would become zero, the whole
tube would have a Ap equal to that of the entry section, the condition of a)
would then prevail, and flow would start again. But if flow starts, the pressure
will drop along the tube, and the exit section may be choked again. This may
lead to a dynamic phenomenon of “flutter,”, or to a limiting steady flow
controlled by a narrowed section. In the last case, the actual value of Ap at
the exit section is quite immaterial as long as the cross sectional area at the
exit section is much reduced. An analogy may be drawn between this and the
waterfall in our landscape, or sluicing in industry or flood control: The volume
flow rate in a waterfall depends on the conditions at the top of the fall, and is
independent of how high the drop is. Thus, the phenomenon of flow in case c)
is described as the “waterfall” phenomenon, or as sluicing.

The waterfall phenomenon occurs in a number of important organs: the
lung, the vena cava, etc. It occurs in thoracic arteries during resuscitation
maneuvers, and in brachial arteries while measuring blood pressure by cuff
and Korotkov sound. The same phenomenon also occurs in male and female
urethra in micturition, and in manmade instruments such as the blood pump
and the heart-lung machine.

Since so much depends on the collapsibility, let us consider the mechanical
property of blood vessels at negative transmural pressure in greater detail.

Moreno et al. (1970) measured the change of the cross-sectional area of
dog’s vena cava when the transmural pressure was varied. Shapiro (1977)
measured the same in latex tubing. The characteristics of the vessel and tube
deformations are similar. Shapiro’s results are shown by the solid curve in
Fig. 5.16:1. If the tube were circular cylindrical and of Hookean elastic material
when the transmural pressure is zero, then the elastic stability of the tube is
amenable to mathematical analysis. The theoretical results of Flaherty et al.
(1972) are shown in Fig. 5.16:1 by the curve with long dashes. Theoretically,
the pressure-area curve has a sudden change of slope at each critical
transmural pressure. The deformation pattern changes when the transmural
pressure exceeds the critical value. If one defines the dimensionless variables

12(1 —- v?)R?® A

p= Eh3 (p _pe) and « =W (l)
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FIGURE 5.16:1 Behavior of a collapsible tube. Dimensionless transmur'fll pressure
difference, p, versus dimensionless area ratio, «. Solid curve show.'s a typical experi-
mental curve for thin-walled latex tube, and adjacent to it, typical cro.ss-§ectlox_1al
shapes for the different ranges of a. Dot-dash curve represents Eq. (8!, coincides with
solid curve for a < & Dashed curve represents Eq. (10). Curvc_ with long dashes
represents the theoretical result given by Flaherty et al. for cylinders wposc cross
sections are perfectly circular when p = 0. Point contac't occurs at @ = &, and line
contact occurs at « = & From Shapiro (1977), by permission.

in which p represents internal pressure, p, is the.exten.)al p‘ressuFe, E i.s the
Young’s modulus of the tube wall material, v is its P01§son s ratio, R is the
tube radius at midwall, h is the tube wall thickness, 4 is the cross-sectional
area of the lumen, then Flaherty et al. showed that the buckling occurs wl.xen
p < —3.When p = 5.247, the opposite walls touch each othe{ at the midpoint.
Upon further increase in external pressure, the _con}act area increases apd tl_&e
open portion of the cross section is reduced‘m size but remains su.mlar in
shape. For this “self-similar” type of deformation Flaherty et al. obtained the

relationship _pean (2
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Noticing the difference between the experi i
] perimental curve and the theoretical
curve, Shapiro (1977) proposed an empirical formula :
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—p =32
P=a 1. 3)

_Now let us see something different. Figure 6.6:5 on p. 209 shows the
thxckpess of the pulmonary capillary sheet in the interalveolar septa as a
function of the transmural pressure. These pulmonary capillary blood vessels
form a dense. network whose “thickness” varies with the blood pressure,
whereas the dimension in the plane of the interalveolar septa is unaffected b);

FIGURE 5.16:2 The connection between a

3 ulmonary vei i i
cat’s lung. Courtesy of Dr. Sidney Sobin. i R ¢ Tierabieolar septa
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the blood pressure. The difference between the blood pressure and the airway
pressure is defined as the transmural pressure. Fung et al. (1972) have shown
that the thickness drops very rapidly to zero when the transmural pressure
changes from positive to negative values.

On the other hand, Fig. 6.6:4 on p. 208 shows the diameter versus trans-
mural pressure relationship of pulmonary veins (Yen and Fappiano, 1981).
It is seen that the relationship can be represented by straight lines. The slope
of the straight line does not change when Ap changes from the positive to
negative value. These veins would not collapse under negative transmural
pressure in the physiological range (Fung et al., 1983).

Thus the elastic stability characteristics of the pulmonary capillaries is
similar to that of the vena cava, but that of the pulmonary vein is entirely
different from that of the vena cava. Not all veins are alike! The difference is
actually easily explained. The vena cava was tested as an isolated tube.
The pulmonary veins were, however, tested intact, embedded in the lung
parenchyma which was in tension. The lung parenchyma provides an elastic
support to the pulmonary veins.

FIGURE 5.16:3 A photo micrograph of cat lung showing a venule tethered by three
interalveolar septa. Vasculature perfused with a catalyzed silicone elastomer and
hardened; gelatin-embedded; cresy! violet stained. From Fung et al. (1983). Reproduced
by permission.
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This elastic support can be seen from the photomicrographs of the lung
parenchyma. In Figure 5.16:2 is shown a histological section of a cat lung
parenchyma containing a large blood vessel. The lacy tissue tethering the
outer wall of the blood vessel is the alveolar structure, which is in tension in
an inflated lung. Thus the blood vessel is embedded in a foam-rubber-like
material. In Figure 5.16:3, at a larger magnification, is shown a histological
section of cat lung parenchyma containing a pulmonary arteriole. The diameter
of the arteriole is about 25 pm, which is small compared with the dimension
of the alveoli of the cat, about 10 um. See that the arteriole is pulled by three
interalveolar septa. These septa are in tension in an inflated lung, they tend
to distend the arteriole. When the alveolar gas pressure outside the arteriole
exceeds the blood pressure in the arteriole, the tendency for the vessel to
collapse is resisted by the tension in the interalveolar septa attached to the
outer wall of the blood vessel.

5.17 Flow in Collapsible Tubes

In circulatory physiology, flow in blood vessels in collapsible condition may
occur either in microcirculation, or in large vessels. In microcirculation, a
common example is the capillary blood flow in the lung. The pulmonary
capillaries are readily collapsible (see Fig. 6.6:5) and waterfall phenomenon
occurs in them. This will be discussed in Sec. 6.8.

Waterfall phenomenon occurs in large veins for a different reason. Shapiro
(1977) explained it by an analogy (at infinite Reynolds number). Consider a
one-dimensional, unsteady, frictionless flow in a collapsible tube, a gas flow
in a wind tunnel, and a liquid flow in a uniform, horizontal open channel. The
equation of motion is identical for each of the three cases:

du ou 1dp

p— + b= ————,

at 0x p O0x
where p is the mass density of the fluid, p is the pressure in the flowing fluid,

u is the velocity, ¢ is time, and x is longitudinal distance. The equations of
continuity are

)

0A 0
i D — 4+ =0; 2
For a collapsible tube 3 + 7x (Au)y=0 )
: o, 9. _o

For the gas flow: m + 7% (pu) = 0; 3
h 0

For the channel flow: 6_ + —(hu) = 0. 4)
at  ox

Here A is the cross-sectional area in the first case, p is the mass density in the
second case, and h is the height of the free surface above the bottom in the

®
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third case. The phase velocity of propagation of small perturbations, c, is, in
the three cases:

d(p —
CZ=_{1_ (p pe);

> T dA &)
2= a at constant entropy; (6)
dp Py,
h dp
2 4P _ .
c? = 5 Th gh; )

where g is the gravitational acceleration. Thus the analog is seen. Those
readers who are familiar with gas dynamics may recall the shock waves, the
supersonic wind tunnel, the Laval nozzle for steam turbine, the convergent
section to accelerate the fluid in subsonic regime, the sonic throat, and the
divergent section to accelerate the fluid in supersonic regime. Those familiar
with the open channel flow may recall the flow over a dam, and the hydraulic
jump. One could anticipate the existence of analogous phenomena in blood
flow in collapsible vessels. One anticipates also, of course, that similar
phenomena occur in air flow in the airways, Korotkov sound in arteries, urine
flow in urethra, etc.

For a flow from a reservoir with a fixed total pressure head p, into a
collapsible tube, the flow rate depends on the suction pressure p downstream
and the pressure outside the tube p,. The rate of change of flow with respect
to the suction pressure p is given by the equation (to be derived below):

do A
i —p) ‘E(c_" 1)' ®

Here 0 is the flow rate, p is the internal pressure, u is the mean speed of flow,
and c is the speed of the flexural wave. Note that dQ/dp depends on the
ratio u/c. If the flow speed u is smaller than c, then decreasing internal
pressure increases the flow. If u is larger than c, then the reverse is true. Thus
the condition u = ¢ signifies the maximum flow obtainable with decreasing
internal pressure. This maximum is Q,,,, = Ac. At this condition, the maxi-
mum flow depends neither on the upstream pressure, nor on the downstream
pressure. It is an exact analog of the sonic throat of the supersonic wind tunnel.
The ratio

s== ©
is called the speed index of Shapiro (1977). It plays a central role in liquid flow
through a collapsible tube as the Mach number does in gas dynamics.

Thus the condition u = c signifies a flow limitation. The upstream and
downstream pressures matter only to the extent of getting this condition
established, just as a supersonic wind tunnel has to have suitable conditions
to get it started.
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The derivation of the intriguing Eq. (8) is as follows. Consider laminar flow
in an elastic tube at a large Reynolds number so that Bernoulli’s equation
holds:

P+ 3pu* = p,, (10)

where p, is the stagnation pressure, p is the static pressure, p is fluid mass
density, and u is velocity. The volume flow rate, Q is

0 =Au=A/Z(po — p) = A/Z(po — p) — (7 = PO)1. (11)
A is the cross-sectional area which is a function of P — p.. Although p varies

with distance down the tube,  remains constant, of course. Differentiating
with respect to p — P, We obtain, after some reduction and using Eq. (10),

aQ du dA _ 4 p dA A
d(p - p.) Adp e 2T Thut [A d(p — pe)]p s U2
The factor in the bracket of the last term is 1/c%. Thus Eq. (8) is obtained.
Shapiro (1977) analyzed a number of cases in which these equations apply.
Experience shows that this one-dimensional analysis is adequate to deal with
the flow leading to the sonic throat. But beyond the sonic throat, the recovery
of flow to the subsonic condition seems to be a three-dimensional pheno-
menon beyond the reach of the simplifed approach.

5.18 Pulse Wave as Message Carrier for Noninvasive Diagnosis

A subsonic flow is influenced by conditions on all of its boundary. The flow
field, governed by the equations of motion and continuity and the constitu-
tive equations, is determined by the conditions on the boundary. Anything
happening anywhere on the boundary will be felt everywhere in the flow field.
In fluid mechanics and the theory of partial differential equations, this is a
feature of potential flow or elliptic differential equations, as distinguished from
supersonic flow or hyperbolic differential equations. Now, blood flow is
subsonic. Therefore, if we have the full, detailed mathematical solution of the
flow field, then, in principle, by examining the flow at a given region, one
should be able to tell any disturbances occurring anywhere on the boundary.
Extending this concept to the diseases of the blood vessels and organs, we can
anticipate that the pulse waves in a given region of an artery should carry
information about stenosis, aneurysm, or atherosclerosis at distant places.

The object of studying the messages carried in arterial pulse waves is similar
to the use of seismic waves to detect oil reserves underground. The mathe-
mz_atical problem has not been solved yet, but anecdotal, empirical information
exists.

In the traditional Chinese medicine, physicians use fingers to feel the pulse
waves of the radial artery on the forearm at the wrist. Through empirical

information accumulated over the years, they have developed an art of
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diagnosis which is often marvelous but not well understood. The use of pulse
waves for diagnosis was discussed extensively in one of the most ancient
classics of medicine: the Nei Jing, ie., the Internal Classic of Huangti (for
Chinese references see Fung, 1984, pp. 14 and 157: and Xue and Fung, 1989)
which is believed to have been written in the Warring Period (475-221 BC).
In essence, the idea is that all disturbances in the function of any organ can
be detected by changes in the pulse waves in the radial artery. The sensation
felt by the fingers when they press on the radial artery at specified points with
varying degrees of pressure is used as diagnostic criterion.

The pulse wave diagnosis method is studied intensively in China clinically,
experimentally, and theoretically. In older literature the waves are treated as
axisymmetric motion in circular cylindrical elastic tubes. Recent literature has
included articles treating non-axisymmetric motion, including lateral oscilla-
tion of the centerline of the blood vessel. Dai et al. (1985) tested the hypothesis
that a disturbance of blood flow at one place can be detected in the arterial
pulse wave at a distant site. They transiently occluded blood flow in a leg and
recorded the pulse waves in both radial arteries. They asked whether the right
and left radial arterial waves can differentiate a disturbance in the right leg
from that in the left leg. The results show that the right and left radial arterial
waves do respond to the disturbances in the right and left legs differently, but
the discrimination is not very strong. Xue and Fung (1989) tried to explain it
on the basis of fluid mechanics. They created an unsymmetrical entry condi-
tion by blocking off one-half of the entry section of a circular cylindrical tube.
As the distance from the entry section increases, the flow tends to become
axisymmetric, but there is an asymmetric component which persists in pro-
pagating downstream with slowly damped amplitude. This suggests that the
asymmetric flow condition from the legs may reach the arms, but whether the
suggestion is quantitatively meaningful or not is entirely unknown. This
remains a fascinating problem.

Problems

5.1 An energy balance equation for blood flow is desired. Consider all the arteries
between two planes, for example, one plane cutting a renal artery, the other plane
cut through the kidney supplied by that renal artery. Identify the rate of gain of
energy of the blood in these arteries (the sum of the kinetic, potential, and internal
energies) and the rate at which work is done on the blood in this system. The
energy balance requires that the rate of gain of energy must be equal to the sum
of the rate of work done on the system and the heat transported in. Express this
energy equation in terms of pressure and velocities in the system. Cf. Fung (1984)
pp- 15-20.

5.2 One of the great achievements of man in the twentieth century is the mechanical
heart. What is the present status of the art in this field? What do you think needs
to be done in order to make this device really available to more people at an
affordable price?
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5.3 What effect does a stenosis in a large artery have? To study the effect, laser-doppler
velocimeter may be used. Describe the principle of this instrument. Can it be used
for an unsteady flow?

5.4 Describe the theoretical criterion for the velocity distribution in the boundary
layer when boundary separation from a solid wall occurs. (Cf. Yih (1977) pp. 352,
360.)

5.5 Consider the pulsatile flow in the aortic arch, part of which is highly curved as a
torus. Because of the curvature of the vessel, secondary flow exists and the
boundary layer thickness is a function of time and space. For the consideration
of atherogenesis, we need to know the shear stress on the arterial wall. Give a
qualitative discussion on the nature of variation of the flow and shear stress in the
aortic arch. (Cf. Jayaraman, G., Singh, M.P., Padmanabhan, N. and Kumar, A.
(1984). “Reversing flow in the aorta: a theoretical model”, J. Biomechanics, 17:
479-490.)

5.6 An aorta has an aneurysm, which is a sac formed by the dilatation of the wall of
the artery. From the point of view of fluid mechanics, discuss the pulsatile velocity
distribution and pressure in the aneurysm and its contiguous parts, and the
possible sound emission (bruit, aneurysmal bruit). From the point of view of solid
mechanics, discuss the stress distribution in the vessel wall. From the general
biological relation between stress and growth or resorption, discuss possible
reasons for the creation of the aneurysm and possible direction of its development.
(Cf. Chapters 10-13 infra.)

57 Discuss the stress distribution in the endothelium, the intima, and the adventitia
in the region of arterial bifurcation. Delve into further detail, considering the
stresses acting in the endothelial cells, smooth muscle cells, collagen fibers of
various kinds, elastin fibers, fibronectin, and ground substances in the vessel
wall. Again, precise data are lacking. Develop a research proposal to clarify this
problem. Again, cf. Chapters 10-13, and biological points of view as mentioned
in Prob. 5.6.

5.8 Looking at the stenosis problem of 5.3 from the point of view of solid mechanics
and biology as mentioned in Prob. 5.6, discuss the possible remodeling of the blood
vessel wall when a stenosis develops.

59 The place where an artery branches off from the aorta is often the site of athero-
sclerosis. Discuss qualitatively the velocity distribution, fluid pressure, and wall
shear stress on the endothelium in this region. Develop a plan of research to gain
a better understanding of these features.
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