CHAPTER 3

The Flow Properties of Blood

3.1 Blood Rheology: An Outline

Blood is a marvelous fluid that nurtures life, contains many enzymes and
hormones, and transports oxygen and carbon dioxide between the lungs and
the Cf:lls of the tissues. We can leave the study of most of these important
functxpns of blood to hematologists, biochemists, and pathological chemists
For b!omechanics the most important information we need is the constitutive.
equation. .
Human blood is a suspension of cells in an aqueous solution of electrolytes
and nonelectrolytes. By centrifugation, the blood is separated into plasma
gnd celljv. The plasma is about 90% water by weight, 7% plasma protein, 1%
inorganic §ubstances, and 19 other organic substances. The cellular cont,ents0
are 'essentlglly all erythrocytes, or red cells, with white cells of various cate-
gories making up less than 1/600th of the total cellular volume, and platelets
less than 1/800th of the cellular volume. Normally, the red cells ’occupy about
507, of the blood volume. They are small, and number about 5 million/mm?3
The normal white cell count is considered to be from 5000 to 8000/mm3 anci
pla_telets from 250000 to 300000/mm?. Human red cells are disk shaped ,with
a diameter of 7.6 um and thickness 2.8 um. White cells are more roundea and
;hsere are many types. Platelets are much smaller and have a diameter of about
.5 pum.
. If the blood is allowed to clot, a straw-colored fluid called serum appears
in the plasma when the clot spontaneously contracts. Serum is similar to
plasma in cqmposition, but with one important colloidal protein, fibrinogen
removed whﬂe forming the clot. Most of the platelets are enmeshe& in the clot,
The specific gravity of red cells is about 1.10; that of plasma is 1.03. Wher{
p!asma was tested in a viscometer, it was found to behave like a Newtonian
viscous fluid (Merrill et al., 1965), with a coefficient of viscosity about 1.2 cP
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Figure 3.1:1 The viscosity-shear rate relations in whole blood («—-), defibrinated blood
(x ——— x ), and washed cells in Ringer soluion (o---0), at 45%, and 90%, red cell volume
concentrations. From Chien et al. (1966), by permission.

(Gregersen et al., 1967 ; Chien et al., 1966, 1971). When whole blood was tested
in a viscometer, its non-Newtonian character was revealed. Figure 3.1: 1 shows
the variation of the viscosity of blood with the strain rate when blood is tested
in a Couette-flow viscometer whose gap width is much larger than the diame-
ter of the individual red cells. For the curves in Fig. 3.1:1, the shear rate j is
defined as the relative velocity of the walls divided by the width of the gap.
The viscosity of blood varies with the hematocrit, H, the percentage of the
total volume of blood occupied by the cells. It varies also with temperature
(see Fig. 3.1:2) and with disease state, if any.

There is a question about what happens to the blood viscosity when the
strain rate is reduced to zero. Cokelet et al. (1963) insist that the blood has a
finite yield stress. They say that at a vanishing shear rate the blood behaves
like an elastic solid. They deduced this conclusion on the basis that their
torque measuring device had a rapid response, and could be used to measure
transient effects. They studied the time history of the torque after the rotating
bob had been stopped suddenly, and compared the transient response for
blood with that for a clay suspension, which is known to have a finite yield
stress. They showed that the values deduced from this experiment agreed
within a few percent with those obtained by extrapolation of the Casson plot
as shown in Fig. 3.1:3. Merrill et al. (1965a) also used a capillary viscometer
to see if blood in a capillary could maintain a pressure difference across the
tube ends without any detectable fluid flow. Such a pressure difference was
detected and found to agree with the yield stress determined by Cokelet’s

method.
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Figure 3.1:3 Casson plot of very low shear rate data for a sample of human blood at
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Figure 3.1:4 Casson plot for whole blood at a hematocrit of 51.7 (temp. = 37°C),
according to Chien et al. (1966), by permission.

It must be understood that by “existence” of a yield stress is meant that no
sensible flow can be detected in a fluid under a shearing stress in a finite inter-
val of time (say, 15 min). The difficulty of determining the yield stress of blood
as § — 0 is compounded by the fact that an experiment for very small shear
rate is necessarily a transient one if that experiment is to be executed in a
finite interval of time. For blood the analysis is further complicated by the
migration of red cells away from the walls of the viscometer when j is smaller
than about 1 s7!. Cokelet’s analysis takes these factors into account, and
requires considerable manipulation of the raw data (see Cokelet, 1972). If the
maximum transient shear stress reached after the start of an experiment at
constant shear rate is plotted directly with respect to the nominal shear rate,
the result appears as shown in Fig. 3.1:4 by Chien et al. (1966). The differences
between the plots of Figs. 3.1:3 and 3.1:4 are caused mainly by the data
analysis procedures, and partly reflect the dynamics of the instrument as well
as that of the blood state.

The data of Cokelet et al. for a small shear rate, say y < 10s™ !, and for
hematocrit less than 409, can be described approximately by Casson’s (1959)

equation
V1=, 1)

where 1 is the shear stress, 7 is the shear strain rate, 7, is a constant that is
interpreted as the yield stress in shear, and n is a constant. The fitting of this
equation to experimental data can be seen in Fig. 3.1:3, from which it is
clear that for hematocrit below 339 the experimental data points fall quite
accurately on straight lines. For higher hematocrit (39% and above), devia-
tions from straight lines are more evident. The yield stress 7, given by Merrill
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Figure 3.1:5 Variation of the yield stress of blood from five different donors with
hematocrit. Tests on samples with hematocrits less than the applicable abscissa inter-
cept showed no yield stress. From Merrill et al. (1963a), by permission. ACD was used
as anticoagulant,

et al. (1963) is shown in Fig. 3.1:5. Note that 7, is very small: of the order
of 0.05 dyn/cm?, and is almost independent of the temperature in the range
10-37°C. t, is markedly influenced by the macromolecular composition of
the suspending fluid. A suspension of red cells in saline plus albumin has
zero yield stress; a suspension of red cells in plasma containing fibrinogen
has a finite yield stress.

At high shear rate, whole blood behaves like a Newtonian fluid with a
constant coefficient of viscosity, as is seen in Fig. 3.1:1. In other words,
for sufficiently large values of  we have

t=uy or Jr=uJ3

As the shear rate j increases from 0 to a high value, there is a transition
region in which the stress—strain rate relation changes from that described
by Eq. (1) to that described by Eq. (2). This is illustrated in Fig. 3.1:6, with
data from Brooks et al. (1970). The part of the data to the right of the dashed

curve belongs to the Newtonian region, described by Eq. (2); straight regres-
sion lines pass through the origin. The part to the left of the dashed curve

u = const. (2
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Figure 3.1:6 Casson plot of higher shear rate rheological data for a blood with ACD
anticoagulant. The actual data points for plasma and the 8.25%, hematocirt red cell
suspension are not shown for clarity; these fluids appear to be Newtonian. Viscometer
surfaces were smooth. From Cokelet (1972), by permission.

is the non-Newtonian region. The range of validity of Eq. (1) is smaller for
higher hematocrit, and the transition region from Eq. (1) to Eq. (2) is larger
for higher hematocrit. For hematocrit below 40% at 37°C, Egs. (1) and (2)
can be assumed to merge smoothly.

This outline shows the major features of blood flow in a viscometer of
the Couette-flow type. The width of the channel in which blood flows in
these testing machines is much larger than the diameter of the red blood
cells. The blood is considered as a homogeneous fluid. This is a reasonable
way to look at the blood when we analyze blood flow in large blood vessels.
But all our blood vessels are not so large. In the human body there are
about 10'° blood vessels whose diameter is about the same as that of the
red blood cells, ranging from 4 to 10 um. These are called the capillary
blood vessels. When blood flows in capillary blood vessels, the red cells
have to be squeezed and deformed, and move in single file. In this case, then,
it would be more useful to consider blood as a nonhomogeneous fluid, of
at least two phases, one phase being the blood cells, the other being the
plasma. Between large arteries and veins and the capillaries there are blood
vessel of varying diameters. At what level can we regard blood as homo-
geneous? This is a question whose answer depends on the fluid mechanical
features that one wishes to examine. Flow of blood in microvessels has
many unique features, which will be discussed in Chapter 5.
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In the present chapter, we shall first put the experimental results in a
form suitable for further analysis. The problem of blood flow in a circular
cylindrical tube will be discussed. We shall then turn to the question why
blood viscosity behaves the way it does. Through this kind of examination,
we will gain some understanding of blood rheology in states of health or
disease. We shall conclude this chapter with a discussion of blood coagula-
tion and medical applications of blood rheology.

3.2 The Constitutive Equation of Blood Based on
Viscometric Data and Casson’s Equation

Blood is a mixture of blood plasma and blood cells. The mixture, when tested
in viscometers whose characteristic dimension is much larger than the charac-
teristic size of the blood cells, yields the data outlined in Sec. 3.1. In these
viscometers, and, by implication, in large blood vessels whose diameters are
much larger than the characteristic size of the blood cells, blood may be treated
as a homogeneous fluid. The mechanical properties of the mixture as a
homogeneous fluid can be described by a constitutive equation. In this section,
such a constitutive equation based on the viscometric data outlined in Sec.
3.1 is formulated as an isotropic and incompressible fluid. The assumption of
isotropy is motivated by the idea that when the shear stress and shear strain
rate are zero, the blood cells have no preferred orientation. The assumption
of incompressibility is based on the fact that, in the range of pressures con-
cerned in physiology, the mass densities of the plasma, the cells, and the
mixture as a whole are unaffected by the pressure.

The rheology of blood revealed in Sec. 3.1 differs from that of a Newtonian
fluid only in the fact that the coefficient of viscosity is not a constant. The
constitutive equation of an isotropic incompressible Newtonian fluid is

o= —poy; + 2uV,;, (1)
where
1/cu; ¢Cu;
Vu"'i('a?j+§f>, Vi=Vi+ Vo + Va3 =0. (2

Here o,; is the stress tensor, V; is the strain-rate tensor, u; is the velocity
component, §;; is the isotropic tensor or Kronecker delta, p is the hydrostatic
pressure, and g is a constant called the coefficient of viscosity. The indices
i, j range over 1,2,3, and the components of the tensors and vectors are
referred to a set of rectangular cartesian coordinates x,,X;,X3. The sum-
mation convention is used, so that a repetition of an index means summation
over the index, e.g, Vi = V;; + Vaz + Va3. Note the factor } in our definition
of strain rate in Eq. (2). This definition makes ¥;; a tensor. In older books,
shear rate is defined as twice this value. Thus § of Fig. 3.1:1 is equal to 2V},
if the coordinate axes x,, X, point at directions parallel and perpendicular to
the wall, respectively.
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Blood does not obey Eq. (1) because u is not a constant. u varies with the
strain rate. Thus blood is said to be non-Newtonian. Similar experiments do
verify, however, that normal plasma alone is Newtonian. Therefore the non-
Newtonian feature of whole blood comes from the cellular bodies in the blood.

How can we generalize the Newtonian equation (1) to accommodate the
non-Newtonian behavior of blood? What guidance do we have?

The most important principle we learned from continuum mechanics is
that any equation must be tensorially correct, i.e., every term in an equation
must be a tensor of the same rank. Thus, if we decide to try an equation of
the type of Eq. (1) for blood, under the assumption that its mechanical
behgvior is isotropic, then u is a scalar, i.e., u must be a scalar function of the
strain rate tensor V;. Now, V; is a symmetric tensor of rank 2 in three
dimensions. It has three invariants which are scalars. Hence the coefficient of
viscosity 4 must be a function of the invariants of ¥};. These invariants are:

Iy =V + Vyy + Vi,

I, = Viv, Vs + sz Vas Vis Wy,
Var Vi Vi Vi3 Vis Vu'
3
Viv Via Vs ®
Iy = V21 sz Vash
Vir Vi Vi,

See the author’s First Course, 3rd edn., Chapter 5. But we have assumed blood
to be incompressible; hence I, vanishes. But when I, = 0, I, is negative valued,
and it is more convenient to use a positive-valued invariant J, defined by
J2=%1f_12=%VijVij' 4)
Hence p must be a function of J, and I;. From Eq. (4) it is seen that J, is
directly related to the shear strain rate. For example, if V;, is the only non-
vanishing component of shear rate, then J, = V,. From experiments
described in Sec. 3.1 we know that the blood viscosity depends on the shear
rate, hence on J,. Whether it depends on I or not is unknown because in
most viscometric flows (e.g., Couette, Poiseuille, and cone-plate flows, see

Sec. 2.14) I is zero. Thus, we assume that yu is a function of J, and propose
the following constitutive equation for blood when it flows:

;= —pd; + 2u(J,)Vj;. 3)

Let us now compare this proposal with experimental results. For the '
simple shear flow shown in Fig. 2.7:1 in Sec. 2.7, we have the shear rate

S Sk 1 fév, vy
b=5=2 2<6x2+;171>_2V'2' .

(Note the factor of 2 due to the difference in the old and the tensorial de-
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finition of strain rate as remarked previously.) In this case, all other com-
ponents V; vanish, and
J, = Vi, (7)

so that from Eq. (6),
il = 230, ®)

whereas from Eq. (5), we have the shear stress

012 = 2u(J3)Vy, = pp. 9)

It is shown in Sec. 3.1 that in steady flow in larger vessels, the experimental
results may be expressed in Casson’s equation, Eq. (1) of Sec. 3.1,

o2 = [V, + Vufi]]? (10)

in a wide range of y. Comparing Egs. (9) and (10), we see that

= L5+ P
.’,I .

/

(1)

Thus, we conclude that the constitutive equation for blood is, in the range of
7 when blood flows,
Gij = —pdi; + 2u(J,)V;, (12a)
where
HU2) = [(n2J,)"% 4 2713 }2)2y -2, (12b)

Equation (12) is valid when J, # 0 and sufficiently small. On the other
hand, when J, is sufficiently large, the experimental results reduce to the
simple statement that u4 = constant, so that Eq. (1) applies. The point of
transition from Egs. (12a,b) to the Newtonian equation, y = constant,
depends on the hematocrit, H (the volume fraction of red blood cells in whole
blood). For normal blood with a low hematocrit, H = 8.25%, 1 was found to
be constant over the entire range of shear rate from 0.1 to 1000 s~!. When
H = 18%;, the blood appears to be Newtonian when 7> 60051, but obeys
Eq. (12) for smaller . For higher H the transition point increases to § =
700 s~!. See Fig. 3.1:6.

The flow rule must be supplemented by another stress—strain relation when
the blood is not flowing, i.e., when V;=0. We know so little about the
behavior of blood in this condition, however, that only a hypothetical con-
stitutive equation can be proposed. A Hooke's law, tor example, may be
suggested when there is no flow, because the stress and strain are both very
small. (The “yielding stress,” 7,, in Eq. (11) or (12), is only of the order of
0.05dyn/cm?. The weight of a layer of water | mm thick, spreading over 1 cm?,
produces a compressive stress of 100 dyn/cm?!) For a complete formulation,
we need another condition, the “yielding condition,” to define at what stress
level flow must occur. In the theory of plasticity, the yielding condition is often
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stated in terms of the second invariant of the stress deviation, defined as

Jy = {00 (13)
where
0ij = 0y — %akkaij- (14)

Flow or yielding occurs when J; exceeds a certain number K. Thus:

0 ifJy <K,
V=i 13)
Z—I‘O'ij lsz_>_K

The stress—strain law when there is no flow, the yielding condition, and the
flow rule together describe the mechanical behavior of the blood.

3.2.1 Other Aspects of Blood Rheology

Actually the rheological properties of blood are more complex than what
is portrayed above. If blood is tested dynamically, it can be made to reveal
all features of viscoelasticity. Furthermore, the viscoelastic characteristics
of blood change with the level of strain and strain history; hence it is thixo-
tropic. These complex properties are probably unimportant in normal
circulatory physiology, but can be significant when one tries to use blood
rheology as a basis of clinical applications to diagnosis of diseases, pathology,
or biochemical studies.

3.22 Why Do We Need the General Constitutive Equation?

We have obtained, with some effort in theoretical reasoning, a constitutive
equation for blood that is consistent with our experimental knowledge.
Why is this complicated constitutive equation needed? The answer is that
although the simple Casson equation, Eq. (1) of Sec. 3.1, suffices in the
analysis of simple problems in which the strain rate tensor can be calculated
a priori (without using the constitutive equation), in more complex problems
it is insufficient. Casson’s equation is all we need in analyzing Poiseuille
and Couette flows, for which the shear stress and strain distributions are
known from statics and kinematics. But if we wish to analyze the flow of
blood at the point of bifurcation of an artery into two branches, or the flow
through a stenosis, or the flow in aortic sinus, etc., the stress and strain
rate distributions are not known. To analyze these problems, it is necessary
to write down the general equations of motion based on an appropriate
constitutive equation and solve them. For these problems the general con-
stitutive equation is necessary.
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Figure 3.3:1 Velocity profiles in a steady laminar flow into a circular cylindrical tube.

3.3 Laminar Flow of Blood in a Tube

Let us consider the flow of blood in a circular cylindrical tube. We shall
assume the flow to be laminar, that is, not turbulent. We shall also assume that
the tube is long and the flow is steady, so that the conditions of flow change
neither with the distance along the tube, nor with the time. Under these
assumptions we can analyze the flow with a simple ad hoc approach, which
is presented below.

We shall use polar coordinates for this problem. The polar axis coincides
with the axis of the cylinder. See Fig. 3.3:1. The flow obeys Navier—Stokes
equations of motion of an incompressible fluid. The boundary condition is
that blood adheres to the tube wall (the so-called no-slip condition). Since the
boundary condition is axisymmetric, the flow is also axisymmetric and the
only nonvanishing component of velocity is u(r) in the axial direction; u(r)is a
function of r alone, and not of x. Isolate a cylindrical body of fluid of radius r
and unit length in the axial direction, as shown in Fig. 3.3:2(a). This body is
subjected to a pressure p, on the left-hand end, p, on the right-hand end, and
shear stress 7 on the circumferential surface. Since p, — p, = —1 - (dp/dx)
acts on an area nr?, and 7 acts on an area 1 - 2rr, we have, for equilibrium,
the balance of forces

___adp
T-2nr = —mnr e
or
= r dp Stokes, 1851 (1
2dx (Stokes, ) )

This important result is shown in Fig. 3.3:2(b).

Now we must introduce a constitutive equation that relates the shear
stress T to the velocity gradient. Let us first consider a Newtonian fluid.
3.3.1 A Newtonian Fluid

By the definition of Newtonian viscosity, we have

T= R 2

O
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Figure 3.3:2 Steady fiow in a long circular cylindrical pipe. (a) A free-body diagram
of a centrally located element on which pressure and shear stresses act. (b) Relationship
between the shear stress t and the radial distance r from the axis of symmetry.

A substitution of Eq. (2) into Eq. (1) yields

Z=_2 3)

Since the left-hand side is a function of r, the right-hand side must be also.
Hence dp/dx cannot be a function of x. But since the fluid does not move in
the radial direction, the pressures in the radial direction must be balanced,
and p cannot vary with r. Hence the pressure gradient dp/dx must be a
constant. Therefore, we can integrate Eq. (3) to obtain
2
rdp , g, @

"= :1;1 dx

where B is an integration constant. B can be determined by the boundary
condition of no-slip:

u=0 when r=a. (5)

Combining Eqgs. (4) and (5) yields the solution
— 1 2 2 ‘2 6
HE (a* —r?) i (6)

which shows that the velocity profile is a parabola, as sketched in Fig. 3.3:1.
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The rate of flow through the tube can be obtained by integrating velocity
times area over the tube cross section:

0=2n J: urdr. )]
On substituting Eq. (6) into Eq. (7), we obtain the well-known formula

. na* dp
=2 8
8u dx @®

A division of the rate of flow by the cross-sectional area of the tube yields
the mean velocity of flow,

Up === 2. ©

3.3.2 Blood, with Viscosity Described by Casson’s Equation

If we compute the shear strain rate of the fluid at the tube wall, using the
formulas obtained above for a Newtonian fluid, we obtain

du ladp

drl,..” 2pdx from Eq. (3) or (6), (10)
or

du = Yt from Eqs. (3) and (9). a1

dr r=a a

If physiological data on u,, a, 4, and dp/dx are substituted into Eqs. (10) and
(11), we find that j (= —du/dr at r = a) ranges from 100 to 2000 sec-! in
large and small arteries, and 20 to 200 sec ™! in large and small veins. Thus in
the neighborhood of the blood vessel wall, the shear rate is high enough for
the Newtonian assumption to be valid for normal blood. Toward the center
of the tube, however, the shear gradient tends to zero, and the non-
Newtonian feature of the blood will become more evident.

Let us assume that the blood is governed by Casson’s equation, Eq. (1) of
Sec. 3.1 or Eq. (12) of Sec. 3.2. We assume that the flow is laminar, uniaxial,
axisymmetric, and without entrance effect (far away from the ends of the
tube).

Equation (1) is valid for any fluid, hence for blood. The shear stress acting
on any cylindrical surface (r = const.) is proportional to r, as shown in
Fig.3.3:2and reproduced in Fig. 3.3:3. On the wall, the shear stressisr,,. Ata
certain point on the stress axis it is 7,, the yield stress. This corresponds to a
radius r,, shown on the horizontal axis. If the shear stress is smaller than the
yield stress, that is, T < T,0rr <r,, the blood will not flow. If it moves at all
it would have to move like a rigid body. Therefore, the velocity profile
depends on the relative magnitude of 7, and 7,,. Now, by Eq. (1),
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Figure 3.3:3 The relationship between shear stress and radial distance in a steady pipe
flow. The shear stress reaches the yields stress of blood 7, at radial distance r..

adp _ r.dp

Tw = --2”5, ‘l.'y = —E'—d; (12)
Therefore, if t, > 1,,, i.e,, r. > a, then there is no flow:
2
u=0 when - 2% (13)
dx a
Ift, <, ie,r.<a or
dx  a

then the velocity profile of the flow will be like that sketched in Fig. 3.3:4.
In the core, r < r,, the profile is flat. Between r, and a, Casson’s equation

applies:
Ji=vufi+ i, (15)

n is called Casson’s coefficient of viscosity. Taking the square root of Eq. (1)
and using Eq. (15), we obtain

rdp .
Solving for ¥, we have

du 1 rdp 2
S S O L YA 17
a7 ry( 2dx ﬁ’) (17)
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Figure 3.3:4 The velocity profile of laminar flow of blood in a long circular cylindrical
pipe.

Integrating this equation and using the no-slip boundary condition u = 0
when r = a, we have

a du 1 / r tlp
-l 3 —dr = u|, — ul,:;’-f ( \/—,> dr, (18)

or
u= [a —8r12@32 — ¥ 4 2r(a~T1)] for(r.<r<a) (19)
4r] d x
At r = r, the velocity 1 becomes the core velocity u,:
1 dp N
o=~ L (@ = 4 - i

-~ e = P(a + ) 20)

And for all values of r between 0 and r,,
u=u. 21)

The velocity distribution is given by Egs. (19) and (21) if r, < a, i.e., if Eq. (14)
applies: whereas the flow is zero if the inequality sign in Eq. (14) is reversed.
We can now find the rate of volume flow by an integration:

0=2n fo urdr. (22)

Using Eqgs. (13), (19), and (21) for appropriate ranges of pressure gradient
and radius, we obtain

_ral _dp_16(2\U2( dp\Uz 402\ 1 [2t,\¢( dp\~
T 8| dx 7\a dx N\ a 21\ a dx

23)

)
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if dp/dx > (2t,/a); whereas
0=0 i 3P 2 (24)
dx a

If we introduce the notation

(2 dp\~!
=(2)(-8) @)

then Eq. (23) can be written as

d
0= —1’85——” F@), (26)

where

F)=1- C”’ ——é‘ @7

Equation (26) is similar to Poiseuille’s law, but with a modifying factor F(¢).
These results were obtained by S. Oka (1965, 1974). Figure 3.3:5 gives Oka’s
graph of F(g) vs. &. It is seen that the flow rate decreases rapidly with
increasing ¢. For ¢ > 1. there is no flow, and Q = 0. Oka also obtained the
interesting result shown in Fig. 3.3:6, that if one plots the square root of 0
vs. the square root of the pressure gradient, one obtains a curve that resembles
the flow vs. shear stress curve of a Bingham plastic material (see Problem
3.17, p. 97). Taking the square root on both sides of Eq. (26), expanding
the square root of F(¢) in a power series of ¢!/2, and retaining only the first
power, one obtains the asymptotic equation

4\ 1/2 1/2
a\1/2 d 1.2
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Figure 3.3:5 The function F(¢) from Eq. (37) of Sec. 3.5, which is the ratio of the flow
rate in a tube of a fluid obeying Casson’s equation to that of a Newtonian fiuid with the
same Casson viscosity. The variable ¢ is inversely proportional to the pressure gradient;
see Eq. (36) of Sec. 3.5. From Oka (1974), by permission.
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Figure 3.3:6 The relationship between V@and v dp;Qis the flow rate of a fluid o.be.ying
Casson’s equation, and 4p is the pressure gradient. From Oka (1974), by permission.

where p, = 2t,/a. This is plotted as the dotted line in Fig. 3.3:6. The solid
curve is the exact solution. The dotted line is an asymptote whose slope is

tany = ("_““>“2. (29)
8n

These results give complete information on the laminar flow of blood in
circular cylindrical tubes.

3.4 Speculation on Why Blood Viscosity Is the Way It Is

Since normal plasma is Newtonian, there is no doubt that the non-Newtonian
features of human blood come from blood cells. How the red blood cells move
when blood flows is the central issue.

It has been known for a long time (Fahraeus, 1929) that human red blood
cells can form aggregates known as rouleaux (Fig. 3.4:1), whose existence
depends on the presence of the proteinanc@@hn plasma.
(Bovine blood does not form rouleaux.) The slower the blood flows, or rather,
the smaller the shear rate, the more prevalent are the aggregates. When the
shear rate tends to zero, it is speculated that human blood becomes one
big aggregate, which then behaves like a solid. A solid may be viscoelastic or
viscoplastic. If the blood aggregate behaves as a plastic solid, then a yield
stress exists which can be (but does not have to be) identified with the constant
7, in Casson’s equation [Eq. (1) of Sec. 3.1].
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Figure 3.4:2 Logarithmic relation between relative apparent viscosity and shear rate
in three types of suspensions, each containing 45", human RBC by volume. Suspending
medium (plasma) viscosity = 1.2 cP (= 1.2 x 1073 N s m~?). NP = Normal RBC in
plasma; NA = normal RBC in 11% albumin; HA = hardened RBC in 11% albumin.
From Chien (1970), by permission.

When the shear rate increases, blood aggregates tend to be broken up,
and the viscosity of blood is reduced. As the shear rate increases further,
the deformation of the red cells becomes more and more evident. The cells
tend to become elongated and line up with the streamlines. This further
reduces the viscosity. The effects of aggregation and deformation of the red
cells are well illustrated in Fig. 3.4:2, from Chien (1970). In this figure, the
line NP refers to normal blood. The line NA refers to a suspension of normal
red blood cells in an albumin-Ringer solution that does not contain fibrin-
ogen and globulins. The tendency toward rouleaux formation was removed
in the latter case, and it is seen that the viscosity of the suspension was
reduced, even though the viscosity of the albumin-Ringer solution was ad-
justed to be the same as that of the plasma of the NP case. The third curve,
HA, refers to a suspension of hardened red blood cells in the same albumin-
Ringer solution. (Red cells can be hardened by adding a little fixing agent
such as glutaraldehyde to the solution.) Hence the difference between the NP
and NA curves indicates the effect of cell aggregation, whereas that between
NA and HA indicates the effect of cell deformation.

The amazing fluidity of human blood is revealed in Fig. 3.4:3, in which
the viscosity of blood at a shear rate > 100s™ ! (at which particle aggregation
ceased to be important) is compared with that of other suspensions and
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Figure 3.4:3 Relative viscosity of human blood at 25°Casa function of red cell volume
fraction, compared to that of suspensions of rigid latex spheres, rigid disks, droplets,
and sickled erythrocytes, which are virtually nondeformable. From Goldsmith (1972b),
by permission.

emulsions. At 50%, concentration, a suspension of rigid spheres will not be
able to flow, whereas blood is fluid even at 987, concentration by volume.
The much higher viscosity of blood with deoxygenated sickle cells is also
shown: it tells us why sickle cell anemia is such a serious disease.

Since in a field of shear flow with a velocity gradient in the y direction the
velocity is different at different values of y, any suspended particle of finite
dimension in the y direction will tumble while flowing. The tumbling dis-
turbs the flow and requires expenditure of energy, which is revealed in
viscosity. If n red cells form a rouleaux, the tumbling of the rouleaux will
cause more disturbance than the sum of the disturbances of the n individual
red cells. Hence breaking up the rouleaux will reduce the viscosity. Further
reduction can be obtained by deformation of the particle. If the particle is a
liquid droplet, for example, it can elongate to reduce the dimension in the
y direction, thus reducing the disturbance to the flow. A red cell behaves
somewhat like a liquid droplet; it is a droplet wrapped in a membrane. These
factors explain the reduction of viscosity with increasing shear rate.

Detailed studies of the tumbling and deformation of the red cells and
rouleaux in shear flow have been made by Goldsmith and his associates by
observing blood flow in tiny circular cylindrical glass tubes having diameters
from 65 to 200 um under a high powered microscope. The tubes lay on a
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vertically mounted platform, which was moved mechanically or hydraulically
upward as the particles being tracked flowed downward from a syringe
reservoir. The cell motion was photographed. Particle behavior at hemat-
ocrits > 109, was studied by using tracer red cells in a transparent suspension
of hemolyzed, unpigmented red cells—so-called ghost cells. The ghosts were
also biconcave in shape, although their mean diameter (~ 7.2 u) and volume
(7.4 x 107'* cm?) were somewhat smaller than those of the parent red cells.

Figure 3.4:4 shows the tumbling of an 11- and a 16-cell rouleau of red
cells in Poiseuille flow at a shear rate 7 < 10sec™! (at shear stress <0.2
dyn cm™?). This was observed at very low Reynolds numbers, and in a very
dilute suspension.
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Figure 3.4:4 Rotation of an 11- and a 16-cell rouleau of erythrocytes in Poiseuille
flow; { < 10sec™!. Bending commenced at position 2 where the fluid stresses are
compressive to the rouleaux. The longer particle did not straighten out in the succeeding
quadrant, in which the stresses in the rouleaux are tensile. From Goldsmith and Marlow
(1972), by permission.
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Figure 3.4:5 The increasing fraction of normal red cells (open circles) found in orienta-
tion within 20 with respect to the direction of flow as the shear rate is increased in
a tube flow. The orientation distribution of hardened cells (closed circles) is independent
of the flow speed and radial location in the tube, and agrees with that calculated for
rigid disks having an equivalent thickness-to-diameter ratio of r, = 0.38. From Gold-
smith (1971), by permission.

The tendency of the deformable red cells to be aligned with the stream-
lines of flow at higher shear rates is illustrated in F ig. 3.4:5 which refers to
observations made in very dilute suspensions in which particle interactions
were negligible. It is seen that as the shear rate § was increased, more and
more cells were found in orientations in which their major axes were aligned
with the flow. By contrast, rigid but still biconcave erythrocytes, produced by
hardening with gluturaldehyde, continued to show orientations independent
of shear rate.

The features shown in Figs. 3.4:4 and 3.4:5 are for isolated red cells or
aggregates. Normal blood contains a high concentration of red blood cells,—
with a hematocrit ratio (defined as cell volume/blood volume) of about 0.45
in large vessels, and 0.25 in small arterioles or venules. At such a high con-
centration, the cells crowd each other: no one cell can act alone. Goldsmith’s
(1972b) observations then show that -

(1) The velocity profile in the tube is no longer parabolic as in Poiseuille flow;

(2) deformation of the erythrocytes in blood occurs to a degree that is not
attributable to shear alone;

(3) the particle paths exhibit erratic displacements in a direction normal to
the flow.
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Figure 3.4:6 Comparison of dimensionless velocity profiles of tube flow of a fluid
containing particles. b is the radius of the particles. R, is the inner radius of the
tube. The upper panel shows the flow with 329 suspensions of rigid spheres (b/R, =
0.112and 0.056 in curves 1 and 2, respectively) and liquid drops (b/R, = 0.078, curve 3).
The lower panel shows the flow with 329 suspensions of rigid disks (b/Ry = 0.078)
and ghost cells (b/R, = 0.105). The lines drawn are the best fit of the experimental
points; the dashed line is calculated from Eq. (6) of Sec. 3.3 in the form U(R)/U(0) =
I — R?/R}. Note that by complete plug flow in curve 1 (upper part), we do not imply
slip of fluid at the wall. Close to the boundary there must be a steep velocity gradient
in the suspending fluid. From Goldsmith (1972b), by permission.
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The velocity profiles measured in model systems with ghost cells, as well
as rigid disks, liquid droplets, and rigid spheres, are shown in Fig. 3.4:6, and
can be explained as follows. In a flow of a homogeneous fluid, the profile is
parabolic (Poiseuille flow, shown by a dotted line in the lower panel). If there
is a single isolated rigid sphere in the flow, and if the radius of the sphere b is
much smaller than the radius of the tube Ry, and if the Reynolds number of
the flow is smaller than 1, then the spherical particle will translate along a
path parallel to the tube axis with a velocity which, except when the particle
is very close to the wall, is equal to the velocity of the undisturbed fluid at
the same radial distance. As the concentration of rigid spheres is increased,
the particle velocity profile remains parabolic, provided that b/R, < 0.04
and the volume concentration ¢ < 0.2. As the concentration ¢ and the
particle-tube-radius ratio b/R, are increased further, the velocity profile
becomes blunted in the center of the tube. Flow in this central region may be
called a partial plug flow. For a suspension of rigid spheres the velocity profile
is independent of flow rate and suspending phase viscosity, and the pressure
drop per unit length of the tube is directly proportional to the volume flow
rate 0. In contrast, flow of a concentrated, monodispersed oil-in-oil emulsion
has a velocity profile which is appreciably less blunted than the rigid particle
case, at the same values of ¢ and b/R,, and moreover, this profile is dependent
on the flow rate and the suspending phase viscosity. In a given system, the
lower the flow rate, and the greater the suspending phase viscosity, the greater
was the degree of blunting.

Similar non-Newtonian behavior was exhibited by ghost cell plasma sus-
pensions at concentrations from 20%, to 70%. Figure 3.4:6 (lower panel) shows
the results obtained at a concentration ¢ = 0.32, a mean velocity of flow =
1.04 tube diameters per sec; (Uy = 0.015 cm sec™); and a tube radius of
36 um. Upon increasing the mean velocity of flow to 47 tube diameters per sec
(U = 0.676 cm sec™!), the velocity distribution in the ghost cell suspension
became almost parabolic. These features are consistent with the analytical
results of Sec. 3.3.

The influence of particle crowding on cell deformation can be expected;
but it becomes quite dramatic if we think of the meaning of the curves shown
in Fig. 3.4:3. As seen in that figure, the relative viscosity of human blood is
considerably lower than that of concentrated oil-in-water emulsions. Are the
red blood cells more deformable than the liquid droplets? Are the red cells,
in a crowded situation, able to squeeze and move past each other more readily
than colliding liquid droplets? The answer is “yes.” Direct observation has
shown large distortion of red cells and rouleaux at very low shear rates
¥ < 5 sec™! or shear stress < 0.07 dyn cm™2 An example is shown in Fig.
3.4:7, at a cell concentration (hematocrit) ¢ = 0.5. The explanation is believed
to lie in the biconcave shape of the red cells. In Chapter 4, Secs. 4.3 and 4.4,
it is shown that because of the biconcave shape, the internal pressure of an
isolated red cell must be the same as the external pressure if the bending
rigidity of the cell membrane is negligibly small. Therefore, the cell membrane
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Figure 3.4:7 Tracings from a cine film showing the continuous and irregular deforma-
tion of a single erythrocyte and a 4-cell rouleau in a ghost cell suspension, H = 0.5.
The cell is shown at intervals of 04, 06,20,and 3.2 s, respectively, in which time the
isolated corpuscle would execute Just over half a rotation. From Goldsmith (1972a)
by permission.

is unstressed in the normal biconcave configuration. Futher, large deforma-
tion of the cell can take place without stretching the cell membrane, and hence
needs little energy. On the other hand, a liquid droplet in emulsion is main-
tained by surface tension. In a static condition, a droplet must be spherical if
the surface tension is uniform. In a shear flow, the droplets become ellipsoidal
in shape; whereas in the crowded situation of a concentrated emulsion, large
distortion of shape from that of a regular ellipsoid was noted. Such distortion
from the spherical shape increases the surface area of the droplet, and hence
the surface energy (surface tension is equal to surface energy per unit area).
Thus it becomes plausible that the red cell, by packaging into the biconcave
shape, is more deformable than a liquid droplet without a cell membrane. It

3.5 Fluid-Mechanical Interaction of Red Blood Cells with a Solid Wall 91

also follows from this discussion that a detailed analysis of the rheology of
blood or emulsion at high concentration needs data on the viscosities of the
liquids and hemoglobin, as well as on the surface tension and cell membrane
elasticity.

The third feature of concentrated particulate flow named above; the erratic
sidewise movement of particles, has been recorded extensively by Goldsmith.
Such erratic motion is expected because of frequent encounters of a particle
with neighboring particles. The particle path therefore, must show features of
a random walk. These observations offer a qualitative explanation of the way
blood flows the way it does.

3.5 Fluid—Mechanical Interaction of Red Blood Cells with a
Solid Wall

It has been pointed out by Thoma (1927) that in a tube flow there seems to be
a tendency for the red cells to move toward the axis of the tube. leaving a
marginal zone of plasma, whose width increases with increase in the shear
rate. There is a layer close to the wall of a vessel that is relatively deficient of
suspended material. In dilute suspensions, this “wall effect” has been mea-
sured by Goldsmith in the creeping flow regime (Reynolds number « 1).
In emulsions the deformation of a liquid drop results in its migration across
the streamlines away from the tube wall. Such lateral movement is not ob-
served with rigid spherical particles; thus the deformability of the particle
appears to be the reason for lateral migration.

A similar difference in flow behavior was found between normal red blood
cells (RBC) and glutaraldehyde-hardened red cells (HBC), as illustrated in
the upper panels of Fig. 3.5:1, which show the histograms of the number-
concentration distributions of cells as a function of radial distance, at a section
I cm downstream from the entry in a tube of 83 xm diameter at a Reynolds
number about 0.03. Even more striking is the lateral migration in dextran
solutions at Reynolds numbers R, =37 x 1072 and 9.1 x 10™*, shown in
the lower panels. It is seen that very few cells are present in the outer half of
the tube. Dextran solutions have a higher viscosity than Ringer or Ringer-
plasma solutions. In dextran solutions the red cells are deformed into ellips-
oidlike shapes. Similar observations of flow containing rouleaux of red cells
show that rouleaux migrate to the tube axis faster than individual red cells.

Inward migration of deformable drops, fibers, and red cells away from the
wall in both steady and oscillatory flows has been observed also at higher
Reynolds numbers (R, > 1), when the effects of fluid inertia are significant.
At R, > 1 nondeformable particles also exhibit lateral migration in dilute
suspensions.

When the cell concentration is high, the crowding effect acts against
migration away from the wall into the crowded center. Measurements made
by Phibbs (1969) in quick-frozen rabbit femoral arteries, by Bugliarello and
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Figure 3.5:1 Number of cells/cm® suspension, n(R), divided by the syringe reservoir
concentration, ng, at intervals of 0.1 R,, 1 cm downstream from the reservoir; Ry =
41.5 ym, ¢ = 2 x 1073, The mean tube shear rates = u(0)/R, were approximately the
same in each suspension. If the number distribution were uniform, then n(R)/n, = 1 at
all R/R,. From Goldsmith (1972b), by permission.

Sevilla (1971) on cine films of blood flow in glass tube, and by Blackshear et al.
(1971) on ghost cell concentration, make it appear unlikely that at hematocrits
of 40%;,-45%, and normal flow rates, the plasma-rich zone can be much larger
than 4 um in vessels whose diameters exceed 100 um.

This plasma-rich (or cell-rare) zone next to the solid wall, although very
thin, has important effect on blood rheology. In the first place, measurement
of blood viscosity by any instrument which has a solid wall must be affected
by the wall layer. The change in cell concentration in the wall layer makes the
blood viscosity data somewhat uncertain. Thus we are forced to speak of
“apparent” viscosity (see Chapter 5, Sec. 5.1), rather than simply of the visco-
sity. It makes it necessary to specify how “smooth” or “serrated” the surface
of viscometers must be. In the second place, the smaller the blood vessel is,
the greater will be the proportion of area of the vessel occupied by the wall

@
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layer, and greater would be its influence on the flow. The low hematocrit in
the wall layer lowers the average hematocrit in small blood vessels. And when
a small blood vessel branches off from another vessel, it draws more fluid from
the wall layer where the hematocrit is low. The result is a lower average
hematocrit in the smaller blood vessel; and hence a lower apparent viscosity.
This will be discussed in Chapter 5.

3.6 Thrombus Formation and Dissolution

Blood clots are formed on an injured inner wall of blood vessels and on contact
with the surfaces of medical devices. When a circulating blood comes into
contact with such a surface, the platelets in the blood adhere to the surface,
release a number of chemicals, attract more platelets to form a larger aggrega-
tion, generate thrombin, and form fibrin, resulting in a thrombus. In time

TaBLE 3.6:1 Properties of Human Clotting Factors*

Molecular weight

Normal plasma
concentration

Clotting factor Synonym (number of chains) (ug/ml)
Intrinsic system
Factor XII Hageman or 80000 (1) 29
contact factor
Prekallikrein Fletcher factor 80000 (1) 50
High-molecular- Fitzgerald factor 120000 (1) 70
weight Kininogen
Factor XI Plasma thrombo- 160000 (2 dimer) 4
plastin antecedent
Factor IX Christmas factor 57000 (1) 4
von Willebrand vWF 1-2 000000 (series of 7
factor G-10 subunits)
Factor VIII:C Antihemophilic factor ~ 200000-350 0.1
Extrinsic system
Factor VII Proconvertin 55000 (1) 1
Tissue factor Tissue thromboplastin 45000 (1) 1
Common pathway
Factor X Stuart-Prower factor 59 000 (2) 5
Factor V Proaccelerin 330000 (1) 5-12
Prothrombin Factor II 70000 (1) 100
Fibrinogen Factor I 340000(6: Aay, BB,,y,) 2500
(250 mg/dI)
Factor XIII Fibrin stabilizing factor 300000 (4: a,, b,) 10

*Factor III is tissue thromboplastin. Factor IV is calcium. There is no factor VI.
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plasmin is generated in the thrombus, and fibrinolysis begins, ending in the
dissolution of the thrombus.

The blood clotting process is a cascade of chemical processes with many
participants. The principal chemicals are listed in Table 3.6: 1. In the table,
those activating and coagulation factors reside in the blood plasma are called
intrinsic, those residing in the cells (not in the plasma) are called extrinsic. A
very brief sketch is given below. Details should be obtained from hemato-
logical, pharmacological, and medical books. An National Institute of Health
(NIH) report edited by MclIntire ( 1985) is very helpful.

3.6.1 Thrombogenesis

Figure 3.6:1 shows the major chemicals involved at the first stages of platelet
adhesion and aggregation. The injured endothelium exposes collagen of the
basement membrane which interacts with the glycoprotein on the platelet
membrane and the von Willebrand factor which is synthesized by endothelial
cells and is present in the plasma, and on the platelets. The adherent plate-

Platelet
Activation
Synergistic Recruitment
Adenosinediphosphate / g
Thromboxane A; l
Platelet factor 4

%,‘/—— Fibrinogen
) %

B thromboglobulin

Platelet derived growth factor

Heparinase

Thromboxane A;

PF4, BTG
Figure3.6:1 Platelet adhesion and aggregation after an injury of the blood vessel wall.
Aggregation of platelets requires a rapid mobilization of fibrinogen receptors on the
membranes of the platelets, and a calcium-dependent interplatelet bridging by fibrino-
gen. Various factors are shown. Figure was redrawn after an example in Guidelines for
Blood—-Material Interactions, whichis a Report of the National Heart, Lung, and Blood
Institute (NHLBI) Working Group of the U.S. Department of Health and Human
Services, Public Health Service NIH Publ. No. 85-2185, 1985.
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lets then release adenosine diphosphate (ADP), thromboxane A, fibrinogen,
factor V, platelet factor 4, beta thromboglobulin, and a platelet-derived growth
factor.

The released ADP and thromboxane A, act synergistically to recruit
circulating platelets and enlarge the aggregate. Essential to this step is the
mobilization of a platelet-membrane fibrinogen receptor and the calcium-
dependent interplatelet bridging by fibrinogen.

Thrombus growth and stabilization depends on the formation of thrombin.
Thrombin is generated by means of the intrinsic coagulation pathway through
contact factor activation by subendothelial collagen, or when tissue thrombo-
plastin from disrupted endothelial cells activates the extrinsic coagulation
cascade. Once formed, thrombin stimulates the synthesis of thromboxane A,
and the release of ADP, thus promoting platelet aggregation. Subsequently,
thrombin generates fibrin from fibrinogen. Fibrin stabilizes the growing plate-
let mass to form a viscoelastic clot.

The contact factor (Hageman, or factor XII) activation begins by the
adsorption of the contact factor to the negatively charged collagen surface.
Factors X1, prekallikrein, and kininogen are also involved. This stepis calcium
independent. The adsorption of factor XII to collagen changes the molecular
configuration of factor XII and exposes its hydrophobic active sites previously
unavailable to the external environment, and the intrinsic system cascade
begins. The fibrinolytic system is also activated by factor XII via plasmino-
gen proactivator. Factors XI, V, and the von Willebrand factor may also be
adsorbed to an artificial surface.

The activation of factor IX by XIa and the activation of factor X are calcium
dependent. Factors IX, X, VII, and prothrombin are vitamin K dependent.

The extrinsic system is initiated by the activation of factor VII when it
interacts with an intracellular tissue factor, or leukocytes. Tissue factor is
present in large amounts in the brain and lung, and found in the intima of
large blood vessels.

The common pathway begins as factor X is activated by factor VIIa or IXa.

The concentration of prothrombin in plasma is sufficient to allow a few
molecules of activated initiator to generate a large burst of thrombin activity,
which induces platelet aggregation, and converts fibrinogen into fibrin. Fibrin
monomers polymerize nonenzymatically to gelate the fluid.

3.6.2 Thrombus Dissolution

Within the thrombus, plasmin digests fibrin to produce progressively smaller
fragments to eventually dissolve the clot. The blood contains plasminogen
(molecular weight 90 000, normally at the 120 g/ml level) which is enmeshed
in the thrombus. It can be activated intrinsically by the contact factor XII,
etc.; or extrinsically with an activator originating from the blood vessel wall;
or by drugs such as streptokinase or urokinase. Activation releases plasmin.
Plasmin is an active serine protease, which hydrolyzes fibrin polymers.
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TaBLE 3.6:2 Antithrombotic Agents

Agent Action

Fibrinolytic
Streptokinase, urokinase Plasminogen activators

Anticoagulant

Heparin Enhances inhibition of
proteases by thrombin III
Warfarin Vitamin K antagonist

Antiplatelet

Aspirin Decreases platelet aggregation
and release

Sulfinpyrazone Not established

Dipyridamole Decreases platelet adhesion

Ticlopidine Blocks ADP induced platelet
interaction with fibrinogen
and vWF

PGI, Activates platelet adenyl
cyclase

In practice, a thrombus can be continuously formed and dissolved; so
its composition is a result of chemical dynamics. Some well-known anti-
thrombotic agents are listed in Table 3.6:2.

Thrombosis can be a threat to life. But it can stop internal bleeding if there
were a break in the blood vessel, or external bleeding when there is an injury.
Coagulation of blood seals the wound and saves lives. Contraction of the
damaged blood vessels is another mechanism of life saving.

Blood coagulation is the result of a cascading activation of factors. An
almost total absence of any one of these factors will make the coagulation
process extremely slow. For example, if one takes the calcium away, blood
will not clot. If one draws blood with a collecting vessel treated with oxalate
or citrate, the blood will flow freely. Rheological studies of blood clotting are
often made either for clinical reasons or for pharmacological development. A
summary of some more popular instruments is given in Scott-Blair (1974).
The instrument ‘thrombelastograph” of Hartert (1962, 1975) needs blood
sample of only 0.3 ml.

3.7 Medical Applications of Blood Rheology

The most obvious use of blood rheology in clinical medicine is to identify
diseases with any change in blood viscosity. Data collected for this purpose
have been presented by Dintenfass in two books (1971, 1976). For our pur-
pose it suffices to cite a few examples. Figure 3.7:1 shows a comparison of
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Figure 3.7:1 Arithmetic means (full lines) and one standard deviation (broken lines)
of viscosities in normal men (M) and in patients with various thrombotic diseases (T).
Viscosity, 7, in poises, is plotted against the rate of shear, D, in sec™?, on a log-log
scale, where ¥ is the arithmetic mean, and s is the standard deviation. Experimental
data show log-normal distribution. From Dintenfass (1971), p. 11, by permission.

Dintenfass’ data on the blood viscosity of normal healthy persons and
patients with various thrombotic diseases. The diseased persons have higher
viscosity. As we have seen in Sec. 3.4, elevation of blood viscosity at low shear
rates indicates aggregation, whereas that at high shear rates suggests loss
of deformability of the red blood cells. The viscosity change suggests some
disease related changes in the blood.

Figure 3.7:2 suggests another use of lowered blood viscosity. It shows
Langsjoen’s (1973) result that a reduction of blood viscosity consequent to the
infusion of dextran 40 solution in cases of acute myocardial infarction led to
a significant improvement in both immediate and long-term survival. Dex-
tran 40 (molecular weight about 40000) solution dilutes the blood. The
physiological effect of hemodilution is not simple, but the changed rheolqu
must be a principal factor. For hemodilution, see Messmer and Schmid-
Schoenbein (1972).

The fluid added to the bloodstream to make up the lost volume of blood
due to hemorhage when a person suffers a wound is called plasma expander.
Dextran solution is a good expander. Any blood substitute for long term use
must have the right rheological property.

Another important rheological factor in clinical use is the coagulation
characteristics of the blood. An obvious example is the hemophilic patient’s
difficulty with blood coagulation. On the other hand, hypertension (high
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Figure 3.7:2 Survival of patients with acute myocardial infarction after conservative
treat.rnen} (73 patients) and after treatment by infusion of dextran 40 (65 patients).
Surv'lv'al Is recorded as the percentage of the original group. Note that there were more
surviving patients in the dextran-treated group after 5 years than in the controls (con-
s?rvatl\"e tr.eatment) after 4 weeks. This gives cogent support to the premise that blood
viscoscity is an important determinant of myocardial work. Reproduced from
Langsjoen (1973), by permission.

blood pressure) and arteriosclerosis seem to correlate with an increase in the
elasticity of the thrombi.

/’\ third parameter in clinical use is the erythrocyte sedimentation rate. In
antlcoa.gulated blood, red cells may still clump together and cause a sedi-
mentation. Fahraeus (1918) first studied this effect seriously. He noticed that
blood from pregnant women sedimented faster than that of nonpregnant
women, and believed that he might have found a convenient test for
pregnapcy..However, he soon afterwards found the same more rapid sedi-
mentation in some male patients! It was then established that an increased
erythrocyte sedimentation rate served as a good indication for both male and
female patients that all was not well, and that quite a variety of conditions
man?' of them serious, increased the sedimentation rate. This is discussed in’
considerable detail in Dintenfass (1976).

Itis quite clear that blood rheology as discussed in this chapter, referring
to ﬂ.ow In vessels much larger than the diameter of red blood cells, reflects
the mtferaction of red cells in bulk of whole blood. The “hyperviscosity” of
blood in some disease states reflects the changes in hematocrit, plasma, and
red cell deformability. On the other hand, the critical sites of interactic’)n of
red blood cells with blood vessels are in the capillary blood vessels. In the
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microcirculation bed, the deformability of the red cells is subjected to a really
severe test. Hence it is expected that the pathological aspects of hyperviscosity
will be seen in microcirculation. To pursue this matter, we shall consider the
mechanical properties of red cells in the following chapter, and the flow pro-
perties of blood in microvessels in Chapter 5.

Problems

3.1 Show that, for an incompressible fluid, I, = 0, where I, is given in Eq. (3) of Sec.
3.2

—# 3.2 Thus [ar we have treated blood as a viscous fluid. This is undoubtedly permissible

if blood flows in a steady-state condition. But since blood is a suspension of blood
cells in plasma, and the cells are capable of interacting with each other, it is
expected that blood will exhibit viscoelastic properties when conditions permit,
Just like many other polymer solutions. Speculate, on theoretical grounds, on
what may be expected in the following situations:

(a) A volume of blood sits in a condition of stationary equilibrium in a Couette
viscometer or in a circular cylindrical tube (Poiseuille viscometer). A harmonic
oscillation of very small amplitude is imposed on the blood in the viscometer.
What would be the relationship between force and velocity? How would one
express the relationship through the method of a complex variable? What is
the phase relationship? What do the real and imaginary parts of the complex
modulus mean?
(b) Let the blood in the viscometer flow in a steady state and then superimpose a
small harmonic oscillation on the flow in the viscometer. How would the complex
modulus vary with the steady-state shear strain rate?
(c) Instead of harmonic oscillations of small amplitude as considered above, im-
pose a small step function in velocity (Couette) or pressure gradient (Poiseuille),
and discuss the expected response as a function of time.
(d) If the step function considered in (c) is finite in amplitude, could there be
nonlinear effects which depend on the amplitude? The change in viscoelastic
properties of a material with respect to time after a finite disturbance is called a
thixotropic change. Thixotropy of blood may be described by a complex modulus
of viscosity as a function of time after the initiation of disturbance (e.g., a step
function); the modulus being obtained by a superposed small harmonic perturba-
tion. Speculate on the possible thixotropic properties of blood.

Experimental results on the features named above as well as a mechanical and
mathematical model of the viscoelasticity of blood expressed in terms of springs
and dashpots are discussed by G. B. Thurston (1979).

3.3 Entry flow of blood from a large reservoir into a pipe. So far we have analyzed the
condition of flow in a pipe in a region far away from the entry section. At the
entry section (x = 0), where the pipe is connected to a large reservoir, the velocity
profile is uniform, as shown in Fig. 3.3:1. As the distance from the entry section
increases, the profile changes gradually to the steady-state profile of a parabola
(if the fluid is Newtonian) or the flat-topped parabola of Fig. 3.3:4 (if the fluid is
blood). Consider blood. We can trace the change as sketched in Fig. P3.3. At
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Figure P3.3 Entry flow of blood into a pipe. Dotted lines show the boundary layer
of yielding.
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x = x, the velocity has to change from u, at the center to 0 on the wall, where
the no-slip condition applies. This creates a high shear strain rate at the wall,
which has to decrease to zero at the center. At a certain distance 4 from the wall
is a point where the shear stress is equal to the yield stress of the blood. Beyond
y = 6, the velocity profile remains flat. As x increases, é increases. At x = x,, the
velocity profile tends to the steady state, as shown in Fig. 3.3:4.

The surface y = 6(x) is the yielding surface, which divides the region (at the
center) in which the blood is solid-like, from the region (next to the wall) in which
the blood is a flowing fluid. It is a surface on which the shear stress is exactly
equal to the yield stress. The rate at which d(x) grows with x depends on the
Reynolds number of flow Ni. Give a qualitative and mathematical analysis of
J(x) as a function of Nj.

With the constitutive equations of blood presented in Sec. 3.2, derive the equation
of motion of blood in a form that is a generalization of the Navier—Stokes
equation. Discuss the range of validity of the equations. Discuss any simplifica-
tion that results if the shear strain rate is sufficiently high.

Boundary Conditions. The general field equations of continuity and motion are
to be solved with boundary conditions which must be posed in such a way that
the field equations have meaningful solutions, and must lead to solutions in
agreement with experimental results. The condition at the interface between a
fluid and a solid has raised the question of whether to allow relative slip between
fluid and solid or not. Historically, for water, the question was resolved in favor
of no-slip on the basis of precise experimental results of Poiseuille and Hagen on
flow in circular cylindrical tubes. For Newtonian fluids the no-slip condition
between fluid and solid has been established and has found no exception in the
past 150 years.

Blood is a mixture of cells and a fluid. Consider the conditions at a blood-solid
interface theoretically. What should the boundary conditions be?

Reduce the equations you obtained in Problem 3.4 to a dimensionless form.
Introduce a characteristic length L, a characteristic velocity V, a characteristic
viscosity 5 which is one of the constants in Eq. (12b) of Sec. 3.2, and dimensionless
coordinates x| = x;/L, velocities u; = u;/V, and parameters

Problems
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_p- t' = Ng = _p,

L’ n

where Ny is the Reynolds number.

3.7 If laboratory model testing is to be done for blood flow, on what basis would you

design the models. A scaled model may be desired to facilitate observations on
velocity, pressure, forces, etc. It may be convenient to use water or a polymer fluid
as the working fluid in place of blood plasma. Discuss the principles of kinematic
and dynamic similarities in model design.

3.8 Assume that Casson's equation [Eq. (11) of Sec. 3.2] describes the viscosity of

blood. Both t, and  are functions of the hematocrit. Experimental data (see Fig.
3.1:5)on 1, may be presented by an empirical formula,
1, =(a, + a,H)>.
For normal blood, we may take a, = 0, a, = 0.625, when 1, is in dyn cm™2 and
H, the hematocrit, is a fraction. Experimental data on n can be expressed in many
ways. Let us assume that for large blood vessels (Cokelet et al., 1963)
t

n="no H'T)z.;,
where 1, is the viscosity of the plasma.
For the capillary blood vessels Casson’s equation does not hold: but we may
assume
1

#='Io—‘“—l _CH

We may take an average value C = 1.16 for pulmonary capillaries (Yen-Fung,
1973) and H in capillaries to be 0.45 times that of the systemic hematocrit in large
arteries. The peripheral resistance from capillary blood vessels may be assumed to
be a constant fraction of the total peripheral resistance. For the lung this fraction
may be as high as §. For other parts of the body, this fraction is perhaps 15%.

With these pieces of information, let us consider the question “What is the
best hematocrit that minimizes the work of the heart while the total amount of
oxygen delivered to the tissues of the body remains constant?” Such a question is
important in surgery or hemodilution, in deciding the proper amount of plasma
expander to use.

To answer this question we may consider blood flow as a flow in large and small
vessels in series. The pressure drop in each segment is equal to the flow times the
resistance which is proportional to blood viscosity. The total pressure difference
the heart has to create is the sum of the pressure drop of the segments. The rate at
which work is done by the heart is equal to the cardiac output (flow) times the
pressure difference. The total amount of oxygen delivered to the tissues is propor-
tional to the product of cardiac output and the hematocrit if the lung functions
normally.

What would be the optimum hematocrit if the blood pressure is fixed and
oxygen delivery is maximized?

39 The analysis of tube flow given in Sec. 3.3 ignores the radial migration of red cells

away from the wall. As discussed in Sec. 3.5, for blood flowing in a tube, the imme-
diate neighborhood of the solid wall is cell free. For human blood with a red
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cell concentration above 0.4 and tube diameter > 100 pm, the cell-free layerisa
about 4 um thick. For a dilute suspension, e.g., at red cell concentration 0.03, the
thickness of the cell-free layer is larger (see Fig. 3.5:1). Use the information on
the dependence of the constants 7yand 5 of the Casson equation on the hematocrit
as given in Problem 3.8 to revise the velocity profile and flow rate given in Egs.
(19) and (21) of Sec. 3.3. For this purpose assume the hematocrit to be constant
away from the cell-free layer next to the wall. This assumption is quote good at
normal hematocrit (0.2-0.5), but is rather poor for very dilute suspensions.

3.10 Consider the effect of non-Newtonian features of blood on the Couette flow of
blood between concentric circular cylinders. Assume the outer cylinder to rotate,
the inner cylinder stationary, Casson’s equation to apply, cell-free layers next to
solid walls with a thickness of a few (say, 4) um, and absence of end effects,

3.11 Analyze blood flow in a cone-plate or a cone-cone viscometer analogous to
Problem 3.10.

3.12 Blood exposed to air will form a surface layer at the interface, which has a specific
surface viscosity and surface elasticity, depending on the plasma constitution. In
viscometry using a Couette-flow or cone-plate arrangement, one must avoid
reading the torque due to the surface layer. A guard ring was invented to shield
the stationary cylinder from the torque transmitted through the surface layer.
The ring can be held in place by an arm that is fixed to the laboratory floor, and
unattached to the instrument. Propose a design for such a guard ring.

3.13 Consider the following thought experiment. Take normal red blood cells and
suspend them in an isotonic dextran solution of viscosity 7o- 1o €an be varied by
varying the concentration of dextran, Measure the viscosity at a sufficiently high
shear rate 7 so that the influence of cell aggregates is insignificant. Let the viscosity
be y = y9, where 7, is the “relative viscosity.” How would 1, vary with ny?
1, reflects the effect of cell deformation, Would the red cells be more readily
deformed in a more viscous suspending medium? Or less s0? Predict curves of n,
vs. ¥ for various values of Ng.

Note. The effect of cell deformation on the apparent viscosity depends on the
flow condition. Consider Couette flow which is a case investigated by Chien
(1972) experimentally. In this case n, decreases monotonically when the shear
strain rate increases.

3.14 Discuss the pros and cons for several types of viscometers from the point of view
of practical laboratory applications (convenience of operation, accuracy of data,
amount of fluid samples needed, data reduction procedures, and procedures
required for correction of €errors).

3.15 Consider the flow of a Newtonian viscous fluid in a straight tube of infinite length
and a rectangular cross section of width a and thickness b. Derive the equation
that governs the velocity distribution in the tube. Express the volume flow rate

3.16 A fluid is said to obey a power law viscosity if the shear stress 7 in a Couette flow
is related to the shear rate 7 by the equation
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)'-=1't" (n>0). (1)
k
This relationship is illustrated in Fig. P3.16.
b

p B
n>1 A

n<l

T T

0 0
Figure P3.16 Power-law viscosity. Curve A, n > 1; curve B,n<1.

For a steady flow of an incompressible fluid obeying the‘po'wer law (1) in a
circular cylindrical tube of radius R, show that the axial velocity is

1 (Ap)"(Rni-l —‘I‘"+l), (2)

YT rn T R\T

where 4p is the difference of pressures at the ends of a tube of length L. The rate
of flow (volume) is ,
n+ n
0=_"R""_ (ﬂ’) ’ 3)
2%+ 3K\ L

Let the average velocity be U = Q/aR?, then

s22-6))
U n+1 R

3.17 A material is said to be a Bingham plastic if the shear stress t is related to the shear
rate 7 by the equation

y= i(r — /) when 1> fp; and =0 when 1< fp.
s

The stress fp is called the yield stress. The constant ng is called Bingham viscosity.

The relation is illustrated in Fig. P3.17. o
The steady flow of a Bingham plastic in a circular cylindrical tube of length L

subjected to a pressure difference 4p can be analyzed in a manner similar to that
presented in Sec. 3.3. Show that:

4p 2 2fsL
—_—>— = , the
(a) If 2 > R and rs Ap n
u= i(R —rp)? when r<r,
4ngL
= [R? — r* = 2rg(R - 1)] when r>r,.
4ngL
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tan™ '(1/n)
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Figure P3.17 Flow curve of a Bingham plastic.

4 2
(b) Ipr < é, then there is no flow: u = 0.

R
The flow rate is zero if d4p < pg = 2Lf3/R, and is
nR* 4 1 p}
= e | Ap — = pp + — B i
0=gl -5 IR

3.18 A plastic material obeying the following relation between the shear stress T and
shear rate 7 is called a plastic of Herschel-Bulkley type:

o1 .
y=z(f_fH)" if ‘L’>fH. and ?=0 if ‘L'<f”,

where k, fy, and n > 0 are constants. The Bingham plastic of Problem 3.17 is a
special case in which n = 1, whereas the power law of Problem 3.16 is a special case
when fi; = 0. For the general case, find the velocity distribution in a steady laminar
flow of an incompressible Herschel-Bulkley fluid in a circular cylindrical tube.

3.19 Discqss the turbulent flow of water in a circular cylindrical tube. Consider the
question of the relationship of mean velocity of flow with pressure gradient. Does

it remain linee'xr? How is the flow rate related to pressure gradient? Discuss resis-
tance to flow in a turbulent regime.

Note. Many books deal with this subject. See references listed in Chapter 11
of Fung, A First Course in Continuum Mechanics.

3.20 Prove. that blood viscosity as we know it cannot be represented by the Boltzmann
equation

ww=[_ct- t)d—:ii)dr,

whcr.e t(t) is the shear stress, y(t) is the shear strain rate, and G(t — 1) is a
continuous function of the variable t — z.

3.21 A Newtonian fluid flows steadily through a capillary tube whose radius R is

R(x)=a+ esin%
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where a, L, and ¢ are constants, with ¢ « a, L > a. The Reynolds number of flow
is small, « 1. What is the pressure distribution in the tube as a function of x?

Hint. Under the assumption that ¢/a « 1,a/L <« 1, you may treat the Poiseuille
equation as a differential equation for the pressure p:

dp _ _8K0
dx nR*

Q is constant, R is variable. Solve the equation above as a power series in g/a.

3.22 Consider an elastic tube whose radius R varies with the pressure according to
the following law:

R(x) = a(x)[1 + ap(x)],

where p is the local transmural pressure, a is the flexibility coefficient, and a(x) is
the radius of the tube when p = 0. a(x) is a function of x and is not a constant.
For a constant blood viscosity # and a one-dimensional flow in a tube of length
L, what is the volumetric flow rate 0 in the tube as a function of the pressures at
the entry (p,) and exit (p,) of the tube ? a is a constant. Use the hint given in Prob.
320

3.23 Derive the following equations for the laminar steady flow of a non-Newtonian
incompressible fluid in a circular cylindrical tube; under the assumption that
the shear stress t,. at the wall is a single-valued function of the local rate of
deformation:

ot d [8V 3
™3, (3) *3
where ,, = shear rate at the wall,
D = tube diameter,
AP = axial pressure difference for two points at a distance L apart,
L = axial distance,
V = bulk average velocity.
Ref. Markovitz, 1968. Physics Today, 21, 23-30.
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CHAPTER 4

Mechanics of Erythrocytes, Leukocytes,
and Other Cells

4.1 Introduction

In the previous chapter, we studied the flow properties of blood. In this
chapter, we turn our attention to the blood cells. We give most of the space
to the red blood cells, but treat the white blood cells and other cells toward
the end of the chpater.

Red blood cells are the gas exchange units of animals. They deliver oxygen
to the tissues of all organs, exchange with CO,, and return to the lung to
unload CO, and soak up O, again. This is, of course, what circulation is all
about. The heart is the pump, the blood vessels are the conduits, and the
capillary blood vessels are the sites where gas exchange between blood and
tissue or atmosphere takes place.

If one observes human red blood cells suspended in isotonic solution under
a microscope, their beautiful geometric shape cannot escape attention (see Fig.
4.1:1; which shows two views of a red blood cell, one a plane view, and one
a side view). The cell is disk-shaped. It has an almost perfect symmetry with
respect to the axis perpendicular to the disk. The question is often asked: Why
are human red cells so regular? Why are they shaped the way they are? When
red cells grow in the bone marrow, they have nuclei, and their shape is
irregular. Then as they mature, they expel their nuclei and enter the blood.
They circulate in the body for 120 days or so, then swell into spherical shape
and become hemolyzed by macrophages in the spleen.

In circulating blood, however, the red blood cells are severely deformed.
Figure 4.1:2 shows photographs of blood flow in the capillary blood vessels
in the mesentery of the rabbit and the dog. Note how different the cell shapes
are compared with the isolated floating cells shown in Fig. 4.1:1! Some
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