12.9 Large Eddy Simulation (LES) Model Theory

12.8.3 SST k-w RANS Model

The dissipation term of the turbulent kinetic energy (see Section 12.5.1: Modeling the Tur-
bulence Dissipation) is modified for the DES turbulence model as described in Menter’s
work [238] such that

Yy = pBkw f- (12.8-6)

where fg« is no longer a constant equal to 1 as in the SST k-w model (see Section 12.5.1: Mod-
eling the Turbulence Dissipation), but is now expressed as

fa+ = mazx (CstA’ 1) (12.8-7)

where Cye 18 a calibration constant used in the DES model and has a value of 0.61, A is
the maximum local grid spacing (Az, Ay, Az) and fs- is defined in Equation 12.5-16.

The turbulent length scale is the parameter that defines this RANS model:

~Vk
=

L, (12.8-8)

12.9 Large Eddy Simulation (LES) Model Theory

12.9.1 Overview

Turbulent flows are characterized by eddies with a wide range of length and time scales.
The largest eddies are typically comparable in size to the characteristic length of the
mean flow. The smallest scales are responsible for the dissipation of turbulence kinetic
energy.

It is possible, in theory, to directly resolve the whole spectrum of turbulent scales using
an approach known as direct numerical simulation (DNS). No modeling is required in
DNS. However, DNS is not feasible for practical engineering problems involving high
Reynolds number flows. The cost required for DNS to resolve the entire range of scales
is proportional to Ref‘, where Re; is the turbulent Reynolds number. Clearly, for high
Reynolds numbers, the cost becomes prohibitive.
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Modeling Turbulence

In LES, large eddies are resolved directly, while small eddies are modeled. Large eddy
simulation (LES) thus falls between DNS and RANS in terms of the fraction of the
resolved scales. The rationale behind LES can be summarized as follows:

e Momentum, mass, energy, and other passive scalars are transported mostly by large
eddies.

e Large eddies are more problem-dependent. They are dictated by the geometries
and boundary conditions of the flow involved.

e Small eddies are less dependent on the geometry, tend to be more isotropic, and
are consequently more universal.

e The chance of finding a universal turbulence model is much higher for small eddies.

Resolving only the large eddies allows one to use much coarser mesh and larger times-
step sizes in LES than in DNS. However, LES still requires substantially finer meshes
than those typically used for RANS calculations. In addition, LES has to be run for
a sufficiently long flow-time to obtain stable statistics of the flow being modeled. As
a result, the computational cost involved with LES is normally orders of magnitudes
higher than that for steady RANS calculations in terms of memory (RAM) and CPU
time. Therefore, high-performance computing (e.g., parallel computing) is a necessity for
LES, especially for industrial applications.

The following sections give details of the governing equations for LES, the subgrid-scale
turbulence models, and the boundary conditions.

12.9.2 Filtered Navier-Stokes Equations

The governing equations employed for LES are obtained by filtering the time-dependent
Navier-Stokes equations in either Fourier (wave-number) space or configuration (physical)
space. The filtering process effectively filters out the eddies whose scales are smaller than
the filter width or grid spacing used in the computations. The resulting equations thus
govern the dynamics of large eddies.

A filtered variable (denoted by an overbar) is defined by

B(x) = /D 6(x)G (x, x')dx’ (12.9-1)

where D is the fluid domain, and G is the filter function that determines the scale of the
resolved eddies.
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12.9 Large Eddy Simulation (LES) Model Theory

In FLUENT, the finite-volume discretization itself implicitly provides the filtering opera-
tion:

3(x) = é [otx)ax, xev (12.9-2)

where V' is the volume of a computational cell. The filter function, G(x,x’), implied here
is then

1)V, x' eV

0, x’ otherwise (12.9-3)
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The LES capability in FLUENT is applicable to compressible flows. For the sake of concise
notation, however, the theory is presented here for incompressible flows.

Filtering the Navier-Stokes equations, one obtains

ap 0
o+ (o) =0 (12.9-4)
and
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where o;; is the stress tensor due to molecular viscosity defined by

ou; 6@]' 2 o0y
= _ 2, %M 12.9-

and 7;; is the subgrid-scale stress defined by

Tij = pUll; — PU;U; (12.9-7)
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12.9.3 Subgrid-Scale Models

The subgrid-scale stresses resulting from the filtering operation are unknown, and re-
quire modeling. The subgrid-scale turbulence models in FLUENT employ the Boussinesq
hypothesis [142] as in the RANS models, computing subgrid-scale turbulent stresses from

1 _

Tij — ngkéij = —2/1,7551‘]‘ (12.9—8)
where f1; is the subgrid-scale turbulent viscosity. The isotropic part of the subgrid-scale
stresses Ty is not modeled, but added to the filtered static pressure term. S;; is the
rate-of-strain tensor for the resolved scale defined by

- 1 (ou o
5,1 (2 ) 1209

For compressible flows, it is convenient to introduce the density-weighted (or Favre)
filtering operator:

Ry
P

¢ (12.9-10)

The Favre Filtered Navier-Stokes equation takes the same form as Equation 12.9-5. The
compressible form of the subgrid stress tensor is defined as:

This term is split into its isotropic and deviatoric parts

1 1
Tij =Ty — nglaz’j + ngz%‘ (12.9-12)
~——

deviatoric  isotropic

The deviatoric part of the subgrid-scale stress tensor is modeled using the compressible
form of the Smagorinsky model:

15@-1-5”-) (12.9-13)

1
Tij — 5 Tudi; = 2pu(6ij — 3

3
As for incompressible flows, the term involving 7j; can be added to the filtered pressure
or simply neglected [99]. Indeed, this term can be re-written as Ty = yM?,sp where
M,y is the subgrid Mach number. This subgrid Mach number can be expected to be
small when the turbulent Mach number of the flow is small.
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FLUENT offers four models for y;: the Smagorinsky-Lilly model, the dynamic Smagorinsky-
Lilly model, the WALE model, and the dynamic kinetic energy subgrid-scale model.

Subgrid-scale turbulent flux of a scalar, ¢, is modeled using s subgrid-scale turbulent
Prandtl number by

e 09

P Er 12.9-14

QJ oy ax] ( )
where g; is the subgrid-scale flux.

In the dynamic models, the subgrid-scale turbulent Prandtl number or Schmidt number
is obtained by applying the dynamic procedure originally proposed by Germano [116] to
the subgrid-scale flux.

Smagorinsky-Lilly Model

This simple model was first proposed by Smagorinsky [337]. In the Smagorinsky-Lilly
model, the eddy-viscosity is modeled by

p = pL?

S| (12.9-15)

where L, is the mixing length for subgrid scales and )?‘ =/25;;S;;. In FLUENT, L; is
computed using

L, = min (rd, C,V''/?) (12.9-16)

where x is the von Karmén constant, d is the distance to the closest wall, Cy is the
Smagorinsky constant, and V' is the volume of the computational cell.

Lilly derived a value of 0.17 for C for homogeneous isotropic turbulence in the inertial
subrange. However, this value was found to cause excessive damping of large-scale fluc-
tuations in the presence of mean shear and in transitional flows as near solid boundary,
and has to be reduced in such regions. In short, C; is not an universal constant, which
is the most serious shortcoming of this simple model. Nonetheless, C value of around
0.1 has been found to yield the best results for a wide range of flows, and is the default
value in FLUENT.
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Dynamic Smagorinsky-Lilly Model

Germano et al. [116] and subsequently Lilly [211] conceived a procedure in which the
Smagorinsky model constant, Cj, is dynamically computed based on the information
provided by the resolved scales of motion. The dynamic procedure thus obviates the
need for users to specify the model constant C in advance. The details of the model
implementation in FLUENT and its validation can be found in [181].

The Cs obtained using the dynamic Smagorinsky-Lilly model varies in time and space
over a fairly wide range. To avoid numerical instability, in FLUENT, Cj is clipped at zero
and 0.23 by default.

Wall-Adapting Local Eddy-Viscosity (WALE) Model
In the WALE model [262], the eddy viscosity is modeled by

(54,520
e = pLz — J Y (129—17)
(55572 + (SEST
where L, and Sfj in the WALE model are defined, respectively, as

L, = min (rd, C,V''/?) (12.9-18)

1 1 au;

d _ —2 —2 —2 - 7
Sij = B (gij + gji) - §5ij9kk y Gij = 8755] (12.9-19)

In FLUENT, the default value of the WALE constant, C,,, is 0.325 and has been found
to yield satisfactory results for a wide range of flow. The rest of the notation is the
same as for the Smagorinsky-Lilly model. With this spatial operator, the WALE model
is designed to return the correct wall asymptotic (y*) behavior for wall bounded flows.
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Dynamic Kinetic Energy Subgrid-Scale Model

The original and dynamic Smagorinsky-Lilly models, discussed previously, are essentially
algebraic models in which subgrid-scale stresses are parameterized using the resolved ve-
locity scales. The underlying assumption is the local equilibrium between the transferred
energy through the grid-filter scale and the dissipation of kinetic energy at small sub-
grid scales. The subgrid-scale turbulence can be better modeled by accounting for the
transport of the subgrid-scale turbulence kinetic energy.

The dynamic subgrid-scale kinetic energy model in FLUENT replicates the model pro-
posed by Kim and Menon [184].

The subgrid-scale kinetic energy is defined as

Kgs = ; (u? - 77) (12.9-20)

sgs

which is obtained by contracting the subgrid-scale stress in Equation 12.9-7.

The subgrid-scale eddy viscosity, p, is computed using kg as

e = Crk2A ¢ (12.9-21)

sgs

where Ay is the filter-size computed from Ay = Vi3,

The subgrid-scale stress can then be written as

2 _
Tij — gksgsaij = —2C,kY2AS;; (12.9-22)

sgs

ksgs is obtained by solving its transport equation

L 0.k , k3/2
a'I’fsgs + aujksgs o aﬂz sgs a (,ut 8ksgs> (129_23)

= 71— — (. il
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In the above equations, the model constants, Cy and C., are determined dynamically [184].
oy is hardwired to 1.0. The details of the implementation of this model in FLUENT and

its validation is given by Kim [181].
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12.9.4 Inlet Boundary Conditions for the LES Model

This section describes the three algorithms available in FLUENT to model the fluctuating
velocity at velocity inlet boundaries.

No Perturbations

The stochastic components of the flow at the velocity-specified inlet boundaries are ne-
glected if the No Perturbations option is used. In such cases, individual instantaneous
velocity components are simply set equal to their mean velocity counterparts. This op-
tion is suitable only when the level of turbulence at the inflow boundaries is negligible or
does not play a major role in the accuracy of the overall solution.

Vortex Method

To generate a time-dependent inlet condition, a random 2D vortex method is considered.
With this approach, a perturbation is added on a specified mean velocity profile via a
fluctuating vorticity field (i.e. two-dimensional in the plane normal to the streamwise
direction). The vortex method is based on the Lagrangian form of the 2D evolution
equation of the vorticity and the Biot-Savart law. A particle discretization is used to
solve this equation. These particles, or “vortex points” are convected randomly and
carry information about the vorticity field. If N is the number of vortex points and A
is the area of the inlet section, the amount of vorticity carried by a given particle ¢ is
represented by the circulation I'; and an assumed spatial distribution n:

B wAk(x,y)
Lizy) = 4J3Nphmm-ann@n (12.9-24)
— 1 —|z|? /202 —|z|?/20?

where k is the turbulence kinetic energy. The parameter ¢ provides control over the size
of a vortex particle. The resulting discretization for the velocity field is given by

L 1T X (@ —3) x D)(1 — el TP/
() = 5> T PP (12.9-26)
=1 ?
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Where 2" is the unit vector in the streamwise direction. Originally [327], the size of
the vortex was fixed by an ad hoc value of o. To make the vortex method generally
applicable, a local vortex size is specified through a turbulent mixing length hypothesis. o
is calculated from a known profile of mean turbulence kinetic energy and mean dissipation
rate at the inlet according to the following:

Ck3/2
2¢

o= (12.9-27)
where ¢ = 0.16. To ensure that the vortex will always belong to resolved scales, the
minimum value of ¢ in Equation 12.9-27 is bounded by the local grid size. The sign
of the circulation of each vortex is changed randomly each characteristic time scale 7.
In the general implementation of the vortex method, this time scale represents the time
necessary for a 2D vortex convected by the bulk velocity in the boundary normal direction
to travel along n times its mean characteristic 2D size (o,,), where n is fixed equal to
100 from numerical testing. The vortex method considers only velocity fluctuations in
the plane normal to the streamwise direction.

In FLUENT however, a simplified linear kinematic model (LKM) for the streamwise
velocity fluctuations is used [231]. It is derived from a linear model that mimics the
influence of the two-dimensional vortex in the streamwise mean velocity field. If the
mean streamwise velocity U is considered as a passive scalar, the fluctuation u’ resulting
from the transport of U by the planar fluctuating velocity field v’ is modeled by

/

W =—7-g (12.9-28)

where ¢ is the unit vector aligned with the mean velocity gradient VU. When this mean
velocity gradient is equal to zero, a random perturbation can be considered instead.

“ Since the vortex method theory is based on the modification of the velocity
field normal to the streamwise direction, it is imperative that the user
creates an inlet plane normal (or as close as possible) to the streamwise
velocity direction.

Spectral Synthesizer

The spectral synthesizer provides an alternative method of generating fluctuating velocity
components. It is based on the random flow generation technique originally proposed by
Kraichnan [186] and modified by Smirnov et al. [338]. In this method, fluctuating velocity
components are computed by synthesizing a divergence-free velocity-vector field from
the summation of Fourier harmonics. In the implementation in FLUENT, the number of
Fourier harmonics is fixed to 100.
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