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Blood Flow in Arteries

3.1 Introduction

The larger systemic arteries, shown in Figure 3.1:1, conduct blood from the
heart to the peripheral organs. Their dimensions are given in Table 3.1:1. In
humans, the aorta originates in the left ventricle at the aortic valve, and
almost immediately curves about 180°, branching off to the head and upper
limbs, It then pursues a fairly straight course downward through the
diaphragm to the abdomen and legs. The aortic arch is tapered, curved, and-
twisted (i.e., its centerline does not lie in a plane). Other arteries have con-
stant diameter between branches, but every time a daughter branch forks
off the main trunk the diameter of the trunk is reduced. Overall, the aorta
may be described as tapered. In the dog, the change of area fits the expo-
nential equation,

A= Al

where A is the area of the aorta, A, and R, are, respectively, the area and
- radius at the upstream site, x is the distance from that upstream site, and B
1s a “taper factor,” which has been found to lie between 0.02 and 0.05. Figure
3.1:2 shows a sketch of the dog aorta.

If there is a fluid of sufficiently large quantity in static condition outside
a blood vessel so that the blood vessel may be considered as an isolated
tube bathed in a large reservoir, then at a given blood pressure the stress
in the blood vessel wall depends on the radius and wall thickness of the
vessel. These quantities change considerably with age (see, e.g., Fig. 3.1:3).
Associated with these geometric changes are changes in elastic properties.
In the thoracic aorta, at a physiological pressure of 1.33 x 10°Nm™
(100 mm Hg), the incremental Young’s modulus E increases steadily with
age; but in more peripheral vessels there is gither no change or a fall [Fig.
3.1:4(a) and (b)}. The explanation for this appears to be that the diameter
of the thoracic aorta increases with age, whereas that of the iliac and
femoral arteries either decreases or changes little with age (see Fig. 3.1:3);
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Ficure 3.12. A skeich of the dog's zorta from data measured at physiological pres-
sure in 10 large dogs. From Fry, Griggs, Jr., and Greenfield, Jr. (1964) In vive studies
of pulsatile blood fAow. In Pulsatile Blood Flow, Attinger, (ed.). McGraw-Hill, New

York, p. 110, by permission.
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FiGURE 3.1:3. The radius and wall thickness of human arteries for young (Y) and
old (@) persons. From Learoyd and Taylor, (1966) Alterations with age in the vis-
coelastic properties of human artetial walls. Cire. Res. 18: 278-292, by permission of

the American Heart Association.
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Ficure 3.1:4. Incremental modulus of elasticity of arteries of normal young and old
persons at a pressure of 100mmHg (a) Thoracia aorta. (b) Iliac artery. From
Learoyd and Tayler, (1966) Circ. Res. 18: 278-292, by parmission of the American
Heart Association.

Tissues (Fung, 1993b, p. 270). or Figure 3.1:5 of this book, tells us that at
higher stress the incremental Young’s modulus is larger.

A detailed discussion of the mechanical properties of arteries is given
in Chapter 8 of Biomechanics: Mechanical Properties of Living Tissues
(Fung, 1993b). In the present chapter we consider the flow of blood in these
elastic vessels. The basic equations of hemodynamics are presented in
Section 2.6. In most organs, the tissue outside the blood vessel cannot be
considered 10 be a static fuid reservoir. In the skeletal muscle and
myocardivm, the blood vessels are closely inteprated with muscle cells. In
the lung, the pulmonary arteries and veins arg tethered by interalveolar
septa. The interaction between a blood vessel'and its surrounding tissues
then becomes a major feature of the blood ﬂow in organs, This will be illus-
trated in Chapters 6 to 8.

We proceed from the simple to the complex First, we give a solution to
the problem of steady flow in a uniform rigid pipe. It is interesting to see
that this simple solution has important applications. We also see that even
thus simple case has some very difficult aspects;for example, the questions
of stability and turbulence. We then proceed L to study aspects of flow
elastic tubes; first steady flov-and then waveaﬁﬁmpagatmn Reflaction and
traffsmission of waves ¥ branghmg vessels :a, isubject of major interest,
"Fhis Bﬁngs s t0- pu;saulwﬁow. in the art #ies, nonlinear effects, flow

riied ifihe pulse waves, and finally,




Figure 3.1:5. The
stress—strain
relatjionship of the
thoracic aorta of the
rabbit, From Fung,
Fronek, and Patitucci

(1979), by permission.
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114 3. Blood Flow in Arteries

3.2 Laminar Flow in a Channel or Tube

Consider first a steady flow of an incompressible Newtonian fluid in a rigid,
horizontal channel of width 2 between two parallel planes, as shown in
Figure 3.2:1. The channel is assumed horizontal so that the gravitational
effect (a body force) may be ignored. The wails are assumed to be 0 rigid
that their geometry is uninfluenced by the flow. The coordinate system is
shown in the figure, with x parallel to the wall,

With (x, v, w) denoting velocity, y denoting the coefficient of viscosity,
p the pressure, 7 the shear siress, 7 the shear strain rate, we search for
a upiaxial flow with u the only nonvanishing velocity which is a function
of y:

umu(y), v=0, w=0, (1)
The equation of continuity [Eq. (8) of Section 2.6],
v ow

~+Z o0
ox . dv oz
is satisfied by Eq. (1). The equations of motion (Eq. (13) of Sec. 2.6] which
have been reduced to the Navier-Stokes equations [Eq. (18) of Sec. 2.6),
now become .

O=_’§:i+#.§;};» (2)
a
0=2. 3
3 ©
P
0= P (4

The no-slip conditions on the boundaries y = 4 are
u(h)=0, i(~k)=0." (5)

Equations (3) and (4) show that g is a functic‘:ri_ of x only. If we differenti-
ate Eq. (2) with respect to x and use Eq. (1), we obtain d°piox? = 0. Hence
op/ox must be a constant. Equation (2) then becomes

¥

Figure 32:1. Laminar flow in a
channelise: 7 -
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diu_1dp
y?  pdr’
which has the solution
1ydp
A+ By+—=——=, 7
u= v W2 dr { )

The two constants A and B can be determined by the boundary conditions
(2) to yield the final solution

d
um—n—ﬁ(hz )L, (8)

Thus, the velocity profile is a parabola.

A corresponding problem is the flow through a horizontal circular
cylindrical tube of radius a {Fig. 3.2:2). We search for a solution, as
follows:

i =u(y,z), v=0, w=0.
In analogy with Eq. (6), the Navier-Stokes equation becomes

azu g ldp
P az = i s | (9

where dp/dx is a constant. For convemence we will use cylindrical polar
coordinates x, r, 6, with r* = ¥* + 7%, mstead of the cartesian coordinates
x. ¥, z. Thent Eq. (%) becomes
31u+3u 14 r&u +i¢?2 ldp
ayt  dzf rorl o) rrget pdx’
Let us assume that the flow is symmetric 50 that « 15 a funetion of 7 only;
then 3%/26% = 0, and the equation

1;{[ ﬂj_},iﬂ

(10)

rar\ & )T T (1)

can be integrated immediately to yield

T
HHT

Lt
|
|
‘L‘l
-
|
b

Figugre 3.2+2. Laminar flow in a circular cylindrical tube.
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ir dp o o
= A] +B S 2
L u 1 dx+ Dgr (1 )

The constants A and B are d(—.termmf.d by the condltmns of no-slipatr=g
and symmetry on the center line. r =0

u=0"at r=a, (13)
dau
-/ = t =),
A (14)
The final solution is N
R 15
‘ 411(“ )dr o (13

This 18 the famous parabolic velos:lty proﬁlc: H;he Hagen— Pmseml!e flow;
the theoretical solution was worked c:mt by Stokes The velocity profile is
sketched in Figure 3.2:2.

From the solution {15} we can obtam the rate cnf’ ﬂow thmuglx the tube .
by an integration, o

- =

0 :zwﬁ?rrar. | . L (16)
This leads to the Poiscuille formula ‘ |
: 7a' dp " mat | ‘ \
pu-Tade__milp gy

Bu dx 8,u L’ S
Here, in the last term, Ap represents the pressure drop in a segmefﬁ'
of blood vessel of length L. Ap varies linearly with L because dp/dx is
a constant. Dividing the rate of flow by the. CFUSS‘-&LCHDHEI area of

the tube yields the mean velocity of flow in the {afninar, Poiseuillean
case,

( 18)

Finally, the shear stress at the tube wall is given by —u(Quldr) atr = a. USmg
Egs. (15) and (17), we obtain

adp __aAp

h t the tube wall = - ——

shear stress on the tube Ta T 2L
- 4“ Q=4uﬂw., (19)

* Mfwedivide t’hs shear 'stress l:fy the menn«qynamlc pre%ure tpu;, the ratio
-l,st called thé skm frrcrzan écieﬁmgnr Denotmg Ehé,hskm fnctmn coefﬁment

. . w, ) SR e
- : B



-

&

.32 “Ijéhiinai‘. Flow in a Channel or Tube 117

iy - Shearstress ‘#(3“/ or ),=, _16 (20)

. : P ! m;an dynamic pressure . 4, Ng’ .
where NR s tﬁe Reynolds pumber, << . .

© Ng=2au,[v. S5 )

The formula for shear stress on the wall in a laminar Poiseuillean fiow is
then

shear stress = C Lpul (22)

Hagen and Poiseuille obtained Eq. (13) through experimental measure-
ments: it was their empirical formula. The theoretical derivation was due to
Stokes. Equation (13) is not valid near the entrance or exit section of a tube.
It is satisfactory at a sufficiently large distance from the ends, but is again
invalid if the tube is too large or if the velocity is too high. The difficulty at
the entry or exit region is due to the transitional nature of the flow in that
region, 50 that our assumption v = 0, w = 0 is not valid. The difficulty with
too larse a Reynolds number, however, is of a different kind: The flow
becomes turbulent!

Osborme Reynolds demonstrated the trapsition of a laminar flow to a tur-
bulent flow in a pipe by a classival experiment in which he examined the
flow in a small outlet from a large water tank. He used a stopcock at the
end of the tube to control the speed of water flow through the tube.
The junction of the tube with the tank was nicely rounded, and a filament
of colored fluid was introduced at the mouth. When the speed of water was
slow, the filament remained distinct through the entire length of the tabe.
When the speed was increased, the filament broke up at a given point and
diffused throughout the cross section (Fig. 3.2:3). Reynolds identified the
governing parameter u,,4/v—the Reynolds number—where u,, is the mean
velocity, d is the diameter, and » is the kinematic viscosity. The region in
which the colored filament diffuses to the whole tube is the transition zone
from laminar to turbulent flow in the tbe. Reynolds found that transition
occurred at Reynolds numbers between 2,000 and 13,000, depending on the
smoothness of the tube wall and the shape of the entry condition. When
extreme care 15 taken, the transition can be delayed to Reynolds numbers
as high as 40,000. On the other hand, a value of 2,000 appears to be about
the lowest value obtainable on a rough entrance. This is interesting, but hard
to undersitand. Indeed, turbulence is one of the most difficult problems in
fiuid mechanics.

The ‘thebretical solution can be modified to account for the non-
Newtonian theological properties of blood, which have been discussed in
Sections 3.1 and 3.2 in Biomechanics: Mechanical Properties of Living
Tissues (Fung, 1993b). Steady flow of blood in circular cylindrical tubes is
discussed in Section 3.3 of that book. It is shown that the effect of nonlin-



118 3. Blood Flow in Arteries
IE (@

{b)

2DAZBI5E

(<}

FiGURE 3.2:3. Reynolds' turbulence experiment: (a) laminar flow; (b) and {¢) tran-
sition from laminar to turbulent flow. After Reynolds, O (1882): An experimental
investigation of the circumstances which determine whether the motion of water
shall be direct or sinuous, and of the law of resistance in parallel channels. Phil
Trans Rey. Soc. 174 935-982.

ear blood rheology on the tesistance of blood flow in arteries is relatively
minor but its effect on flow separation can be great.

Historically, the preat significance of Poiseuille’s contribution is at least
fourfold: (a) The great precision of his results. (b) By using tubes of very
small diameters, he made sure that the flow was laminar. (c) Stokes and
others have regarded the agreement of Poiseuille’s empirical formula with
theoretical prediction based on the Navier-Stokes equation as a proof of
the no-slip condition on the solid boundary mentioned in Section 2.6, The
importance of the no-slip condition is paramount; the theoretical deriva-
tion of this condition is forever fascinating. (d) Poiseuille made this study
for the explicit purpose of laying the foundation of biomechanics.

3.3 Applications of Poiseuille’s Formula:
Optimum Design of Blood Vessel Bifurcation

Poiseuille's formmula has many uses, It tells us that the mosi offoctive factor
controlting blood flow is the radius of the blood vessel. For a given pres-
" sure’drop, a 1% change in vessel radius ‘will cause’a.4% change in blood
L fow, Conversely, if an organ needs a cerfain amount of blood flow to func-

..Hion, then the pressure difference needed fo sénd th:.s flow through depends

.‘ ,.Dl‘l thé‘yessel rachus, For a fixed ﬂew 8 l'% decrease m vessel radius will

= 2
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-u-"

cause a 4% increase in the: rhqmrcd pressure dlfferenca ThlS 15 seen from

‘Eq. (3.2: 17) as fnllmws T . A |
| "!_. N It Ap. 1, and L are cun&tant then by takmg the lngarlthm on bﬂth s:des :
of the equation anid differentiating, we obtain  * .. o
50 5a
==4= 1
5= (1)
b. If O, it, and L are constant, then by differentiation and rearranging terms,
we obtain | ‘
5 .
o) __m
Ap a

Hence an effective way of controlling blood pressure is to change the
vessel radius. Hypertension (high blood pressure) can be caused by nar-
rowing of blood vessels, and can be reduced by relaxing the smooth muscle
tension that controls the blood vessel radius. Reducing blood viscosity is
another way of reducing the resistance to blood flow, and hemodilution is
sometimes nsed in surgery.

Now let us consider a different application. We know that arteries bifur-
cate many times before they become capillaries. Can we guess at 4 design
principle of the blood vessel bifurcation? To be more concrete, let us con-
sider three vessels, AR, BC, and BD, connecting three points, A, C, and D,
in space (Fig. 3.3:1). There is a flow O, coming through A into AB. The flow
is divided into ¢, in BC and 0, in BD. Let the points A, C, D be fixed, but
the location of B and the vessel radii are left for the designer to choose. Is
there an optimal position for the point B?

By asking such a question we are seeking a principle of optimum design.
Some cost function is assumed, and the design parameters are chosen so
that the cost function is minimized. Some of the great theories of physics
and chemistry are based on such principles. One may recall the principle

FiGugE 3.3:1. Bifurcation of a blood vessel AB into two branches BC and 5D, sup-
plying blood at a rate of 0, (cm'/sec) from point A to points € and D, with outflow
of (2, at C and {; at D
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) ¥
of minimum potential energy in cldmc:ty thu prrrm'lplu of minimum
entropy production in irreversible thermodynamicg, the Fermat principle
of least time of travel in optics, Maupertius’ principle of least action,
Hamilton’s principle in physics. and s0 on. The potential energy. entropy
production, travel time, action, and the Hamiltoriian are the, cost functions
in these cases.

For blood vessels, Murray (1926) and Rosen (1967) proposed a cost func-
tion that is the sum of the rate at which work is done on the blood and the
rate at which energy is used up by the blood vessel by metabolism. The
former is the product of OAp. The latter is assumed to be proportional to
the volume of the vessel aw'L, with a proportional constant K. Hence

Cost function for blood vessels = QAp + Kma?L . (3)
With Eq. (3.2:17) we can write

Cout function= Fﬂfigﬂ + Kma?l (4)
Ty

The cost function of the entire system of blood vessels is the sum of the
cost functions of individual vessel segments, Hence, each vessel must be
optimal and the system must be put together optimally. For a given vessel
of length L and flow @, there is an optimal radius a, which can be calcu-
fated by minimizing the cost function with respect to a. At the optimal con-
dition, the following derivative must vanish:

;(cast function) = - Q2a-5+2K:-rLa 0. (5

i

Thie yields the solution E .

6 .
a=(16_‘”] o, v . (6)

iy 4
Hence, the optimal radius of a blopd vesschis: proportmna] to Qto the 1/3
power. On substituting (6) into (4) we obtam th’.é; mmlmum value of the
cost function: I o4

Min. cost function = 32—1: KLa:. )

Bifurcation Pattern

. - Now.consider the-bifurcation problein. Since the ¢ust functions of all vessels
' are aglditive, we see at once. that the vessels cmneﬂmg :A,C,and D in Figure
3.3:'should be straight andli€ int a plane (because; this minimizes the length,

.. L,whén, other” things s - fixgd.) To find out thet dtails let the geometric
';_'parameters ‘be. Spﬂtﬁﬁed a’S”'Sthn in Elgure 3’ 32 ‘The three branches

"
Lo ,.u.,.‘ .

L AR

I



EEGURE 332 Geomemc parameters m’ thc
branchmg pattern Theory shows Lhat B

will be denoted by subscripts 0, 1, 2. The total cost function will be denoted
by P

P= 3”K(2L0+a L, +aiL,) (8)
2
The lengths Lo, L;, L; are affected by the location of the point B, and the
radii a,, a,, a; are related to the flows Oy, (), (92 through Eq. (6). Let us now
minimize P by properly choosing the location of the bifurcation point B.
Since a small movement of B changes P by

InK (

5P = al8L, +alSL, +a}dL, ), , (9

an optimal location of B would make 8P = 0 for arbitrary small movement
of B. Let us consider three special movements of B. First, let B move to B
in the direction of AB, as shown in Figure 3.3:3. In this case

8L, =8, 6L =-8cosh, OL,=~8cos¢,
op = %E(au —af cosf - ai cc:sqfl) (1)
The optimum is obtained when
a3 = a} cosf+ az cosd. (11)

Next, let B move to B in the direction of CB, as shown in Figure 3.3:4,
Then

Iore 3.3:3. A particular variation of 6L, 8L, L.
by u small displacement of B in the direction of AB.
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f Figure 3.3:4. Another particular variation of L.
6L, 6L by a displacement of B to A’ along BC.

8L, =-8cos0, 6L =§, 8l,=8 cos(ﬂ + ¢),

5P = InkK§

[~a2 cos@ +a? +az cos(6+9})]. (12)

and the optimal condition is
~aj cos+aj +a} cos(0+¢)=0. (13)
Finally, let B move a short distance din the direction of DB (Fig. 3.3:3).
Then the optimal condition is obviously,
~af cosp+a cos{0+6)+a = 0. (14)
Solving Egs. (11), (13), and (14) for cos 6, cos ¢, and cos (8 + ¢), we obtain

aj +af —al

cosg = ,
2alat
al—at +al ' ’
cosg=— L
Zaial
af —at—al
c03(9+¢.)2..0—1.,,"_ (15)
2alal
The equation of continuity (conservation of mass) is
Q=0+ 0. (16)

By Eq. (6). this is

Ficuee, 3.3;5.'A.thi§d “.'.'lvariation caused by a dis-
placement of B to B’ alopg BD."
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G Tgtogliad, (7.

: .which is often referred to as Murray’s law. Thus Eq. (15) can be reducedf':f -

" L w
4 g4 AL £
a3 +a3 - (af — a})

cosf = , ete. (18)

22
Zaga

Ghassan Kassab has collected an extensive set of data on the coronary
arteries of the pig (see Chapter 7; Kassab et al., 1993), and Kassab and Fung
(1995) tested Murray’s law, Eq. (17), against the experimental data. They
found excellent agreement of Murray's law and experimental data fromr
control and hypertensive hearts. Oka (1974) has proposed to improve
Murray’s cost function by adding a term of metabolic cost proportional to
the volume of the blood vessel wall. Oka’s cost function is a modification
of Eq. (4} :

Cost P#%QZ + Knal + K, 2mahL (19)

where K, and h are the metabolic constant and thickness of the vessel wall,

respectively, and are assumed to be constant. Kassab and Fung {1995) found

Oka’s modified Murray's law does not improve the agreement.
Applications of these formulas are illustrated in the following Problems.

Problems

3.1 Show that, according 1o Murray's cost function. if 4, = a;, then &= ¢
Thus, if the radii of the daughter branches are equal, the bifuracting
angles are equal.

3.2 Show that if 4, > a,, then 9> .
A3 Show that if a4; = a,, then a; = 2, and ¢ = #/2.

3.4 When a, = a, show that a/a, = 27 = 0,794, and cos @ = 0.794. Thus
8=31.5"°

3.5 The cost function specified in Eq. (4) is somewhat arbitrary. Develop .
some other cost functions and deduce the consequences, such as

(a) Minimum total surface area of the blood vessels,
(b} Minimumn total volume of the blood vessels, ‘
(c) Minimum power for the blood flow,

{d) Minimum total shear force on the vessel wall.

See Kamiya and Togawa (1972), Murray (1926}, and Zamir (1976, 1977).

The results of Problems 3.1-3.4 are in reasonable agreement with
cmpirical observations. The result of Problem 3.4 is especially interesting.
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Let g, denote the radius of "t_yg._f_‘_g‘;}“c}rtg;.':-_a’h{:lﬁ'.-as‘sumj'.e-. equal bifurcation in
all generations. Then the rad'iiishqf the first. generation is 0.794 ap, that
of the second generation is (0.794)" a,. and,” générflly, that of the nth
generation is T

a,=(0794) a7 . (20)
I a capillary blood vessel has a radius of 5 x 10 cm and the radius of the
aortais a;=1.5cm, then Eq. (20) yields n = 30.Thus 30 generations of equal
bifurcation are needed to reduce that aorta to thg capillary dimension. Since
each generation multiplies the number of vessels by 2, the total number of
blood vessels is 2 = 10°. But these estimates cannot be taken too seriously,
because arteries rarely bifurcate symmetriczlly (as required by the hypoth-
esis @y = a,). There is one symmetnc bifurcation of the arteries of humans;
there is none in the dog, ' - '

The Uniform Shear Hypothesis '
Probiem 3.5 is very significant, It turns out that several cost functions lead
to almost the same results. Zamir (1976) deduced that the shear stress on
blood vessel wall is uniform throughout the arterial system according to his
principle of minimum total shear force, The hypothesis of uniform shear
stress or shear strain gradient and constant coefficient of viscosity on the
blood vessel wall has been supported by several studies. Kamiya and
Togawa (1980) surgically constructed an arteriovenous shunt from the
common carotid artery to the external jugular vein,.causing an increase of
blood flow in one segment of the artery and a decrease of flow in another.
They then showed that 6 to & months after the operation, the segment with
increased flow dilated, while the segment with decreased Aow atrophied to
a smaller diameter, just enough so that the shear strain rate remaiped’
almost constant if the change of flow was within fout imes of the control.
Liebow (1963), Thoma (1893) and others, on observing embryologic vascy-
tar development and studvin g arteriovenous fistulas and collai®ral Eircula-
tion, have shown that increased flow indnces vessel growth, reduced flow
leads to atrophy. Rodbard (1975) collected clinical evidence of the same.
Then Friedman and Deters (1987), Giddens er-al, (1990).and Kamiya et al,
(1984) collected data from literature and their own research and concluded.
that the arterial wall shear stress oft "dog’s. peripheral - and coronary;
artetioles, arteries, and aorta lies in a femarkably narrow ‘range of.
10-20dynes/cm®’ = T

Kassab and Fung (1995) showed that if the Poiseuille formula given in
Eq.-(19) of Section 3.2 is substituted into the equation of continuity Eq.
“ (16), one abtains. the felation™ . ¢ | - REE R

(e ot &
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Y= aln @Y L2y

Hemofes shear stress and ydenotes shear strain rate, Y= du/oy, on
the blood ve:sgcln wall, with %, ¥ B, Tuo, Wity T“':',g,‘ﬁﬁd yﬂ; i, M refer to the
values of ¥, 7, and y at the boundaries of the tubes 0, 1, 2, respectively. Now,
if one introduces the hypothesis that the shear strain rate or the coefficients
of viscosity and the wall shear stresses are the same in all three vessels, then
Egs. (21) and (22) become Murray’s law, Eq. {17). On the other hand, if we
assume Murray's law as an empirical fact, then the coexistence of Eqs. (17,
(21) and (22) implies that o

T =T = Vazx Yo = Hh=Y: (23)

Thus, Murray’s law and Poiseuille’s law imply uniform shear; and vice versa,
uniform shear and Poiseuille’s law imply Murtay’s law.

Finally, the rate of viscous dissipation per unit volume of blood is equal
to the product of shear stress and strain rate. At the blood vesgel wall,
this is: :

Volumetric rate of viscous dissipation = T,%. (24)

Thus the uniformity of shear implies a uniform energy dissipation through-
out the arteriolar walls.

Stress Distribution ont Blood Vessel'

Wall and in Endotheélial Cells .

The wall shear stress discussed in Poiseuille flow is defined at the length
scale hierarchy level of the blood vessel diameter. If we go one level lower,
to the scale of a single endothelial cell, a very different picture exists.
At level, the endothelium surface is wavy, with hills and vaileys. The no-
slip condition must be applied on the cell membranes facing the blood. The
hills and valleys will cause nonuniform shear stress distribution, even if the
shear flow far above the surface is uniform. Inside the individual endothe-
lial cells, there is another world of structures and materials. Intracellular
mechanics must be investigated at smaller and smaller scales. Finally, there
ie also a class of problems concerned with the long-range variation of
certain features in individual ceils. An example is the longitudinal variation
of tensile and shear stresses in the endothelial cell merabranes along the
length of the aorta, as discussed by Fung and Liu (1993) and Liu et al.
(1994).

3.4 Steady Laminar Flow in an Elastic Tube

:\s‘anc;thc__r _hpplication of Poiseuille’s formula, let us consider the flow in a
circular cylindrical elastic tube (Fig. 3.4:1). The flow is maintained by a pres-
wurc gradient. The pressure in the tube is, therefore, nonuniform—nhigher at

. Tt
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fritial External pressyre = 0

£ =0no flow

L
With flow
. External pressure =
U = = I
l L
o i Py =Py

Fiure 3.4:1" Flow in an elastic tube of length L.

the entry end and lower at the exit end. Because the tube is elastic, the high-
pressure end distends more than the low-pressure end. The diameter of the
tube is, therefore, nonuniform (if it were uniform originally), and the degree
of nonuniformity depends on the flow rate.

If we wish to determine the pressure-fiow relationship for such a system,
we may break down the problem into two familiar components, This is illus-
trated in Figure 3.42. In the lower block, we regard the vessel as a rigid
conduit with a specified wall shape. For a given flow, we compute the pres-
sure distribution. This pressure distribution is then applied as loading on
the elastic tube, represented by the upper block. We then analyze the defor-
mation of the elastic tube in the usual manner of the theory of elasticity.
The resull of the calculation is then used to determine the boundary shape
of the hydrodynamic problem of the lower block. Thus, back and forth, untit
a consistent solution is obtained, the pressure distribution corresponding o
a given flow is determined.

Let us put this in mathematical form. Assume that the tube is long and
slender, that the flow is laminar and steady, that the disturbances due to
entry and exit are negligible, and that the deformed tube remains smooth
and slender. These assumptions pormit us to consider the solution given in
Section 3.2 as valid (a good approximation) everywhere in the tube. Assum-
ing a Newtonian'floid, we have (Eq. (17) of Sec. 3.2)

C o Bup e
Ly *
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3.4 Steady Laminar Flow in an Elastic Tube

Vessel as an . »
elastic body ™. . S
' J A T * "q “ :
Elastic

deformation

) 4

Flow Vessal as Prassyra
fluid eonduit

Y

FicusE 3.4:2. A hemoelastic system analyzed as a feedback system of two functional
units: an elastic body and a fluid mechanism,

Here (s the volume-flow rate. In a stationary, nonpermeable tube Qs a
constant throughout the length of the tube. The tube radius is @, which is a
function of x because of the clastic deformation. An integration of Eq. (1)
vields

23

 pla)=p(0)- S0 | @
4 F’[a(x)]

The integration constant is p(0), the pressure at x = 0. The exit pressure is

given by Eq. (2) with x = L. L is the length of the tube.

Now let us turn our altention to the calculation of the radius a(x). Let
the tube be initially straight and uniform, with a radius @, Assume that the
tube is thin walled, and that the external pressure is zero (Fig. 3.4:3). (If the
cxternal pressure was not zero, we would replace p in Eq. (3) by the dif-
ference of internal and external pressures.) Then a simple analysis yields
the average circumferential stress in the wall:

plx)a(x)

ﬂ-sﬁ":'_"Tp (3}

fisore 3.4-3, Distension of an elastic tube due to inter-
el pressure. :
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where 4 is the wall thickness (Fﬂn'-“,"“1993a p. 25) Let the axial length and
tension be constant, and assume that the matcnal cnbtys Hooke's law. Then

s

the circumferential strain is B
. R B .
eﬁ'ﬁ ﬂ E ? ‘o, :.l@ . (4)
. -

where F is the Yc:ung s modulis of the wall matenal (Snctly the right-hand
mde of Eq (4) should be oo

where v is the Poisson’s ratio. But cr,. ,_‘m geneml much smaller than G
for thin-walled tubes.) The strain 395 is équalato the change of radius divided
by the original radius, a,; -

L.

(6

Substituting (6) into (1), we may WHte“th& rf:sult. as x

1-2pl dp="280dx 7
( Eh] p--magx .Y
Recognizing the boundary conditions p = p(0) when x = { and"p = ptL)

when x = L, and integrating Eq. (7) from p(03 to p(L) on the left and 0 to
L on the r:ght we obtain the pressure-ﬂow relatmnshlp

S 75 P("] e w

which shows that the flow ;s not as Ilme:ar functmn of pressure drop
pO)-p(l). pAEEE :

Another Solution

The solution obtained in Eq. (8) is based on the assumption of Hooke's law.
Most blood vessels do not obey Hooke's law, their zero-stress states are
open sectors, and their constitutive equations are nonlinear (see Section 2.6,
. pp. 56-60, and-Sedtion 38, p. 145) '
AL sunpl&: redult can be. Obtained if we assume the pressure-radius
“"'relatwnshlp t0 bé ]mf;ar : - :

‘:;:‘.:-ﬁ':;:"c'zoni-ap/Z.' L )
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Here ag is the tube radlus when the transmural pressure is zero, o 1s a com-
pliance constant. Equation (9) is a good representation of the pulmonary

bloodezessel& (see Sec. £10¥Fig. 4.10:2, p. 257 and Sec. 6.7, Fig. 6.7: 4)

“Using B, (9), W&have - .
dp dp da 2 da .
dx dadx adc (10)

On Substltutmg Eq. (10) mto Eq. (1) and rearranging terms, we obtain

d 1 da? 4y - '
. X0 (11)

Since the right-hand side term is a constant mdependent ofx we obtain at

ance the mtegrated result

* alx) ]5 = 20“ Qx + const. (12)

The inté"gf‘raﬁcm constant can be determined by the boundary condition that
when x = 0, a(x) = a(0). Hence the constant = [a(O)]°. Then, by putting

: x = L, we obtain from Eq. (12) the elegant result

P20 =[alo)] ~[afe ) 1)

The pressure—flow relationship is obtained by substituting Eq. (9) into Eq.
{13). Thus the flow varies with the difference of the fifth power of the tube
radius at the entry section (x = 0) minus that at the exit section (x = L). If

~ the ratio a(L)a(0) is 1/2, then {a(L)}* is only about 3% of [a(0)}, and is
. negligible by comparison. Hence when a(L) is one half of a(0) or smaller,
- the flow varies directly with the fifth power of the tube radius at the entry,

whereas the radius (and the pressure) at the exit section has little effect on
the flow.

.
.Problenis
36 If the clastic deformation is small,
@, P(O) “GP(L)
et i |,
En i

show that the pressure—flow relationship Eq. (8) or (13) then becomes
approximately linear.

A7 Plot curves to show the flow—pressurc relationship given by Eqgs. (8) and
(13}, and discuss the results.

.1 8 The actual relationship between the pressure and radius in peripheral

blood vessels is nonlinear. See Chapter 8 of Biomechanics: Mechanical
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Properties of Living Tissues (Fung, 1993b). Outline a theory that will
take into account the nonlinear pseudo-elastic siress-strain relationship
in deriving the pressure—flow relationship of the blood vessel.

3.9 Qutline further & theory that will take into account the viscoelastic
behavior of the blood vessel in deriving the pressure—flow relationship
of the blood vessel.

3.5 Dynamic Similarity. Reynolds and
Womersley Numbers. Boundary Layers

» Consider first a blood flow in which the shear rate is sufficiently high so that
the blood has a constant coefficient of viscosity. Then the Navier-Stokes
equations presented in Section 2.6 apply. This equation is

Pal Pu‘lax‘l Zax u"iaxﬂ

a

2 ‘ 2 z
_X, _%w(gﬂgﬁﬁ—]ui. )

Here u; denotes the velocity vector, with the index i ranging over 1,2, 3, s0
that the components of u; are 1y, ug, uy, OF 1, v, W, x;, with components x), x,,
x. OT X, y, z, 15 a position vector referred to a rectangular cartesian frame of
reference. p is the density or mass per unit volume of the fluid. X; is the
body force per unit volume. p is pressure. 4 is the coefficient of viscosity of
the fluid. wp is called kinematic viscosity, and is designated by a Greek
symbol v which will be used later.

Equation (1) represents the balance of four kinds of forces. Term by term,

they are

transient convective body pressure  viscous

inertia inertia force force on force on
force per + force per =per + sides of +sides of .
unit vof  unit vol unit  unit unit
vol control  control
vol vol

Let us put the Navier-Stokes equation in dimensionless form. Choose a
characteristic velocity V, a characteristic frequency @ and a characteristic
length L. For example, if we investigate the flow in the aorta, we may take
V to be the average speed of flow; @ to be ‘the heart rate, and L to be the
blood vessel diameter. Having chc)sen these characterlstlc quammtes, we

mtroduce the d:mghsmmless variables L
G -

-
o - o .
& L e
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r.,.i ‘:l "_i h_-i
x L s ¥ L s & L , U V ’
"":._1}’ “r;.-%: P'#m’;z; r'=o1, ¢
. . » . e
and the parameters
Reynolds number = N = Yip H (3)
u v
2
Stokes number = N = ﬁ, (4)
v

Womersley number ¢ =N, =N =L f[%lj (5)

On substituting Eqs. (2) to (5) into Eq. (1), omitting body force, and divid-
ing through by pV%L, we obtain
N aup au.l aur aur a[’f 1 ai a!
bV W e v + 6
and two additional equations obtainable from Eq. (6} by changing &' into
v, v into w', w' into o’ and &’ into ¥/, ¥’ into z°, z’ into x". The body foree is
ignored. The dw/ox; term is dropped because u is a constant. The equation
of continuity (Eg. 8 of Sec. 2.6) can also be put in dimensionless form:
ég'..‘.: + i + i ={}
et ayr azf * (7)

Since Egs. (6) and (7) constitute the complete set of fleld equations for an
incompressible fluid, it is clear that only two physical parameters, the
Reynolds number Ny, and the Womersley number N,,, enters into the field
equations of the flow.

To so0lve these equations for a specific problem we must consider the
houndary equations. Consider two flows in two geometrically similar
vessels. The vessels have the same shape but different sizes. The boundary
conditions are identical (no-slip). Then the two flows will be identical (in
the dimensionless variables) if the Reynolds numbers and the Womersiey
numbers for the two flows are the same, because two geometrically similar
hodies having the same Reynolds number and Womersley number will be

soverned by identical differential equations and boundary conditions (in_

dimensionless form). Therefore, flows about geometrically similar bodies
at Lhe same Reynolds and Womersley numbers are completely similar in
the sense that the functions w'(x’, ¥, 2/, ), V(X Y, 2, O w'(X, Y, 20, 1),
ey, 2, ) are the same for the various flows. Thus the Reynolds and
Womersley numbers are said to govern the dynamic similarity.

S

S
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The Reynolds number expresses-the-ratio of the convective inertia force. -
to the shear force. In a flow the ingifial {orce due to convective acceleration
arises from terms such as pudie/dx, whereas the shear force arises from
terms such as pd’n/dy™. The orders of magnitude of these terms are,
respectively,

Convective inertia force: pV? /L
Shear force: pVv/L*

The ratio is

Convective inertia force  pV* /L pVL
Shear force v/ L

= Reynolds number,  (8)

A large Reynolds rumber signals a preponderant convective inertia effect.
A small Reynolds number signals a predominant shear effect.

Similarly. the Womersley numitier” expresses the ratio of the transient or
oscillatory inertia force to the shear foice. The transient inertia force is
given by the first term of Eq. (1). If thé frequency of oscillation is o and the
amplitude of velocity is V., the order of magnitude of the first term of Eq.
(1) 15 pwl’. The order of magnitude of the last term of Eq. (1) is, as before,
uV/L . Thus

Transient inertia force pol
Shear forcer uV/L?.

The ratio is
iy . N > 2
Transient inertia force _ pal; _ ol = Stokes number
Shear force H
3
= (WOmersley Number) . (9)

If the Womersley number is large, the oscillaiory inertia force dominates.
If Ny is small. the viscous force dominates, Typical values of Reynolds and
Womersley numbers in blood vessels at normal heart rate are given in Table
3.1:1. p. 110. The Womersley number is usually denoted by c.

Boundary Layers and Their Thicknesses

The concept of boundary layer was presented by Ludwig Prandtl
(1875- 1953)mabrlefbuttruly epoch mdkmg paper (1904). It can be under-

' _:'(IDII Eq {1).1f the COefﬁelemt of v1scc351ty of the fluid is zero, it =0, then the

: " fluid is said 1o be: m‘eal ‘afid the last*term of Eq. (1) vanishes. At the solid

W v»all am u:Ieai fluid. must pot; penetrate the solid; but its tangential velocity
- 1s unrestmeted Fora v;scﬁus ﬂuld.. l:mwever the no-ship condition must
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apply, ne matter how small the viscosity is. Prandtl's idea is that for a fluid
with small u the influence of the no-slip condition and the last term in Eq-
(1) is limited to a thin layer next io the solid wall, whereas in the bulk of
the fluid the influence of no-slip is small and the last term in Eq. (1) can be
dropped. If this was true, then the thickness of the boundary layer, denoted
by &, can be estimated by comparing proper terms in Eq. (1). Consider first
an oscillatory velocity field of frequency e and amplitude U.The first term
of Eq. (1) shows that the transient inertia force is of the order of magni-
tude pel. The last term in Eq. (1) shows that the order of magnitude of
the viscous force is of the order of L7783, where a subscript 1 is added to
indicate that this boundary layer is associated with the transient accelera-
tion. In the transient boundary layer, these two terms are of equal impor-
tance. Hence,

poll = — (10)

s v
a—J; \/; an

In a tube flow, let the characteristic length be the radius, L. Then the ratio

of Lto & is
;‘;‘-=LE=\/N_S'=NW (12)
1

Hence, if the Womersley number Ny, or Stokes number V; is Jarge, the tran-
sient boundary layer is very thin ¢compared with the tube radius.

Next, consider the convective inertia force given by the second group of
terms in Eq. (1). At a convective boundary layer thickness &y, the order of
magnitude of the second term is pUYL; whereas that of the viscous force
term is Y53 In the convective boundary layer these two terms are
equally important. Hence,

or

pUr/L = /53 (13)
or '
UL
= |£&== 4
8, /pU (14)
The ratio of L to 8. is
Lo RNy (15)
b, H

i.e., the square root of the Reynolds number. Hence, when the Reynolds
mumber is large, the convective boundary layer is very thin. In a tube flow,
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al a distance from the wall much I"' rier lh.:m 5| and oy, the fluid may be
regarded as idcal. :

These estimates have many apphcalmm m the follnwmg sections. In
Section 3.18. it is shown that the boundary layer thickness increases with
the distance from the entrance section; und there are interactions between
the transient and convective boundary. layers Exacl calculations can be
found in Schlichting (1968).

3.6 Turbulent Flow in a Tube

In Section 3.2 we mentioned that whén' the,, Rﬁynolds number exceeds a
certain critical value the flow becomes turblﬂent Turbulence is marked by
random fluctuations. With turbulence -the veloc:ty field can no longer be
predicted with absolute precision, but its statﬁtmal features (mean velocity,
root mean square velocity, mean prLSSurt: gradient, etc.) are perfectly well
defined. If a steady flow in a straight, long pipe changes from laminar to
turbulent, two important changes will occur: (@) The profile of the mean
veloceity will become much more blunt at the center of the pipe, and (b) the
ghear gradient will become much greater at thc wall. This is shown in Figure
1.4:1, p. 7. As a consequence of this change of-avelncﬂy pmﬁle the resistance
to ﬁow is greatly increased.

The best way to see how the resmtance to flow changes with turbulence
is to study the friction coefficient, C;, defined in Eq. (3.221):.

Shear stress on pipe wall = C ( pUL ). , (1)

Here p is the fluid density, U, is the mean valomty over the cross section
of the tube. capitalized here to show that this 'velocity is not only averaged
over space. but also over a sufficiently long period of time so that the
random fluctuations of turbulence are averagef out. C) is a function of the
Reynolds number (based on tube radius and the mean velocity of flow, U, )
and the rcl)ughncss of the tube surface. Roughhess influences the position
of transition in the entrance zone of a flow into a pipe at which the flow in
the boundary layer is changed from laminat#o turbulent. It affects also
the skin-friction drag on that portion of the susface over which the layer i3
turbulent,

'The experimental results of Nikuradse are’ shuwn in Fjgure 3.6:1. The
surface of the tube was sprinkled with sand of various grain sizes, which
were expressed in the ratio a/e in the figure, where a is the radius of the

..tube and £ is the mesh size of the screen through which the sand will just
. pass. The dashed stralght ine on the left refers to a fully developed laminar -
, ﬂow [Eqk_( : -

2 9}].

@)
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Ficure 3.6:1. Resistance coefficient for fully developed flow through a tube of
" radius @ with various sizes of roughness elements on the wall, £ is roughly the dija-
meter of sand grain sprinkled on the wall, The so0lid curves represent the average
cxperimental results by Nikuradse, The dashed line on the feft represents a theo-
retical result for laminar flow. The dashed line on the right is the Blasius empirical

... formula for turbulent flow in a smoeoth tube. Based on Nikuradse, I (1933) Swrd-

mungsgesetze in Rauhen Rokren, Forschungsheft 361, Ver. deutsch. Ing.

where Ny is the Reynolds number based on tube diameter and mean speed
of flow. The dashed line on the right is an empirical formula given by Blasius
lor turbulent flow in smooth pipes,

-1/4
c, = 0.0655[%]

00779

Ma -
(va)'
‘The solid curves represent the mean experimental results. It is clear that at
lurge Reynolds numbers the friction coefficient of turbulent flow is much
greater than that of laminar flow. For example, at a Reynolds number of
4000 (i.e., loggNg = 3.6), a rough pipe with a/e = 30 will have a skin
{riction abowt the same as that in a smooth pipe if the flow were turbulent,
but it would be 2.51 times larger than that of a laminar flow if laminar flow
were possible. At Np = 10° the skin friction of a smooth pipe with turbulent
How would be 27 times larger than that given by Eq. (2}). and for a rough
pipe with a/e = 30 the skin friction would be increased again 2.77-fold.

Il scems natural to expect that natural selection in the animal world
wuould favor taminar flow in the blood vessels so that energy is not wasted

(3)



‘turbulence is implicated in atherogenesis. To. .
4, the Reynolds number shoiid be kept below .. -
critical value, Let the éardiac output (volume flow per unittime) ©
be ¢, and the radius of the‘aorta be R, The the cross-sectional area of the - = -
aorta is #RE, and the mean velocity of flaw'is . . . 7 .." S

LIEVR

‘:

967) plotted the radius of the aorta of animals versis the cardiac
output

‘obtained a regression lie:

- in.pipe flow the entry
-develops downstream .-

. whien thie ] umbet:exceeds. the critical value. This shows that twr-.
. bulence must develop gradually in a laminar flow. It takes time for some
.. .7, . unstable modes of motion in'a flow to grow into turbylence. We. imay apply

" this congept t0'the pulsatil blood flow i the arteries. The flow veloety

¢ changes: with time. The. Reynolds number, 2al//v, based ‘on the instanta- .

» ' ‘meous velocity of flow-averaged: over thé cross section, varies with' time, .
‘oo Figure 3.7:1 shows a record-of veloeity of flow versus time, In 2 period of -
.. mising velocity the Reynolds number increases slowly, until it reaches a .

., level matked by.the dotted line (Ve = 2.300), at which the flow could be

"+ expected to hecome’ turbuleiit if it were, steady. But an accelerating flow .

© . is mofe stable than a.steady flow, because turbulence: cannot develop ~
SRR instafitaneously. So; when. the! turbulence finally séts in, the velocity and .~
7 NgJare much higher than the. dotted line level. W the other hand, in a' '
. VY o . C . : AETEENTE L . } :
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Ficure 3.7:1. A mrbulent flow velocity-versus-time record made with a hot-film
probe in a pipe in which the flow rate was slowly increased until turbulence
oceurred, and later stopped. Peak Reynolds number was 9,500, The dotted line cor-
responds to Reynolds number 2,300. From Nerem, R., and Seed, W.A. (1972) An in
vivo study of aortic flow disturbances, Cardiovasc. Res. 6: 1-14, by permission.

period of decreasing velocity the disappearance of turbulence occurs at a
level of velocity considerably below the dotted line. This is partly because
decelerating flow is inherently less stable than steady flow, and partly
hecause existing eddies take a finite time to decay. Thus, the crirical
Reynolds number of laminar—turbulent transition depends on the rate of
change of velocity, as well as on the eddies upstream and the roughness of
the pipe wall.

The experiment corresponding to Figure 3.7:1 was designed to show the
transition from laminar to turbulent Aow and vice versa. Figure 3.7:2 shows
o record of velocity waves from the upper descending aorta of an anes-
thetized dog. Turbulence is seen during the deceleration of systolic flow.
Hot-film anemometry was used to obtain such records.

Quantitative studies of the laminar=turbulent transition may seek to
vxpress the critical Reynolds number as a function of the Womersley
number. Experimental results are plotted in Figure 3.7:3. The ordinate i3
(the peak Reynolds number. The stippled area indicates the conditions
under which the flow is stable and laminar. In the experiments, the wide
variations of velocity and heart rate were obtained with drugs and nervous
stimuli in anesthetized dogs. In normal, conscious, free-ranging dogs the
peak Reynolds number usually lies in an area high above the stippled area
of Tigure 3.7:3. This suggests that some turbulence is generally tolerated in
deceleration of systolic flow in the dog.

Turbulence in blood flow implies a fluctuating pressure acting on the arte-
ral wall and an ncreased shear stress. These stresses are implicated in
murmurs, poststenotic dilatation, and atherogenesis. Experimental rnethods
e dJuseribed in Deshpande and Giddens (1980), and Nerem et al, ( 1972).
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Figure 3.7:2. A record of velocity-versus-time of blood flow in the upper descend-
ing aorta of a dog, showing turbulence during the deceleration of systolic flow. From
Seed, W.A., and Wood, N.B. (1971) Velocity patterns in the aorta. Cardiovase. Res.,
8: 319-333, by permission. '
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Fiaure 3.7:3. The stability of blood flow in the descending aorta of anesthetized
dogs as influenced by the peak Reynolds numbe: and the Womersley number, Points
Joined by the lines refer to the same animal, Open circles, laminar flow: filled circles,
~ turbialent How; half-filled circles, transiently turﬁaler_n‘ﬂow. From Nerem, R.M., and

L Seed, WAL (1972) An in vivo study of aortic fley disturbarices. Cardiovasc. Res. 6;
1-14 By permission. - __‘ s
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7 Turbulence in Pulsatile Blood Flow 139

For- pulsatile flow .in a tube, when'the Womersley number is large, the
.o+ . eHféet of the viscosity of the-fuid does not-propagate very far from the wall.
. f‘n_.‘th.‘.‘ central porticdi of the tube the tr'argsient..ﬂow is determined by the
' balance of therinertial forces and pressure forces a8 # the fluid were:non-
viscous. We therefore expect that when the Womersley number is large the
velocity profile in a pulsatile flow will be relatively blunt, in contrast to
the parabolic profile of the Poiseuillean fiow, which is determined by the
balance of viscous and pressure forces, That this is indeed the case can be
seen from Figures 3.7:4 and 3.7:5. In Figure 3.7:4 the velocity profiles con-
structed from time-mean measirements at several sites along the aorta of
the dog are shown. They are seen to be quite blunt in the central portion
. of the aorta. Similar profiles constructed from instantaneous measurements

- * show that this is true throughout the flow cycle. '
Figure 3.7:3 shows the theoretical velocity profiles computed for a
straight circular eylindrical tube in which a sinusoidally oscillating pressure
gradient acts. As the Womersley number increases from 3.34 10 6.67, the

posierior anterior

L]

Ficure 3.7-4. Normalized mean velocity profiles in dog acrta. The mean velocity at
vach site is normalized by dividing through by the centerline mean velocity. From
schultz, D.L. (1972) Pressure and flow in large arteries. In Cardiovascular Fluid
{1vraanics Bergel, DUH, (ed.). Vol. 1. Acadernie Press, New York, by permission.



“".. Before taking up the fl:lll‘ complexity of-phlsé-xgavé'bmpagatioﬁ in arteri

14) 3. Blood Flow in Arteries
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FiGurs 3.7:5. Theoretical velocity profiles of a sinusoidally oscillating flow in a pipe,
with the pressure gradient varying as cos ar. @ is the Womersley number. Profiles
are plotted for phase angle steps of Awx = 15°. For ar > 1807, the velocity profiles
are of the same form but opposite in sign’ From McDonald ( 1974), by permission,

profiles are seen to become flatter and flatter in the central portion of
the tube,

Froblems

3.10 The total volume rate of flow in all generations of blood vessels is
the same. In which vessels is the Reynolds number the largest in the
human and dog? '

3.11 If the diameter of the aorta of a person is vnusually small, would the.
blood flow be more likely to be laminar or turbulent? If cardiac output ’
is the same but the heart Tate s increased, would the blood flow be
more likely to become turbulent?

3.12 Estimate the difference between the peak Reynolds number and the
mean Reynolds number of blood flow in the aorta of the dog.

3.8 Wave Propagation in Blood Vessels -

. € pr es,
' let us considersome idealized cases and learn 2 few basic facts, Let us con. .
srder first an infiitely long, straight, isolated, circular, eylindrical, elastic



