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tube containing a homogenous, incompressible, and nonvmccms liguad, -7
When this tube is disturbed at one place, the disturbance will be pmpa ‘gafeﬂi' L
as waves along the tube at a finite speed Tpe pmblem is 10, detmmme ‘tins:-. -
speed. : . eyl

Let us impose sufnc further mmphﬂcatmﬂs * Let thc‘: wave amphtude be
small and the wave length be long compared with the tube radius, so that
the slope of the deformed wall remains <<l at all times. Under these con-
ditions we can introduce an important hypothesis that the flow is essentially
one dimensional, with a longitudinal velocity component u(x, ¢), which is a
function of the axial coordinate x and time ¢ In comparison with u, other
velocity components are negligibly smail. Then the basic equations can be
obtained from the general equations listed in Section 2.6. They are the equa-
tion of continuity (or conservation of mass),

vA  d

5+ 37 ua)=0. (1)

and the equation of motion,

au, w1 o
91‘ c'r‘xpdx'

Here A(x, 1) is the cross-sectional area of the tube and p{x, 1) is the pres-
sure in the tube. The relationship between p; and .4 may be quite complex.
For simplicity we introduce another hypothesis, that A depends on the
transmural pressure, p; — p,, alone,

pi-p.=P4), 3)
where p, is the pressure acting on the outside of the tube. Equation (3) is
a gross simplification. In the theory of elastic shells we know that the tube
deformation is related to the applied load by a set of partial differential
wyuations and that the external load includes the inertial force of the tube
wall (see Eqs. (4) and (5) of Sec. 3.15). Hence Eq. (3) implies that the mass
of the tube is ignored and that the partial differential equations are replaced
Iy an algebraic equation. By assuming Eq. (3) the dynamics of the tube is
replaced by statics. The viscoelasticity of tube wall is ignored.

In the theoretical development, the derivative of the function P(A) is
very :mportant particularly in the following combmanon

A dP
Vo 4

We shall see later that ¢ is the velocity of propagation of progressive waves.
Ihese equations are not difficult to solve since Georg Riemann
( 1426--1866) has shown the way. But before solving these equations we shall

(2)

“In subsequent sections we shall relax these assumptions and evaluate their effects.
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FiGure 3.8:1, Free-body diagram of an arterial element, showing pressure, velodity.
and wall displacement.

derive them once mere from elementary. conmderatlons to make sure that
we know them well.

Consider first the balance of forces ac:tmg in the axial .dlrtcnon on a flud
element of length dx and cross-sectional area A: A free- -body diagram is
shown in Figure 3.8: 1(a) Since the fluidis nonviscotis there is no shear stress’
acting on it. The force acting on the left end due to the preqsure is pA toward
the right; that acting on the right end is [p .+ (Op/ox)dx]{A + {dA4/dx)dx]
toward the left. The pressure acting on the lateral sides contributes ap axial
force p(dA/dx)dx toward the right. Therefore, on neglecting the second-
order term, the net pressure force is A(dp/dx)dx actingtoward the left. The
mass is pAdx. with p being the density of the blood, According to Newton's

law the net force will cause an acceleration du/dt + uow/dy. @n equatinf the ’

force with mass times acceleration, we obtain Eq. (2). :

Next, consider the conservation of mass in a segment of the tube of length
dx, as illustrated in Figure 3.8:1(b). In a unit time the mass ififlux at the left
end is equal to pud; the efflux at the right 15 plud + [3(uAd)idx]dx). In the' _
mean time the volume of the element 1s increased by (9A/ar)dx. The law of .
conservation of mass then leads to Eq. (1).~ ‘

Next, consider the elasticity of the tube. If the tube behaves like a pul—
monary artery or vein, then the sitwation is simaple. The pulmonary arterial
diameter 24, is linearly proportional to the blood pressure in the vessel p;
(see Sec. 6.7):

2{11‘ = 2{1,‘0 + ap;. (5)

where ay and o are constants that depend on the pleural pressure pg, and
the airway pressure p,, but are independent of blood pressure p. a is the
- comnpliance-constant of the vessel, and a, is the radius when p, = 0. Differ-

e &m:atmn of Eq (5) then vields the relatmnshlp ‘

e e da.=—dp,-. (6)
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Equatmns (D), (2) and (6) govern the wave propagation phenomenon.
.. L&t us first solve a linearized version of these equations. Consider small dis-
rbances in an initjally stationary liquid-filled circular cylindrical tube. In

e | .ﬂ:us case i 15 small and the second term in Eq. (2) can be neglected. Hence:

Ju 1dp

—+=——=4=0. 7

A pox Y
The area A is equal to xa’ Substituting maf for A in Eq. (1), remembering
the hypothesis that the wave amplitude is much smaller than the wave
length, so that da/dx < 1, then, on neglecting small quantities of the second
order, we can reduce Eq. (1) to the form

c9u+2 .

& a, E =0 ®)
Combining Eqs. (8) and (6), we obtain

ou o dp,

ol il o R '} o

@ a Y

Differentiating Eq. (7) with respect to x and Eq. (9) with respect to ¢, sub-
tracting the resulting equations, and neglecting the second order term ( alac)
(da;/or)(dp/or), we obtain ‘

dip, 1 3*p,
i - = D’
H? ! ol (10)
where
2 _ %
=—. 11
¢ = (11)
_ Equation (10} is the famous wave equation. The quantity ¢ is the wave speed,
. "
= |—L, i2
=\ (12)

The derivation of Eq. (12) is simple because the pressure-diameter rela-
tionship Eq.(5) is simple. The dexivation of wave speed for blood vessels
that ubey moye complex pressu;re -diameter relationships is given below.

Wave Speed in Thin-Walled Elastic Tube

Il the tube is thin walled and the material obeys Hooke’s law, then for a
~mall change in radius da, the circumference is changed by 2zda, and the
vireumferential strain is 2mda/2me; = dafa. If E is the Young's modulus of
the wall material the circumferential stress is changed by the amount
Fiw/a,. If the wall thickness is A, the tension in the wall is changed by
thdaja;,. This increment of tension is balanced by the chanpe of pressure
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FiGURE 3.8:2. The balances of forces in an arterial wall,

dp;. According to the condition of equilibrium of the forces acting on a free
body shown in Figure 3.8:2(b), we have -

(13)

This equation 15 of the same form as Eq. (6) with

o q? o
—=f ‘ 4
2 Eh a4

The wave speed in such a tube is, therefore,

[ .
c= \/ﬂ'_ (15)
2 pa;
‘This formula was first derived by Thomas Young in 1808, and is known as
the Moens—Korteweg formula, because it was popularized and modified by
Forteweg (1878). Moens (1878).
Note that if the thin-wall assumption is not made the accuracy of the
:sult can be improved by computing the strain on the midwall of the tuber
a/(a; + h/2). Then the wave speed is :

- o (16)

Wave Speed in Arteries with Nonlinear Elasticity

More realistic constitutive equatiens of.arteries ara -given in Egs. (40)—(51)
,,,,,, Fung. 1993h, Chap 3).
. Let the internal and ¢ extemq -radii of the vessc] be e and a,. Tespectively,
and the corr&spc-ndmg preséure.s be p;. and p.(see F@B 8 2(3)) Let the radii
be'a,o dnd 4., whag the preaas*ures p, ::‘md p‘ am zelos “ljhe condltlon of equl-_

P * ‘ - .
. . '# : ol “‘

. - : N ST ‘ .
. ’ tne .-
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librium of the forces acting on a free body shown in Figure 3.8:2(b) yields
the average circumferential stress, :

(00)=(pa. - p.a.)f(o.~a)- a7

Let us define the stretch ratio A, and strain £ on the midwall by the for-
mulas

+a 1
A, =% Eo=—(A3-1). 18
(i} am + aeo 89 2( (} ) ( )
Then, if p,W® denotes the strain energy function in the arterial wall
expressed as a function of the strains Ez and E,; (the longitudinal strain),

we have (Fung, 1993b, Sec. 7.11 and 8.6}

J in(z})
CARY> E (19:)
Combining Eqs. (17) and (19) we have
P —pPA. = (af _ae))% (;E . (20)
68

The function pW® is given by Fung, Fronek, Patitucci {1979) and in Fung
(1993b, Sec. 8.6, Eq. (3)):

p WD) %C'exp[alEga +a;EL +28,EE..], (21)
where (', ay, a2, 4, are constants. The radit 4, and g, are related by the con-
dition of incompressibility of the wall,

7 —ap)=n(ay - a3) (22)

On computing Ja./da; from Eq. (22) and using it in an equation obtained by
differentiating Eq. (20), we obtain

a.: a
a,dp;+ p, da, - p, a_lddl = ‘13
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The compliance ¢ varies obviously with p,, p., and a. If only infinitesimal
disturbances da,, dp;, dp. are considered, then the quantity on the right-hand
side of Eq. (24) can be evaluated at the steady state and used as a constant
in Eq. (11). In that case the linearized wave equation (10) applies.

Solution of the Wave Equation

To understand the nature of the phenomenon described by differential Eq.
(10), let us take the following mathematical approach. Let f(z) be an arbi-
trary function of z, which is differentiable at least twice and whose second
derivative is continuous for a certain prescribed region of z. Let z be a func-
tion of two variables x and ¢,

1=x-a, ‘ (25)

where x represents the coordinate of a point on a straight line and ¢ repre-
sents time. Now, by the rules of differentiation, we have

F_dfd_df F _dfor__ df
dx deox df’ o dra dr
f _af Pf_ L4
ot dzi’ o dzzl

(26)

The last line shows that the function fix — cf) satisfies the differential
equation
af_12f_

H? 2 2 !

which is exactly Eg. (10). Thus Eq. (10) is solved by p = fix — ¢r).

Now suppose that a disturbance occurs at time f = 0 over a segment of
the vessel as illustrated in Figure 3.8:3. The amplitude of the disturbance is
represented by fx) at t = 0. At & time 4 Jater, the same disturbance will
appear translated to the right. The value of the disturbance f(x — ct) will
remain constant as long as x — ¢t has the same value; hence an increase in
trequires an increase in x = ¢, Thus the function f(x — cf) represents a wave
propagating to the right (in the direction of increasing x) with a speed ¢. In
exactly the same manner, we can shown that flx + cf) satisfies the wave
equation and represents a wave moving in the negative x direction with a
speed c.

Flow Velocity and Wall Displacemennt Waves

Equation (10) shows that the pressure in the elastic vessel is governed by
a wave cquation. Because the axial velocity « is linearly related to p through
Eq. (7)., and small change of the radius, #, is linearly related to changes in
p through Eq. (6), (13), or (23), we see that u and 4 are governed by the




3.8 Wave Propagation in Blood Vessels 147

fix)

Y N

=0 — X
x=0

t'—_t-l ¥ ‘..‘-‘X

x =ty
t=t, i X
x =ty
dﬂ(:ﬂ
t=10 > X

gix +cty)

FisuUke 3.8:3. Wave propagafion to the nght and left.

same wave equation with the same wave speed. In other words, the p in Eq.
(10) can be replaced by 1 and a. (Verify this by direct differentiation.) Thus
disturbances in velocity and radius of the vessel are propagated by waves
of speed c, in association with the pressure wave.

We use pulse waves in arteries of the wrist, ankle, or temple to determine
the heart rate. If we press very gently on the artery, we feel the pulsation
of the radius of the artery. If we press harder, so that an area of the artery
under the finger is flattenad, we shouid feel the pressure wave in the artery
(Fung, 1993b, p. 20, Prob 1.5). With a Doppler ultrasound flow meter, you
can detect the velocity waves.

Cuir derivation of the wave equation is subjected to many simplifying
assumptions. All the factors ignored in this derivation have some effeet on
real wave propagation in the arteries. We discuss them in due course.

Relationship Between the Pressure and Velocity Waves

We have argued that the pressure and velocity satisfy the same wave equa-
tion. We can show that the wave equation is satisfied by

r= p,,f(x - ct) + p;g(x + ct),
w=u,f(x —ct)+ulglx +et), 27)
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and that by Eq. (7) or (9) the amplinudes p, and u, are related by the simple

relationship

Po = peu, (28)
Jor @ wave that is moving in the positive x direction, and ,

Py =—pex 29)

for a wave that moves in the negative x direction.

The proof is very simple. On substituting Eq. (27) into Eq. (7), carrying
out the differentiation and cancelling the common factor dfidz, we obtain
Eq. (28) or (29). ‘

This important relationship shows that the amplitude of the pressure wave
is proportional o the product of wave speed, velocity disturbance, and the
fluid density, and nothing else. This conclusion holds for progressive waves
in long tubes without reflection. This, incidentally, is a genera) resuit for one-
dimensional longitudinal waves, which may oceur, for example, in a car
crash, or in a plane compressional wave in the earth during earthquake.

Problems on Series Representation of Waves (Fig. 3.8:4) b
3.13 Consider a half-sine pulse,

b
x]=sin— for O=x=rL,
fle)=sin T for 0<x
f(x)=0 for x<0, x>L,
propagating to the right at speed ¢, Sketch the wave after 1s. 4

N

¥
>

g : L

(2 - x
0 N\
¥
c ¥
(3) 2 :
o L X i

{4 s x FIGURE 3.8:4. Several wave

0 s forms.
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3.14 If at time ¢ = 0 a wave is obscrved to have a spatial distribution
f(x) = ian sin% for xin (O, L) (30)
A=l

and f{x) = { outside this interval, show that at time ¢ the solution of
wave Eq. (14) is ‘

. it
xtet)= ¥ g sin—|xtct 31
e ct)= 2 a, sinp(v2t) 31)
for x + ct in (0, L), and f(x £ cf) = 0 elsewberc. The & sign is chosen
according to whether the direction of propagation is to the left (+) or
right ().

If a wave described by Eq. (31) propagating to the right is observed.
at a fixed station x = 0, then the time sequence is

fl=ci)=-Ya, sin%r. (32)

Each term in Eq. (32) is a harmonic of the wave. The nth is called the
nth harmonic. The factor nac/L is the frequency (or more precisely,
circular frequency) of the nth harmonic of the pulse wave.

3,15 Show that a square wave of amplitude ¢ in the region D<x< L can
be represented by ‘

def  m 1. 3m 1. 5m
= 2 ™ L n 2 S sin e - 23
f(x) . W(SlnL+351nL+551nL+ } (33)

whereas one in the region —L/2 < x < L2 can be represented by

Both of these formulas hold for the open intervals indicated. At the
ends x = 0 and L, the Gibbs phenomenon occurs: The value repre-
sented by the series oscillates about c.

.16 Show that a triangular wave f(x) = x in -z < x < 7 can be represented
as

. sin2x sin3x sindx
=x=2 - - ..
f (x) x [smx 5 T3 I } (35)

whereas in 0 £ x £ m, inclusive, we have

z 4 3 5 7
f(x)=x=5—;[cosx+ co; ul +E)-;—x+29%£+-~} (36)

Note the difference in the rate of convergence of the series that
represents the same function. ‘
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Mathematical Choices of Series to Represent a Function

The choice of the series expansions, as illustrated in Problems 3.15 and 3.16,
seems arbitrary, but there are beautiful theorems, such as the following, If
one chose 1o represent a function in the range —1 < x € 1 by a series of uftra-

spherical polynomials (Szegd, 1939}, which includes powers of x, Legendre

polynomials, Chebyshev polynomials, and others, then, as Lanczos (1952)
has shown, if the series is truncated at n terms, the estimated error of an expan-
sion into Chebyshev polynomials is smaller than that of any other expansion
into ultraspherical polynomials, While the expansion into powers of x (Tavlor
series) gives the slowest convergence, the expansion into Chebyshev polyno-
mials gives the fastest convergence.

Inn case the reader is not familiar with the Chebyshev polynomial, remeam-
ber that it is nothing but the simple trigonometric function cosk8, but
expressed in the variable

x=cos8
Thus, the Chebyshev polynomial T,(x) is
Tk(x) = cos(k arc cos:c). (37)

What is meant by this theorem is that if a function f{x) of bounded varia-
tion is expanded into a series

flx)=teo +aLi(x)+ e, (x)+ 46T, (x)+m,(x), (38)

then the maximum value of the remainder #, is smaller than that of any
other expansions in which T,(x} is replaced by other ultraspherical poly-
nomials. If the expansion (38) is rearranged into an ordinary power series
of the form

f(x) =b+bx+bxi+. .. +lb"x" +1, (x), (39

then the coefficients b; decrease slower than the coefficients ¢, as { increases
and the maximum of the remainder #(x) is greater than that of #,(x). In
fact, the convergence of the power series in Eq. (39) is the slowest among
all expansions in ultraspherical polynomials,

This theorem shows that an orthogonal expansion of f(x) into the poly-
nomials T,(x) yields an expansion that for the same number of terms rep-
resents f(x) with greater acciracy than the expansion into any other sets of
orthogonal functions (this includes the Legendre polynomials, which give a
better average error but a worse maximum error in the given range},

An Example of Harmonic Analysis of Pulse Waves

In Figure 3.8:5, experimental data on pressure and flow in the ascending
aorta of a dog are shown by dotted curves. These curves are analyzed into
a Fourier series with a constant term and 10 harmonics (with frequencies




3.9 Progressive Waves Superposed on a Steady Flow 151

Picure 3.8:5. An example of
Fourier scries representation
of pressure and flow waves in
the ascending aorta. The exper-
imental wave form is analyzed
into a Fourler series with 10
harmonies. The series s then
summed and plotted, showing
good agreement with expen-
mental data. From McDonald ‘
(1974}, by permission. Pressure

Synthesized

| . — Measurgd

up to about 20 Hz). The solid curves represent the Fourier series. It is shown
that the accuracy of the 1{-harmonic approximation is acceptable. Fusther
away from the heart, the wave forms are smoother and can be adequately
described by fewer harmonics.

3.9 Progressive Waves Superposed on a Steady Flow

The results derived so far apply to a straight, cylindrical, elastic tube filled
with a nonviscous liguid that is not flowing. Now, we shall continue to
assume the fluid to be nonviscous, but let it have a steady flow to the right.
Since the fluid is nonviscous, the no-slip condition on the solid wall does
not apply. The velocity profile can be uniform. “Then we can show that
all equations of Section 3.8 are applicable provided that we adopt a
coordinate system that moves with the undisturbed flow, and interpret u
as the perturbation velocity superposed on the steady flow and ¢ as the
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speed of perturbation wave relative to the undisturbed flow. The proof is as
follows:

Let U/ be the velocity of the undisturbed flow and « the small perturba—
tion superposed on it. Treating » as an infinitesimal guantity of the first
order, we see that the equation of motion, Eq. (3.8:2), can be linearized into

Ju au 1 dp, ‘

U=t 1

at o p o : )
This can be reduced to Eq. (3.8:7) by introducing a transformation of vari-
ables from x, rto x', "

=x-U, t'=¢ : ‘ (2)
From Eq. (2) we have

d_odx, dx_3_ .3
doHx Ko A o’
d _ad o &'
—— 3
A o dx o ®)
Hence, a substitution into Eqg. (1) reduces it to
e l dp
=% 4
& pox )
which is exactly Eq. (3.8:7) in the new coordinates,
The equation of continuity, Eq. (3.8:1), now becomes
o da; @ o _
E+U e +3 pols 0 (5)

when 7 is substituted for A, with a;being the inner radius of the tube, and
U + u is substituted for « and the cquation is linearized for small pertur-
bations. Under the transformation Eq. (2), and using Eq. (5), Eq. (#)
becomes

da, a, ou _

a2 ©)
which is exactly Eq. (3.8:8).

The pressure-radius relationship—Eq. (3.8:5), (3.8:6). (3.8:13), 0r (3.8:23)
—is independent of reference coordinates; thus Eq. (3.8:9) is unchanged
when ¢ is replaced by ¢, Thus all the basic equations are unchanged. Equa--
tions (4) and (6) govern the fluid and Eq. (3.8:9) governs the tube and fluid
interaction, that is, the boundary conditions. By eliminating u, the same
wave equation (3.8:10) is obtained, except that the independent variables
are replaced by x” and ¢’ But »* and ¢ are the distance and time measured
in the moving coordinates that translate with the undisturbed flow. Thus
what we set out to prove is done.




3.9 Progressive Waves Superposed on a Steady Flow 133

Can Boundary Layers Save the Ideal Fluid Theory?

The wave theory of Section 3.8 is an ideal fluid theory. The supetposition
of a uniform velocity is valid for an ideal fluid only, not for blood which
is viscous. A viscous fluid must obey the no-slip condition, The question
is: Could the boundary layer theory discnssed in Section 3.5 save the
ideal fluid solution for the bulk of blood in the vessel, Jeaving the bound-
ary layer to adjust to the no-slip condition on vessel wall? Heurstically,
the answer is “ves,” if the Reynolds and Womersley numbers are large
and the vessel is not too long, so that the boundary layers are very
thin compared with the tube radius. The short length requirement s
related to the boundary layer thickness growth discussed in Section
3.18. : :

For blood flow in large arteries, in which the Reynolds and Womersley
numbers are >>1, pulse wave analysis of ideal fluid flow provides a good
approximation. Hence, we continue to use the ideal flmid hypothesis in the
study of wave propagation, reflection, and refraction in large arteries in Sec-
tions 3.10 to 3.13. For waves in small arteries and arterioles, in which either
the Womertsley number, or the Reynolds number, or both approach 1 or <,
we must take viscosity into account, a5 i5 done in Section 3.15.

Experimental Validation

Experimental evidence of the theoretical result is shown in Figure 3.9:1.
Anliker et al. (1968) installed two electromagnetic wave generators at two
stations along a dog aorta and recorded the pressure fluctuations at two
points between the two wave generators. A short train of high-frequency
waves generated by the upstream wave generator propagates downstream
with a theoretical velocity

P=ey U, (7)

which can be determined experimentally by the arrival times of the wave
train at the two recording stations. On the other hand, if the wave train is
senerated by the downstream generator and propagated upstream, the
theoretical wave speed is

V=c=-U, (8)
which again can be determined experimentally. From Egs. (7) and (8) we
have

U=§{c?-cv) (9

In Figure 3.9:1, ¢, ¢¥, and U are shown during a cardiac cycle. The flow
velogity U can also be measured by a flow gauge, and as Anliker stated, a
good agreement is obtained.
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FLOW MEASURED BY WAVE SPEED DIFFERENCE
C 140

AORTIC PRESSURE 30 [
mmHg 120

1o

WAVE SPEED, [
m/sec B
4 i 1 i 1 |
0.8
FLOW SPEED, 5 4
cPip)-cVip)
— e J ; |
m/sec o} I 2 3 4 5

TIME x10~! sec

Ficure 3.9:1. Wave speeds measured upstream and downstream in the aorta of a
dog. Top: Natural pulse wave. Middle: Upstream wave speed (open symbols) and
downstream wave speed (closed symbols) measured at different instants of the
cardiac cycle. The upstream and downstream data correspond to two heartbeats
a few seconds apart, but with matching pressure patterns. Bottonr: Mean flow
velocity U. From Anliker, M. (1972), by permission.

3.10 INon]jnear Wave Propagation

A more general solution of Egs. (1), (2), and (3) of Section 3.8 is given by
Riemann’s method of characteristics. This method is explained most clearly
in Lighthill (1978), and Yih (1977). Adding +c/A times Eq. (1) of Section
3.8 to Eq. (2) of Section 3.8, one can show that on the characteristic curves
defined by '

dx/di=utec, (1)
the guantities (Riemann invariants) .
_1 Ac
R,=> [u + Lo " dAJ (@)
are constants, where A, is the undisturbed area and ¢ is the velocity
o Adp &

.pdA'.
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Thus nonlinear waves are propagated in the tx directions with speeds u +
c. The linearlized theoty presented in Section 3.8 results if the condition
¢ = u is imposed. ‘

The general solution, Eq. (2), can be used to investigate the effect of some
of the simplifying assumptions used in the preceding section. It has been
used by Pedley (1980, pp. 79-87) to investigate the formation of shock
waves in blood vessels.

The method of characteristics is one of the most important devices to
investigate nonlinear wave propagation. See Lighthill (1978), and Skalak
(1966, 1972) for in-depth reviews of this subject. Lambert (1958) averaged
the equations of motion and continuity over the arterial cross section to
obtain uniaxial equations. Van der Werff (1973) introduced a special
method to handle periodic conditions. Atabek (1980) combined the char-
acteristics method with Ling and Atabek’s (1972) “local flow” analysis to
predict velocity profiles of the flow and waves in a scgment from known
pressure and pressure gradient at the proximal end of the segment.
Atabek’s detailed comparison between calculated results and those from
animal experiments shows the importance of the effects of nonlinearity
from vatious sources (see Sec. 3.16 in this book); he concludes that these
effects are not yet fully understood.

Problem

317 We know that the blood vessel wall does not obey Hooke's law, Use
the information on the pseudo-elasticity and viscoelasticity of the
arteries presented in Biomechanics: Mechanical Properties of Living
Tisstes (Fung, 1993b, chapter 8) to derive an expression for the wave
speed in arteries.

Devise a theory of your own to handle the viscoelastieity of the
blood vessel wall in the problem of pulse wave propagation. Discuss
the effect of viscoelasticity in detail.

3.11 Reflection and Transmission of Waves
at Junctions of Large Arteries

'Thus far we have discussed propagation of uniaxial disturbances in an infi-
nitely long, straight, cylindrical, elastic tube filled with an incompressible
nonviscous liquid, Qur results are simple and interesting, but they are true
only if all the idealizing qualifiers hold. Real arteries do not obey these qual-
itiers: They are short, tapered, branching, and filled with a non-Newtonian
viscous fluid. They are sometimes curved. Their walls are nonlinearly vis-
coelastic, Tt turns out that in the large arteries the effect of nonlinear vis-
coelasticity on wave propagation is not so severe; neglecting the blood
viscosity in the tube outside the boundary layer next to the wall is often
aceeptable for the wave propagation problem because the frequency para-
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o> FIGURE 3.1L1. A bifurcating artery.
u3
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meter (Sec. 3.7) & and the Reynolds number Ny are sufficiently large that
the boundary layer is very thin (we will discuss these factors later), but the
“infinitely long” assumption must be removed.

A tube of finite length must have two ends. When waves of pressure and
velocity reach an end, they must conform to the end conditions. As a result
the waves will be modified. To clarify the situation, consider first a single
junction, as shown in Figure 3.11:1, where a tube branches into two daugh-
ters. A wave traveling down the parent artery will be partially reflected at
the junction and partially transmitted down the daughters. Now, at the junc-
tion, the conditions are as follows:

a. The pressure is a single-valued function.
b. The flow must be contibuous.

To express this mathematically, let p; denote the oscillatory pressure asso-
clated with the incident wave, pr that associated with the reflected wave,
and pr and pr, those associated with the transmitted waves in the two
daughter tubes; then according to (a) we must have

by +pr=pr, =pr,- (1)

Sirmnilarly, let () denote the volume-flow rate, and let the subscripts I, R, Tl,
Ty refer to the various waves as before; then, according to (b) we must have

Q‘,r _QIR = Q.T, +Qr - (2)
The left-hand side of Eq. (2) represents the flow out of the parent tube, and
the right-hand side represents the flow into the daughters. But 0 is just the
product of the cross-sectional area A and the mean velocity u. We have

already leamed the relationship between u and p in Section 3.8. Hence,
using Eq. (3.8:28) and Eq. (3.8:29) we obtain the flow-pressure relationship,

O=Au=:2p 3)
: pc
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Here pis the density of the blood and ¢ is the wave speed. The + sign applies
if the wave goes in the direction of positive x-axis; the — sign applies if the
wave goes the other way, The quantity pe/4 is an important characteristic
of the artery and is called the characteristic impedance of the tube, and is
denoted by the symbol Z,

_pe
z=2. @

Z is the ratio of oscillatory pressure 1o oscillatory flow when the wave goes
in the direction of positive x-axis,

J - |
Z= ] zQ = (5)
Q .
analogous to the resistance in an electric circuit,
R= l;— RI=V, (6)

connecting the voltage V and current /. Z has the physical dimensions
[ML™T7] and can be measured in the units kgm™ sec™, W1th the Z nota-
lion, Eq. (2) can be written as

Pr—Pp _ Pr PT 7
Z, zZ Z

Solving Eqs. (1) and (7) for the p's, we obtain . :

Zi -7 +25) R (&)
p Zit+(Z + Z3)

Pr

and

Pr p’r 2251
PI P[ ZD (Z I+Z ])

The right-hand sides of Eqgs. (8) and (9) shall be denoted by R and 7,
respectively. Hence the amplitude of the reflected pressure wave at the ;
junction is & times that of the incident wave, the amplitude of the trans- o
mitled pressure waves at the junction is 7 times the incident wave, The :
amplitude of the reflected velocity wave is, however, equal to ~& times that
ot the incident velocity wave, because the wave now moves in the negative
- x-axis direction, and according to Eqgs. (3.8:28) and (3.8:29), there is a sign
vhange in the relation between u and p depending on whether the waves
movce in the + or — x-axis direction.

The meaning of & and 7 can be clarified further by considering the
wansmission of energy by pressure waves. Imagine a cross section of the
tube. The normal stress acting on this section is the pressure p. The force is

9)
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p times the area, A. The fluid pushed by this pressure moves at a velocity
u. The rate at which work is done is therefore the product pAu. But
Au = and U= p/Z Therefore the rate of work done is

Wn—-pQ.= pz/Z. (10a)

This is the rate of transmission of mechanical energy through the cross
section, Now, at the junction of a bifurcating vessel, the rate of energy trans-
mission of the incident wave is pj/Z;, whereas that of the reflected wave is

z
P_J%:M:gngi. (10b)
ZO Zo ZU o

Hence the ratio of the 1ate of energy transmission of the reflected wave o
that of the incident wave is 8% For this reason % is called the energy reflec-
tion coefficient. Similarly, the rate of energy transfer in the two transmitted
waves, compared with that in'the incident wave, is
Zi+Z3 a2
z ’

which is called the energy transmission coefficient.

We can express the waves more explicitly as follows. Let the incident
wave be

{10c)

Pr= Pof(t ~x/¢, ) (11)

Let the junction be located at x =0, 50 that x is negative in the parent tube
and positive in the danghter tubes; then at the junction, x = 0, the pressure
of the incident wave is

p=pf (t )
The reflectional and transmitted waves are, therefore,
Pr = Rpoflt+x/c, ),
Pr =T pflt-x/c),
Py, :ﬂ'pof(t*x/cz). (12)
Here ¢y, ¢, ¢; are the wave speeds in the respective tubes. Note that

Pr, = pr, at the junction, x = { [see Eq. (1)], but ¢, may be different from c;.
The resultant disturbance in the parent tube is

p=p,+pR=p(,f(t—x/c0)+%p9f(t+x/co). (13)

The corresponding flow disturbance in the parent tube is, according to
Eq. (3} and taking the direction of propagation into account,

Q=%‘lf(r—x/co)—%%c€1f(i+x/co). (14)

0 0
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fiouke 3.11:2, Pressure and flow waves in human arterial tree, From Mills et al.
(1970) Pressure-flow relationships and vascular impedance in man. Cardiovascular
Res. 4 405-417, by permission.

A comparison of Eqs. (13) and (14) shows that with reflection, the pressure
and flow wave forms are no longer equal.

Inequality of pressure and fiow wave forms is a common feature of
pulse waves in arteries (Fig. 3.11:2), indicating the effect of reflection at
hranches.

Problems

118 Consider the case in which a parent tube gives rise to three davghter
tubes at a junction. Show that & and & are given by expressions similar
to Eqs. (8) and (9), except that Z;' + Z;' should be replaced by Z7' +
Z3' + Z5' (Fig. P3.18).
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Figuze F3.19. Matched impedange.
Frauer F3.18. Trifurcation.
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;:flliitéd _— — Transmitted ——/

Frouie P3.21, Total reflection.

Transmitted

Fiouke P3.20. A small daughter branch.

3.19 Under what condition is the reflected wave zero? State the condition
% = 0 in terms of the physical parameters of the tubes.

Nore: When % = () the junction 15 said to be one at which the inz-
pedances are matched (Fig. P3.19).

A parent tube gives out a small daughter branch (Fig. P3.20). What
are reflection and transmission characteristics (# apd F) at the
junction?

Under what condition would a wave be totally reflected {#2 =1) {Fig.
P3.21)7

If the impadance of a parent tube is perfectly matched Lo the daugh-
ter tubes at a junction so that # = (), show that 7 = 1 and the trans-
mission coefficient given in Eq. (10c) is 1. Show that 1 + % = 7.

3.20 Consider a bifurcating artery (see Fig. 3.11:1). The functions 7 [Eq.
(9)] and % are called, respectively, the transmission and the reflection
coefficient (without the word energy). In the special case in which the
two daughter branches are of equal size and the wave speed ¢ is the
same in the parent and daughter branches, & and T are functions of
the “area raiio,” (A, + A;)/Aqy, that is, the ratio of the combined area
of the branches to the area of the parent tube. Derive expressions of
% and Fin terms of the area ratio and sketch curves to show the vari-
ation of & and F with the area ratio.

Note: Cf. Atabek (1980), p. 302, in which the viscosity of the blood
and viscoelasticity of the vessel wall are considered (see Sec. 3.15
infra), while the motion is limited to be simple harmonic (see p. 161).



31] Reflection and Transmission of Waves at Junctions of Large Arteries 161

Our results, Eqs. (4) to (10c), axe derived for inviscid fiuid in an elastic
tube. Whereas the wave speed ¢ is a real number in Eq. (4),it is a
complex number in Atabek (see Sec. 3.15). Figure 7.16 of Atabek
(1980) shows that there is a minor dependence of the magnitude of &
and I on the Womersley number (), and a sudden change of the
phase angle of & (from 0 to 180°) when the area ratio exceeds about
1210 14,

321 Design an instrument to measure pulse waves noninvasively at some
conveniently located arteries, such as the radial artery at the wrist.
What can you measure? Pressure? Force? Velocity? What significant
use can be made of such measurements? (See Sec. 3.20.)

322 There are several machines in clinical use that apply pressure or
vacuum on arteries of the arms or legs in a suitable periodic manner
to serve as heart assist devices. One machine works on veins to reduce
the threat of thrombosis. Invent one yourself, and explain why is it
good.

Harmonic Waves

Oscillations that are sinusoidal in time and space are called harmonic waves.
For example, a pressure wave,

P=pm cos{m[t - i}} =Py CDS(&H‘ - zﬂJ
o A
=M cos{%r (x - cor)}, {15)

is a harmonic progressive wave. Here o is the circular frequency (unit,
rad/sec), a2 is the frequency (unit, Hz), and Ais the wave length, (unit, m).
They are related by

G O_&

(cu/ 27:)’ 2 A
Thus thé wave length is the wave speed divided by frequency, or the dis-
(ance traveled per cycle. The wave speed is the product of frequency and
wave length.

For harmonic waves, a convenient mathematical device is the complex
representation. This is based on the relation

(16)

¢ =cosz +isinz, (17)

where i = +/—1, e is the exponential function, and z is a real variable. Thus
cos  is the real part of ¢ and sin z is the imaginary part of €. We can write
Fy. (15) as
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p=@e{pye =], (18)

The symbol &€ means the real part of the complex quantity. A great advan-
tage of the complex representation is that in Eq. (18) p, does not have to
be limited to a real number. If p, is a complex number,

p,=a+ib= PE"",'
P=+a*+b?, ¢=tan‘1§;
then Eq. (18) means |
p=a cos{m(t -xfe, )} - bsin{w(t ~x/c, )}

=P cos{m(r -x/¢, ) + ¢}. (19)

Hence P is the amplitude and ¢ is the phase angle of the wave. Similar
expressions can be written for the flow rate and for waves traveling in the
opposite direction. It is conventional to emit the symbol ¢, so that when-
ever a complex number is used to represent a physical quantity, it is
assumed that its real part is being used.

We shall use this method to discuss multiple reflections later.

Problem

3.23 Consider energy transmission. We have shown in Eq. (10) that the rate
of energy transmission in a progressive wave is

W=Ap-u=p-0=p?/Z.
If p is a harmonic wave, show that this is
W = giep. ) =(Rep) [z

and is not equal to R€(p*)/Z. This important example shows that one
has to be careful in using the complex representation.

Show that if p is given by Eq. (15) the average value of W over a
period is

W:%pg/z.

Multiple Reflections

Waves in more complex systems of tubes can be analyzed by repeated appli-
cation of the results presented earlier. For example, in the double junction
illustrated in Figure 3.11:3, a wave reflected once at junction B is reflected
a second time at junction A, and 50 on. The amplitudes of the reflected and
transmitted waves on each occasion are determined by the characteristics
of the junction.
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Tube 2

Fiauze 3.11:3. Multiple reflection sites of ap artery with two branching junctions.

To sec what is going on, let us consider a continuous harmonic excitation
and write out in detail the perturbations in the segment AB. Let the origin
of the x-axis be taken at A. Let the first wave transmitted through A be

2 Eim{:—x/co) ) ‘ . (20)

A1 B, where x = L, the pressure due to this wave is
pleim(r—f../r:n]. .

Here the wave is reflected. Let the reflection parameter be denoted by PRy

Then the reflected wave 18

Byl Hteie] e

When this wave reaches A, the pressure 1s
Ry gy e,
This wave is reflected at A. To cakulate the reflection parameter we must
(reat the segment AB as the parent tube and tubes 0 and 2 as daughters.
let the reflection parameters be denoted by . Then the reflected
wave is

R Py D2 talt-2Lfey=x/ty)

The process continues. The pressure perturbation in the tube AR js the sum
of all these waves.

But the story cannot end here. At the ends A and B, the waves do not
just bounce back and forth; they are alse transmitied into the vessels
beyond them, to segments 0, 2, 3, 4, etc. These transmitted waves will be
reflected at the junctions further away and will come back to segment AB.
The total picture will not be known until the entire system is accounted
tor, In practice, if the impedance is reasopably well matched, the series
converges rapidly.
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Standing Waves

The reflection and trapping of waves are related to the phenomenon of res-
onance. Consider a particular condition in which the tube AB is closed at
both ends so that 9y, and #); are both equal to 1. In this case the sum of
the first two waves, Egs. (20) and (21), becomes, with Eq. (16),

plm-2m/a) | E{w:-m/h:n(x-i,)/l}_

‘The sum of every two succeeding texmos is sitilar, differing only in phase
angle. In the special case in which the tube length is equal to the half-wave
length,

A
L=— 22
7 (22)
the sum above becomes (because ¢ is equal to 1)
giofg-imit 4. gimit] = 2gi o5 T 23
{ J T 23)

Thus, in this case the oscillation is a standing wave, and the motion is a
resonant vibratton. This occurs at a frequency of

o __6_1 [Er

27" A 2L 2L\2pa’ (24)
which is said to be the fundamental frequency of natural vibration; Eq. (23)
15 said to be the fundamental mode. If a system is excited at a resonance
frequency, the amplitude of vibration can only be limited by damping.
Higher modes are obtained if L = 4/(2n), where n is an integer, in which
case the mode shape is cos2mu/L and the frequency is » times the
fundamental. : ‘ ‘

Real use of this concept is limited. The vibration mode and natural fre-
quency depend on the end conditions. Any change of the end conditions
changes the modes. The mode (23) corresponds to a tube with closed ends.
Open the ends and the mode is changed.

'3.12 Effect of Frequency on the Pressure-Flow
Relationship at any Point in an Arterial Tree

The complex branching pattarn of the arteries tells us at once that multi-
ple reflections of pulse waves must be a major feature of blood flow. The
differences between the pressure and flow profiles shown in Figure 3.11:2
quoted in the preceding section support this statement because, if it were
not for the reflections, the pressure and flow waves would have similar pro-
files. But if reflection is important, then the flow and pressure relationship
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at any given site in the artery must depend on how the multiple reflections
at the bifurcation points are seen at this site, how far away the bifurcation
point is, and how long it takes for each wave to travel from a bifurcation
peint to that site. At any given time, the pressure and flow at a given site
are the sums of the newly arrived waves and the retarded waves of reflec-
tion from earlier fluctuations. This means that the pressure~flow relation-
ship is frequency dependent. .

To express the frequency-dependent characteristics of an arterial tree,
It is customary to consider each harmonic of the pulse wave separately
and to write, at a given site and a given frequency, the ratio of pressure to
flow:

é:Mefﬂ =z, (1)

p and Q are represented by complex numbers multiplied by ¢ Their ratio
is, of course, a complex number, and is called the input impedance or effec-
tive impedance. Its modulus, M, is the ratio of the amplitudes of pressure
and flow, whereas its argument, 8, is the phase lag of flow-rate oscillation
behind the pressure oscillation. o ‘

The input impedance of the human arterial tree can be obtained by
analyzing the measured pressure and velocity waves at a given site (eg.,
one of those illustrated in Fig. 3.11:2) by Fourier series (e.g.. Fig 3.8:4),
and computing the ratic of the corresponding complex-valued harmonics.
An example of experimental input impedance measured in the ascending
aorta is shown in Fignre 3.12:1, which was taken from the same set of
measurements as the wave forms shown in Figure 31L:2. There is a
minimum of M at a frequency of 3 Hz, and calculation shows that this
implies the presence of a major reflection site roughly at the level of the
aortic bifurcation. Measurements at different sites in the aorta lead to the
same conclusion.

The input {or effective) impedance is not the same as the charactexistic
impedance of the tube in which the measurements are made. Don’t use the
word impedance without telling the reader what impedance you mean.
The ratio of pressure to flow at any point is ealled the effective impedance.
The effective impedance at a point A (see, e.p., Fig. 3.11:3) is called the
input impedance of the system distal to A. _

This terminology comes from electric cirenit theory. If a circuit is con-
nected to a voltage source and we want to know if the system can be oper-
ated successfully, we often need to know only the input impedance that the
vircuit offers to the source. Similarly, if we want to couple the arterial system
to the heart, we need to know the input impedance of the arterial system
at the aortic valve. If we want to know the function of the kidney, we want
to know the input impedance of the kidney at the point where the renal
artery branches from the abdominal aorta.
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Frouke 3.12:1. Input impedance of the buman ascending aorta. The phase angle and
modulus are plotted against the wave frequency. The single minimum of the
modulus sugsests that there is a single effective refiection site at the level of aortic
bifurcation. From Mills et al, (1970) Pressure—flow relationships and vascular imped-
ance in man. Cardiovasc. Res. 4 403417, by permission.

Examples

1. Input Impedance of a Branching Artery (see Fig. 3.11:3). Consider an
artery AB (segment 1) that branches into segments 3 and 4. Let a pressure
wave p,e® be imposed at the terminal A. A pressure wave pe™* prop-
agates to the right. When it reaches B at time ¢ = L/c,, it 18 reflected as a
pressure wave, '

pre Lot @)
ropagating toward A, and is transmitted into segments 3 and 4 as pro-
prop P
gressive waves
pT’EEm(t—Lfcl—xa/e,}, pneim{r_[_,jm-;_‘/c‘), . (3)
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respectively, where x;, x4 are distances measured from point B. Since the
pressure at B is single valned, we have, on substituting x =L, xa=x, =0
(at B) and cancelling the factors ¢+ throughout,

Pi+Pp=DPr, = Py, 4
The fiows associated with the incident and reflected waves in segment 1 are
obtained by dividing the pressure waves with the characteristic impedance
Z, of that segment. The flows into branches 3 and 4 are obtained by divid-
ing the pressures at point B by the effective impedances Z.. and Za...
respectively. Hence, on equating the inflow with outflow at B and again can-
celling the factor exp [ie(t — Lic))],

1 1 W .7
—P[__PR=E'”+_T

Zi z‘l Z3e£f zdeff .

These equations are the same as those of Section 3.11, except that 75 and
7. are replaced by effective impedances, By solving these equations for py,
Pr, and pr, as before, we obtain

()

Pe_g,, Pn.Pr_g 6
P! wff » pI P[ eff » ()

where
7 = zy _(z;elrf +zI=1ffl
Tz H(Ze v Zile)

Note that this result is the same as that of Section 3.11 except for a change
in notation and interpretation. In Section 3.11 we speak of progressive
waves going through the bifurcation point B, anticipating the waves to be
reflected at other points of bufurcation but discussing the situation at B
before any of the reflected waves arrive at B. In the present section we con-
sider periodic oscillations and allow the waves to be reflected and trans-
mitted as the system permits and demands, and find that a progressive wave
is reflected at a junction with a complex amplitude ratio R, when the char-
acteristic impedances used in Section 3.11 are replaced by the effective
impedances of the downstream branches.

Now, back at point A, where x = 0, let us assume that the reflected
wave passes through without further reflection. Then the pressure and flow
are

E‘cht' =1+ %c&" (7)

Pa= P + peet® P = pe{L4 Ty eoHe ), ®)
S _ P i PR gilacziefe) o o i 1 1— R . g-dimtie
Q. Z € Z, £ PiE Z, ( eii € ) (9

Using Eq. (1), we obtain, finally, the ratio of ps to Q4, which is the input
impedance at A:
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0, 1-R g 2tulfe

We can recast the final result in a different form. On substituting Eq. (7)
for M into Eq. (10), multiplying both the numerator and denominator by
(Z7' + Z5ly + Zaly)e® . and noting that for any o

=ZLig=24 (10}

efﬂ'—}-e""‘ eia_e—ia L.
T:cosa, thsxncx, {11)

we obtain the important result
. (ZM + ZM,) +iZ! tan(wL/G, )
Zil+ z(deff + Z;jﬁ)tan(wL/ 0 ) -

By repeated use of this equation, we can obtain the effective impedance
at any point, that is, the relationship between the oscillatory pressure and
flow rate at that point, from their valnes at the distal ends.

The factor wl/e, is equal to 2aL/4, where A is the wavelength 2me./o. If
al./c, = nm (1 an integer), then ran(wl/c) =0 and

Zisi = Ziag + Zike- (13)
Thus, if the arterial length L is much smaller than the wavelength, then
n — 0 and Eq. (13) shows that the artery may be considered as part of
the junction and there is no change of the pressure-fiow retationship in
that segment.

On the other hand, if wL/c; is equal 1o an odd multiple of a72, that is, if

L is equal to an odd multiple of quarter-wavelengths, then tan{mwlL/c,) = oo
and

Zig =247 (12)

it
Ly + Ly
In this case, if Z;! is smaller (or greater) than Z;ly + Zily, then Z;,ﬁ is smaller
(or greater) than Z;'.

Zih = (14)

2. Reverberative Reflections in an Artery. Consider an artery with two
sites of reflection, A and B (see Fig. 3.11:3). A pressure wave p.e®* enters
at A. At B it is reflected with a change of amplitude. The reflected wave, on
arriving at A, is reflected again, and 30 on. Let the raiio of the complex
amplitude of the reflected wave to that of the incident wave be denoted by
R, at A and 9, at B (the subscripts “eff” being omitted for simplicity). Then,
at a station at a distance x from A and at time 1, the pressure Is

p(x,t) - paeim(a—x/c} + %zpaem[(‘_L/cHL_x]/cl.
+3, R, p el
+ R 3 p eelbsteHE ] L (15)
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We now assemble terms that represent waves going to the right and,
separately, those representing waves going to the left. We obtain

p(x,t) _ Paeim(:—x/c][l + R R, e-i2uLfc 4., ]

+ 3R, pae"”{"w el c)[1+ PR, €2 ] (16)
Using the summation formula
1
1o+ +oi =, 17
a e (17)

for whatever o, we obtain an important formula

(x z) po mu{r—.t/c)_[_% P e(m(b—ZLf:+.xfc)
z 1— B, 9, eitolle

(18)

This is a general result. Now, consider the special case of total reflection at
the two ends, R; = R, = 1. Then

; e—iﬂ}x/: +e—(2wL./¢€1ﬂJ.t/c
( ) p.e™ 1 — p-iZalic o (19)

If we multiply the numerator and denominator by e”-* and use Egs. (11),
we obtain

cos @ (L - x) / ¢
sin{wL/c)
which represents a “standing” wave. The wave is “standing” because it does
not prapagate.
The amplitude of the standing wave will tend 10 mﬁmty if the denomi-

nator sin {@L/c) tends 1o zero; then the oscillation is said to “resonate.” This
occurs if

p(x,t) = p et (20}

o,

c

Oz or L= n% (n=12.-), 1)

that is, if the length of the segment equals an intcgral multiple of half-
wavelength. ‘

Problems

3.24 When the frequency tends to zero, show that the phase angle 8 tends
to zero and the modulus M tends to a constant. With suitable assump-
tions with regard to an arterial tree at the peripheral end (microcir-
culation), derive an expression for M as the frequency tends to zero.

Note: That the dynamics modulus of input impedance can be much
smaller than the static impedance (resistance at zero frequency) is of
great importance and interest. Compare this with some of our daily
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experiences. We can often shake a small tree if we do it at the right
frequency, whereas the tree would not defleet very much if the same
force is applied statically. In the circulatory system, this means that we
can get blood to move with much smaller driving pressure when it 1s
done dynamically.

3.25 Explain why can we extract information on input impedance from
measurements such as those illustrated in Figure 3.11:2. One may use
the Fourier analysis approach (see Sec. 3.8, Example 2). Express both
the pressure and flow wave forms in Fourier series, and then compare

them with the complex representation of waves discussed in Section
311 |

3.26 In Section 3.8, Example 5, we extolled Chebyshev polynomtials as the
basis of generalized Fourier series. Can you develop a formal theory
of input impedance in terms of Chebyshev polynomials? What diffi-
culty is there?

3.13 Pressure and Velocity Waves in Large Arteries

The pressure and flow waves in arteries are generated by the heart. The
conditions at the aortic valve and the capillary blood vessels are the end
conditions of the arterial system. Major features along the length of the
large arteries are explainable by the simple analysis presented in preceding
sections, but the explanation of the major features of flow in regions close
to the aortic valve must take the three-dimensional geometry of the left
ventricle, the valve, and the aorta into consideration, together with three-
dimensional fluid dynamics and the dynamics of the solid structures
involved. Similarly, the analysis of flow in regions of vessel bifurcation, ath-
erosclerosis, aneurysm, stenosis, or dilatation require extensive numerical
ealculation. Some of these problems are discussed in Sections 3.14 10 319,
Here we present some features of flow in the adrta.

Figure 3.13:1 shows simultaneous recordings of the pressure in the left
ventricle and in the ascending aorta immediately downstream from the
aortic valve. When heart contracts, pressure rises rapidly in the ventricle at
the beginning of systole and soon exceeds that in the aorta, so that the aortic
valve opens, blood is ejected, and aortic pressure rises. During the early
part of the gjection, ventricular pressure exceeds aortic pressure. About
halfway through ejection, the two pressure traces cross, and the heart is
faced with an adverse pressure gradient, The flow and pressure start to fall.
Then a notch in the aortic pressure record (the dicrotic noteh) marks the
closure of the aortic valve. Thereafter the ventricular pressure falls very
rapidly as the heart muscle relaxes: The aortic pressure falls more slowly,
with the elastic vessel serving as a reservolr. The major feature of the pres-
sure wave in the aorta is explained by the windkessel theory (see Sec. 2.1),
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Freuke 3.1%:1. Pressure in the left ventricle and ascending aorta of the dog, From
Noble, (1968) The contribution of blood momentum to lefi veniricular ejection in
the dog. Circ. Res. 23 663-670. Reproduced by permission of the American Heart
Association. :

but the details can only be determined when ali the waves are accounted
for. ' -

The change of pressure wave with distance from the aortic valve is shown
in Figure 3.13:2. First we see a shift of the profile to the right, suggesting a
wave propagation. We also see a steepening and increase in amplitude,
while the sharp dicrotic notch is gradually lost. This increase of systolic pres-
sure with distance from the heart in a tapered tube is 2 dynamic phenom-

enon in an elastic branching system. In a steady flow in a rigid tube of
siznilar tape sure must go down ip the direction of flow unless there

js deceleration. In the present case, however, thegnean)value of the pres-
sure, averaged over the period of a heartbeat, still decreases with increas-

g distance Trom the aortic valve, It is difficult fo see it in Figure 3.13:2
~—fecause THe tall i fean pressure is only about 4mmHg (0.5kPa) in the

1331
12751

122+-0
1165

blood pressure (mmHg)
T

106-51

-
=
L=

B I i L L i L | 1 L . L i i
0 20 40 B0 80 100120140160 180 200 220240 2860 280 300 320

time{ms)

Figuke 3.13:2. Simultaneous blood pressure records made at a series of sites along

~ the aorta in the dog, with distance measured from the beginning of the descending

" uorta. From Olson, R.M. (1968) Aortic blood pressure and velocity as a function of
(ime and position. J. Appl Physiol. 24: 563-569. Reproduced by permisston.
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FiGure 3.13:3. Pressure and velocity waves at different sites in the arteries of a dog.
From McDenald (1974}, by permission.

whole length of the aorta, while the amplitude of the pressure oscillation
between systole and diastole nearly doubles.

This process of amplification of the pressure pulse continues into the
branches of the aorta, as illustrated in Figure 3.13:3. In the dog, it contin-
ues to about the third generation of arterial branches Thereafter both the
oscillation and the mean pressure decrease graduatly downstream along the
arterial tree uatil it reaches the level of microcirculation.

Figure 3.13:3 also shows the variation of the flow velocity along the aorta.
That the pressure and velocity waves are different is an indication of reflec-
tion of waves at junctions. The velocity waves do not stcepen with distance,
nor does the peak systolic velocity increase downstream.

3.14 Effect of Taper

One of the simplifying assumnptions made in the preceeding sections is
that the tube is circular and cylindrical in shape and is straight. Real
blood vessels are often curved and of variable cross section. The nonuni-
form cross-sectional area is associated with branching (see Sec. 3.1) and
_elastic deformation of the vessel wall in response to a nonuniform pressure
with a finite gradient (see 3ec. 3.4). The taper is generally very mild, and
it is possible to evaluate its effect approximately without extensive
calculations, '



3.14 Effect of Taper 173

—

Ficure 3.14:1. Approximation of a stepwise tapered tube by a contipuously tapered
blood vessel,

Let a smoothly tapered tube be approximated by a stepwise tapered tube,
as shown in Figure 3.14:1. Each site of step change may be regarded as a
junction of two tubes, and the method of analysis presented in Section 3.11
can be applied. We have learned in Section 3.11 that the rate of enerpy
transfer in a reflectad wave is proportional to the square of &, and there-
fore if §t << 1 it is quite negligible, 7, in this case, as is given in Eq. (3.11:8),
is proportional to the difference in cross-sectional areas of the two segments
divided by the sum of the cross-sectional areas, and is obviously very small
if the taper is mild. &7 is another order of magnitude smaller. Therefore we
conclude that very little energy is reflected as the wave travels along a
siowly varying tube, and we may analyze the wave's development as if all
the encrgy were transmitted. .

The rate of transfer of energy in a progressive wave across any cross
section of a vessel is shown in Eq. (3.11:10) to be equal to p/Z, the square
of the oscillatory pressure divided by the characteristic impedance of the
tube. If all the energy is transmitted; then p*/Z is a constant and we have

p = const.- Z/2, (1)

Thus, in a gradually tapering artery, the amplitude of the pressure wave is
proportional to the square root of the characteristic impedance. Since the
characteristic impedance is pc/A, we see that Z increases as A decreases if
pe were constant, Hence the amplitude of the pressure wave increases as
the wave propagates down a tapering tube with decreasing cross section.
The amplitude of the aortic flow pulse, proportional p/Z [see Eq.
(3.11:5)], will correspondingly decrease, being proportional to Z™'%, ‘
These predicted features are evident in the records shown in Figures
5.13:2 and 2.13:3. Howcver, a quantitative comparison of the predictions
with the experimental results shows that the peaking is overestimated by
the theory. One of the reasons for this is the neglecting of viscous effects
of the blood and blood vessel; the other reason is the inaccuracy of the
teory. The theory is more accurate if the taper is small. But how small is
.mall? To answer this question one should turn to mathematics. We can
\educe the general equations of motion and boundary conditions o a
timensionless form. Then we recognize two characteristic lengths. the tube
 ndius and the wave length. For the taper, the proper dimensionless para-
‘neter {s the rate of change of tube radius per unit wavelength. If this rate
- not very small, the theory is not very accurate. Let £=x/A. where x is the
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axial coordinate and A is the wavelength, and let D, = D/Dy, the ratio of the
blood vessel at x to that at the entry section x = 0. Then the preceding
description means that the effect of taper is to be judged by the derivative
dD,idE Now

dp, _dD, dx_,dD, _ A dD
dé  dx dE  dx D, dx’

(2)

Hence the effective taper is the product of the wavelength A, expressed in
tube diameter at the entry, and the rate of change of the diameter dD/dx.

Now, in the case of the aorta, the wavelength of the first few harmonics
is longer than the length of the aorta, and the effective taper dD/d¢ may
be fairly large by virtue of large values of A/D,. For these harmonics the
inaccuracy of the simple theory may have led to the overestimation of the
peaking mentioned earlier.

Problem

3.27 The cross-sectional area of the abdominal aorta is about 40% of the
area of the thoracic aorta. The Young's modulus is about twice that of
the thoracic aorta. Show that the ratio of the characteristic impedances
in these aorta is 3.5 and that the pressure pulse amplitude in the
abdominal aorta is expected to be 85% higher than that in the thor-
acic aorta. How much additional increase in pressure pulse amplitude
is expected because of the reflection of the wave at the iliac junction?

3.15 Effects of Viscosity of the Fluid
and Viscoelasticity of the Wall

At the beginning of this chapter we analyzed steady flow of a viscous fluid
in tube. In Sections 3.8 to 3.12, however, we treated pulsatile flow of blood
as if it has no viscosity. The major justification for this has been suggested
in Section 3.9 namely, that in human arterial blood flow the Revnolds and
Womersley numbers are much larger than 1 in the large arteries, so that the
boundary layers are very thin campared with the vessel radius. The bound-
ary layers mediate the ideal fluid solution to the real fluid no-slip condition
on the solid wall. The Reynolds and Womersley numbers decrease toward
the periphery, become smaller than 1 in arterioles, capillaries, and venules.
Hence the influence of viscosity is felt more and more as blood flows toward
the peripheral vessels. In the microcitculation the entire flow field is dom-
inated by viscous stresses,

Even in large arteries, where the Reynolds and Womersley numbers are
large, the viscosity of the fluid still has a profound influence. Viscous stresses
play a dominant role in determining stability and turbulence in the
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arteries, and in determining whether the streamline will separate (diverge)
from the wall of the vessel at branching points or at segments where a
sudden change in cross section occurs, such as in stenosis or aneurysm.

Physically, because viscosity is a dissipation mechanism, one expects that
it would reveal itself in the attenuation of velocity and pressure in the direc-
tion of propagation. Associated with attenuation will be phase changes. As
far as their effect on the wave propagation is concerned, the effect of vis-
coelastic dissipation in the vessel wall is found to be more significant than
the viscous dissipation of the blood.

To include viscosity of blood and viscoelasticity of the vessel wall in the
pulsatile flow analysis, consider large arteries and make the following sim-
plitying hypotheses:

a. The fluid is homogeneous and Newtonian.

b. The wall material is isotropic and linearly viscoelastic.

¢. The fluid motion is laminar. .

d. The motion is so small that squares and higher order products of dis-
placements and velocities, and their derivatives, are negligible.

Then the field equations are the linearized Navier-Stokes equations for
the blood, the linearized Navier’s equation for the wall, and the equation
of continuity. The boundary conditions are the continuity of shear and
normal stresses and velocities at the fluid-solid interface, and appropriate
conditions on the external surface of the tube and at the ends of the tube.
The governing equations are given in Section 2.0 in rectangular cartesian
coordinates. Changing to polar coordinates to describe an axisymmetric
traveling wave in a tube of incompressible viscoelastic material, we have,
for the fluid,

¥, _ lop, fov 1 v, 0%
Ayt I
v, lap, [Fv, 1y, I,
x pﬁx+v[&'2+rﬁr+&t3} @)
v, av, v,
wa G)

and, for the tube wall,
p, 2, J'u, 1o,
we e ra e wa @
p, u, _dtu, 1duw,  du, 100

e ar ra aw wk ©)
o,  du U,
R ©
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where v,, v,, v are the velocity components of the fluid; w,, u,, 1, are the dis-
placement components of the wall: p* is the dynamic modulus of rigidity
of the wall: and Q is a pressure, which must be introduced since we have
assumed the material to be incompressible. v is the kinematic viscosity of
the blood, p is the coefficient of viscosity, p is the density of the biood, p,,
is the density of the wall material and v = u/ip.

If the external surface of the tube is stressfree, and if the inner and outer
radii of the tube are a and b, respectively, then the boundary conditions are

v,=0 atr =10, N

v, [dr=0 atr=0, (8)

v, =du [ atr=a, | (9)

L= [or atr=a, (10)

w(ov, |05+ v, [or) = p*(ou, [ox + e, [) atr=a, (11)
wp+2u(dv [dr)=—Q+ 205 (3u, o) atr=a, (12)
ﬂ*(au,/&’x+3ux/<5‘r):0 atr=b, (13a)
—Q+2u% (3, o) =0 atr=>h.  (13b)

‘The solution that satisfies the boundary conditions (7) and (&) may be
posed in the following form*:

v, = _i i{Aﬂ’nJo (i'ynr) + Ayx 0y (ix’,,r)} exXp i(n o — }fnx), (14)

a=0

v =3 irfad(ira)+ Adficrexpifnon-y,), (15)

riei)

P =iﬁ3.fo(1'y”r)expi(nmt— ynx), (16)
a=)

u, = i —iy, {4411 (ko) + BY (k) + Ashi(iv,7)

n=0

+B.Y, (iynr)} ‘€Xp a‘(nmt - ynx), - an

Mx = i ‘_{knAd‘ID(knr)"'kn B4Y‘.](kﬂr)+i7” ASJG(ZI')’"?‘)

=0

+iy, BSYU(fer)} -axpi(nmz - ynx), (18)
Q= EN: {AGJO (i}',,r) +B.Y, (iy,,r)}e:xp i(nmr - :y"x), 19

=0

*In a strict notation the A’s and B’s should have 4 subscript n because their values
may be different for each n.
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where mis the angular frequency, n is the harmonic number, 7, Is a comstant
named the propagation constant of the nth harmonic, N is a constant, the
A’s and B's are complex constants, Jo and J, are Bessel functions of the first
kind, Y, and Y; are Bessel functions of the second kind, and

k2 =(inafv)+y2, ki =nrrwp,[u¥=yt. (20)
A =(i/nap)a,, A, =nlwip, A, B;=nw'pB. (21)

When these solutions are substituted into the boundary conditions (9) to
(13), six linear, homogeneous, and simultaneous equations in six unknown
coefficients, A, A,, - . . , Bs, are obtained. For a nontrivial solution the deter-
minant of the coefficients of A;, Ay, ..., B must vanish. This determinan-
tal equation, :

A(Tn! Ly km H, ﬂ*a dy b) = 01 (22)

is the frequency equation for the pulse wave. If 1, = B + iex is solved with
other parameters assigned, then f is the wave number, e is the attenuation
coefficient, and C, = a/f is the phase velocity.

The dynamic elastic modulus of the vessel wall, y*, is a complex number
if the wave motion is represented by complex exponential functions listed
in Eqgs. (14) to (19). Since p* is complex, the sotution ¥, is almost certain to
be complex also, thus yielding the attenuation coefficient in association with
each characteristic wave number. 1t is evident that extensive numericat cal-
culations are necessary to obtain detailed information.

One thing that becomes evident from the general equations is that Eq.
(22) has many solutions. One of them is akin to the flexural mode discussed
in Section 3.8 and is an improvement of that solution. All the others are
new modes not considered before in this book. These include longitudinal
modes, in which the principal motion consists of motion of the vessel wall
in the longitudinal direction; forsional modes, in which the principal motion
is the torsional oscillation of the vessel wall; and higher modes of these
three types with higher frequencies, shorter wavelengths, and different
attenuation. Many of these theoretical wave types have been found in in
vivo measurements.

A general reader would probably have litile interest in the numerical
details and is thus referred to the original papers. Furthermore, it is possi-
ble to relax some or all of the simplifying assumptions listed earlier and to
study mathematically the arterial blood flow problem in greater depth. A
great deal has been published. Historically, Euler (1775) was the first to
write down the governing equations of arterial blood flow. He suggested
that the relationship between blood pressure p and cross-sectional area A
be represented by A = Agp(c + p)™ or A = Ai(1 - ¢™"). Euler’s equations
were solved later by Lambert {1958). Young (1808, 1809) was the first to
derive the wave speed formula given in Section 3.8, Eq. (15). Lamb
(1897-1898) derived phase velocities of two types of long waves in arterial
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wall. Joukowsky (1900} used Riemann’s method of characteristics to solve
Euler's cquation. Witzig (1914) was the first to investigate the effect of fluid
viscosity. Hamilton and Dow (1939) studied the relationship between arte-
rial pulse waves and cardiac ejection and stroke volume of the heart. Jacobs
(1953) was the first to investigate the effect of arterial wall mass and non-
linear elasticity as well as fluid viscosity. King (1947), Morgan and Kiely
(1954) and Morgan and Ferrante (1955) were the first ones to investigate
the effect of viscoelasticity. Womersley (1955a,b) compared theory with
experiments, considered tethering, branching, and longitudinal variation of
the cross-sectional area, and gave exhaustive attention to computational
details. Landowne (1958) experimentally induced waves in human brachial
and radial arteries. Taylor (1959, 1966a,b) used impedance methods and
electric analogs. McDonald (1960) made thorough examinations of theories
and experiments from a physiological point of view. Klip (1958, 1962, 1967)
presented extensive studies on measuring technigues, effects of fluid vis-
cosity, wall thickness, elasticity, viscoelasticity, and three modes of axisym-
metric and asymmetric waves. Rubinow and Keller (1972) paid attention to
the effect of external tissues, and found significant effects. Anliker and
Raman (1966), Anliker and Maxwell (1966), Jones et al (1971), and Maxwell
and Anliker (1968) studied Korotkof sound, dispersion, inittal strain, and
found axisymmetric waves mildly dispersive, asymmetric waves highly dis-

persive. Van der Werff (1973) developed a periodic method of characteris-

tics. Pedley (1980) has given a thorough review of recent advances in the
theory of blood flow in large arteries. Extensive review and bibliography
are given in Attinger (1964), Bergel (1972), Patel and Vaishnav (1980),
Sramek et al. (1995), Valenta (1993), and Wetterer and Kenner (1968).

3.16 Influence of Nonlinearities

Of all the effects, the most difficult one to evaluate is the effect of nonlin-
earities. In Euler’s equation of motion [Eq. (13) of Section 2.6], the con-
nective acceleration term, Dv/Dr, is nonlinear, and it is the principal
difficulty of hydrodynamics. The viscous force term, da,/dx;, becomes
nonlinear if the constitutive equation of the finid is non-Newtonian.
Blood is non-Newtonian, and the effect of nonlinear blood viscosity is
especially important with regard to flow separation at points of bifurca-
tion in pulsatile flow. In the equation governing the blood vessel wall, the
most significant nonlinearity comes from the finite strain and nonlinear
viscoelasticity. ‘ ’

To check the effects of nonlinearity means to compare the solutions of
the linearized equations and boundary conditions with those of nonlinear
ones. This is usually impossible because the available solutions of nonlin-
ear problems are limited. Sometimes, however, we cap discuss the effects
of nonlinearity on the basis of dimensional analysis and comparison with
experimental evidence. Several examples follow.

i
ks
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Convective Acceleration in Wave Propagation

In the wave analysis of Section 3.8, the local comvective aceeleration
u{dudox;) is neglected against the transient acceleration duy/or. Now, let &
represent a characteristic velocity of the disturbed flow due to wave motion,
o the circnlar frequency of the wave, and ¢ the wave speed relative to the
mean flow. Then the peniod of oscillation is 27/, the wavelength is 2ac/ao,
and the orders of magnitude of the two accelerations are

Transient, %: —uu—-, (1
ot (27:/ w)
o, - @
w,—t H—. (2)
| _ . T, (2me/ o) ‘
Hence the condition that the convective acceleration is negligible compared
with the transient acceleration is that (2) << (1), that is, if

B, (3)
. ¢

In large arteries, the maximum value of #/c is about 0.25, which is large
enough to suggest nonlinear effects. In smaller peripheral arteries, the lin-
earity condition is better justified. In certain rare disorders the arterial wall
becomes floppy and c is so low that &/c approaches 1. In aortic valve incom-
petence, the upstroke of the pulse wave becomes very steep, & becomes
quite large, and a nonlinear effect is expected. The effect is to increase accel-
eration and pressure drop. The pressure wave form i therefore steepened
at the peak of the velocity wave and flattened at the valley.

Convective,

Effect of Nonlinear Elasticity of Vessel
Wall on Wave Propagation.

The incremental Young’s modulus of the arterial wall increases with the
1ensile stress in the vessel wall. An increase in Young’s modulus of the vessel
% wall increases the wave speed [see Eq. (3.8:15)]. Experimental evidence for
" lhis is shown in Figure 3.16:1, which was obtained by Anliker (1972) using
<hort trains of high-frequency pressure oscillations generated in the dog
aorta and superposed on pulse waves. The wavelength of such high-
frequency oscillations is short, so that several cycles can be recorded at a
downstream observation site before the reflected wave from the iliac junc-
tion returns to that site and distorts the recording. The results show that the
wave speed is higher in systole than in diastole. This is due partly to the
increase in the speed of the progressive waves, ¢, and partly to the higher
mean flow velocity, U(£), at systole. According to Section 3.10, pressure per-
! Lirbations superposed on a steady flow have a velocity of propagation equal
to the velocity ¢ plus the steady flow velocity.

-Apply the same principle 1o a single harmoni¢ pressure wave. At a peak
.{high pressure) the velocity of propagation is higher than the mean veloc-
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3.20 Messages Carried in the Arterial
Pulse Waves and Clinical Applications

Clinical applications of pulse wave studies are generally aimed at the fol-
lowing:

a. Discovering and explaining diseases of the arteries such as atheroscle-
rosis, stenosis, and aneurysm. Locating sites that need surgical treatment.

b. Inferring the condition of the heart. :

¢. Diagnosing diseases anywhere in the body.

The approach to any of these objectives is to extract information from
the characteristics of the waves The most ancient method is to use fingers
as probes. Any abnormality in the condition of the body affects pulse waves,
which carry the message from distant sites,

The idea of extracting information from the arterial pulsc waves to gain
information about the heart and other organs of the body, however, remains
an ideal. If we were able to read all the messages in the arterial pulse waves,
then all we need for noninvasive diagnosis is to observe these waves in some
conveniently located arteries (such as the radial artery on the wrist), If the
messages are clear and unequivocal, then the art of noninvasive diagnosis
would have been moved ahead a big step,

The idea of using pulse waves for diagnosis has been with us for a long
time. In China, the oldest classic on arterial pulse waves is the Nei Jing
(/1#%) mentioned in Chapter 1, Section 1.10. It was followed by Nan Jing
{14, first or second century B.C., authorship attributed to Qin Yue-Ren,
# 8 A), Jing means classic, Nan means difficult as an adjective, or question
as a verb). The book of Nan Jing sought to answer difficult questions, includ-
ing those concerned with pulse waves. [n the Eastern Han Dynasty, Chang
Chi (&8, 5 # &) (probably 150 to 219 ap) wrote the books The Influence
of External Factors (%) and the Abswacts of the Golden Chest
(4 i E£8%), which systematically organized the Han Dynasty’s 300 years’
clinical experience in using pulse waves in diagnosis. Then in Tzin Dynasty
(it1%), Wang Shu-He (F./5%0) (201 to 285 An) wrote Mai Jing, the Book on
Fulse Waves (JR#E). These became the classics of Chinese medicine, and
their ideas and methods have been continuously developed and are being
used in the Orient to this day.

The presentations given in these classics are descriptive and speculative,
tsing similes and words to describe and classify the pulse waves, Empiri-
wully, abnormal waves were related tc disease states. Clearly, the tasks of
uood recording, clear analysis, physiological experimentation, and rational
vxplanation are left to modern researchers! The author's beginning studies
ire very limited in scope [Dai et al. (1985), Xue and Fung (1989)]. A larze
literature exists in Chinese.



