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Abstract Relationships between small and large scales of motion in turbulent
flows are of much interest in large-eddy simulation of turbulence, in which small
scales are not explicitly resolved and must be modeled. This paper reviews models
that are based on scale-invariance properties of high-Reynolds-number turbulence in
the inertial range. The review starts with the Smagorinsky model, but the focus is on
dynamic and similarity subgrid models and on evaluating how well these models
reproduce the true impact of the small scales on large-scale physics and how they
perform in numerical simulations. Various criteria to evaluate the model performance
are discussed, including the so-called a posteriori and a priori studies based on direct
numerical simulation and experimental data. Issues are addressed mainly in the con-
text of canonical, incompressible flows, but extensions to scalar-transport, compress-
ible, and reacting flows are also mentioned. Other recent modeling approaches are
briefly introduced.

1. INTRODUCTION

One of the key challenges in turbulence research is to understand relationships
between the structure, dynamics, and statistics of small and large scales of motion.
Phenomenologically, an important property of turbulence that has received much
attention in the past decades is scale invariance. Scale invariance means that
certain features of the flow remain the same in different scales of motion. Such
a symmetry can be interpreted as a particularly simple relationship between small
and large scales and can thus become a useful ingredient in turbulence models.

The idea of scale invariance in turbulence dates back to Richardson (1922),
who enunciated it in qualitative terms in his celebrated rhyme, which has been
quoted a great many times but is worth repeating here nonetheless:

Big whorls have little whorls,
which feed on their velocity,
and little whorls have lesser whorls,
and so on to viscosity (in the molecular sense).
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2 MENEVEAU n KATZ

Quantitatively, when there exists a range of scales (the inertial range) in which
effects of viscosity, boundary conditions, and large-scale structures are not impor-
tant, dimensional analysis (Kolmogorov 1941; for a modern account, see Frisch
1995) leads to the well-known universal power-law spectrum

2/3 15/3E(k) 4 c e k . (1)K

Here cK is the Kolmogorov constant, k is the wavenumber magnitude, and e is
the dissipation rate of kinetic energy caused by molecular viscosity m. Equation
1, which is well supported by a large body of experimental data (e.g. see Sad-
doughi & Veeravalli 1994, Sreenivasan 1995), implies scale invariance in the
sense that the quantity c 5/3E(ck) remains unchanged in the inertial range under
the scale transformation k r ck. Several other features of turbulence have been
shown to exhibit scale invariance (Sreenivasan 1991, Sreenivasan & Antonia
1997).

The need for deeper insights into relationships between large and small scales
has grown because of the emergence of large-eddy simulation (LES). In LES,
one separates the motion into small and large scales by spatially filtering the
velocity field with a kernel, GD(x) (Leonard 1974, Rogallo & Moin 1984, Lesieur
& Métais 1996). The convolution kernel, of which the Gaussian filter

exp(16x2/D2), is an example (other filters are discussedgaus 2 3/2G (x) 4 [6/(pD )]D

in Section 2.2), eliminates scales smaller than D. The LES equations are obtained
by filtering the Navier-Stokes equations and read

1
2 D] ũ ` ũ •¹ũ 4 1 ¹p̃ ` m¹ ũ 1 ¹•s , ¹• ũ 4 0, (2)t q

where ˜ represents a convolution with GD(x). Equation 2 is amenable to numerical
discretization at a spatial resolution of order D, which is typically much more
affordable than direct numerical simulation (DNS), which requires resolutions
near the Kolmogorov scale, g. Equation 2 includes the divergence of sD, the so-
called subgrid-scale (SGS) stress tensor:

;Ds 4 u u 1 ũ ũ . (3)ij i j i j

To close Equation 2, must be expressed in terms of the resolved (filtered)Dsij

velocity field. To develop SGS models, some guidance has been provided in the
past by approaches traditionally used in modeling of the Reynolds stresses. There,
spatial features of the mean velocity field, such as its gradients, have been used.
Principles of Galilean invariance and realizability have been useful in severely
constraining the many expressions that would otherwise be possible (e.g. Speziale
1991). Besides spatial features, history effects can also be taken into account by,
for instance, including additional transport equations. In LES, besides the two
axes of space and time, the axis of scale emerges. By the very nature of LES, the
turbulent velocity fields at scales larger than D are available during the simulation.
When such scale information is used for SGS modeling, the opportunities for
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SCALE-INVARIANCE AND MODELS FOR LES 3

improvements expand considerably. Concomitant with such new directions, chal-
lenges arise that are quite distinct from those typically encountered in Reynolds
stress modeling.

The main goal of this article is to examine the current literature on the use of
scale information in models for sD and to ascertain how well the resulting models
reproduce the impact of small-scale turbulence and perform in simulations.
Applying the Kolmogorov dimensional analysis to the SGS stress tensor shows
that, for D in the inertial range, sD ; 2[(eD)2/3]. This relationship suggests scale
invariance; that is, certain features of c12/3scD remain unchanged under the rescal-
ing D r cD. Different scale invariance-based models discussed in this article
differ in what feature of the stress is assumed to remain unchanged. Differences
include whether the invariance holds locally or on average or whether it applies
to individual tensor elements or only for certain tensor contractions.

In Section 2 we begin with a brief discussion of how models are evaluated.
Section 3 recalls the main features of the traditional Smagorinsky model. Together
with a growing set of applications to a variety of flows, the dynamic Smagorinsky
model (Germano et al 1991) is reviewed in Section 4. Section 5 addresses the so-
called similarity models (Bardina et al 1980, Liu et al 1994) and examines a
growing body of literature on their applications. Section 6 continues the discus-
sion initiated in Section 2, providing more details and recent developments on
criteria used to evaluate SGS models. Effects of coherent structures, intermittency,
and nonequilibrium conditions are discussed in Section 7. Recent new classes of
SGS models are summarized in Section 8, and the conclusions are presented in
Section 9.

This review concentrates on modeling of the SGS stress. However, for appli-
cations of LES, several other issues such as numerical techniques, including the
analysis of discretization errors (Ghosal 1996, Kravchenko & Moin 1997), filter
inhomogeneity (Ghosal & Moin 1995), and formulations in curvilinear coordinate
systems (Jordan 1999), are also crucial. Another current issue concerns the need
to model the wall shear stress in simulations of wall-bounded flows that do not
explicitly resolve the viscous sublayer (see Mason 1994, Balaras et al 1996).
Specification of turbulent inflow (or initial) conditions is also a challenge (Lund
et al 1998).

2. STUDYING SUBGRID-SCALE MODELS

2.1 A Posteriori and A Priori Studies

To evaluate the performance of a model for SGS stress [denoted henceforth by
(x, t)], the results from a simulation that uses the model are compared withD,modsij

available data. The data can be from DNS or from experiments, typically in the
form of mean velocity and Reynolds stress distributions, spectra, etc. Piomelli et
al (1988) coined the name a posteriori tests for such comparisons to emphasize
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4 MENEVEAU n KATZ

that the model is evaluated only after it has been implemented in a simulation
(see Sections 4 and 5). A posteriori tests are considered to be the ultimate tests
of model performance. However, owing to the integrated nature of results (com-
bining effects of numerical discretization, time integration, and averaging), a pos-
teriori tests typically do not provide much insight into the detailed physics of
models and the reasons that they do or do not work.

A complementary and perhaps more fundamental approach is based on direct
comparison between and . Such a comparison requires data atD D,mods (x, t) s (x, t)ij ij

high spatial resolution that are sufficient to resolve the subgrid-scale range.
is evaluated based on its definition (Equation 3), and is eval-D D,mods (x, t) s (x, t)ij ij

uated by processing the filtered data. For such analysis, Piomelli et al (1988)
coined the name a-priori test to emphasize that no actual LES is involved. The
data for such studies can be generated by using DNS, which allows processing
the full three-dimensional velocity field, but is limited to low Reynolds numbers
and simple geometries. Clark et al (1979), McMillan & Ferziger (1979), and
Bardina et al (1980) are early examples of such studies, and Piomelli et al (1991),
Domaradzki et al (1993), and Härtel et al (1994) are more recent examples. An
alternative that complements DNS is to use experimental data. This enables the
study of high-Reynolds-number flows, but it comes at the cost of providing partial
information, because only a subset of all the relevant parameters can be measured.
For instance, using planar particle image velocimetry (PIV), two-dimensional
distributions of four tensor elements can be measured by means of spatial filtering
in two directions (see Liu et al 1994, 1995, for data in the far-field of a round
jet; Bastiaans et al 1998 for results in free convection; and Liu et al 1999 for
rapidly distorted turbulence). Concentration measurements using laser-induced-
flourescence (Dahm et al 1991) have been analyzed to measure the SGS variance
of a conserved scalar (Cook & Riley 1994). Using hot-wire single-point sensors,
Meneveau (1994), as well as Meneveau & O’Neil (1994), studied grid turbulence,
and O’Neil & Meneveau (1997) considered turbulence in a cylinder wake. Porté-
Agel et al (1998a) studied turbulence and scalar transport in the atmospheric
boundary layer by using a sonic anemometer. These single-point data were ana-
lyzed by using temporal filtering, which was interpreted as one-dimensional spa-
tial filtering in the streamwise direction, by invoking the Taylor hypothesis. To
achieve quantitatively more accurate results, two-dimensional filtering should be
used. It can be approximated by an array of point sensors arranged along a line
perpendicular to the mean velocity. This approach has been proposed by Tong et
al (1998) and applied by Porté-Agel et al (1999) for sonic anemometer measure-
ments in the atmospheric boundary layer. It has also been applied to hot-wire
measurements in laboratory turbulence (Cerutti & Meneveau 1999). The accuracy
of two-dimensional filtering and Taylor’s hypothesis has been addressed for wall-
bounded flows by using DNS (Murray et al 1996) and LES (Tong et al 1998).
Finally, techniques for multipoint three-dimensional velocity measurements, e.g.
holographic PIV (Barnhart et al 1994, Meng & Hussain 1995, Zhang et al 1997),
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SCALE-INVARIANCE AND MODELS FOR LES 5

are beginning to provide crucial data on the spatial distribution of all the SGS
tensor components (Tao et al 1999).

2.2 Separating Between Large and Small Scales

Spatial filtering (Leonard 1974) is the most common approach to conceptually,
and in some models operationally, decompose the velocity field into large
(resolved) and small (SGS) scales. Pope (2000) presents an exhaustive discussion
of various filters and their properties. The most common filters are the spectral
cutoff filter , the Gaussian filter alreadysp 3 gausG (x) 4 P sin(px /D)/(px ) G (x)D k41 k k D

introduced in Section 1, and the box or top-hat filter if |xk| , D/2box 13G (x) 4 DD

for all k and GD(x) 4 0 if |xk| $ D/2. The spectral cutoff filter cleanly separates
between scales. However, when filtering spatially localized phenomena, it causes
nonlocal oscillatory behavior. Moreover, because has negative lobes, thespGD

resulting stress tensor does not follow realizability conditions (Vreman et al
1994b) and, for LES of a conserved scalar, the filtered scalar can fall outside
allowable bounds. The box filter, on the other hand, has good spatial localization
but does not allow unambiguous separation between scales because of spectral
overlap. The Gaussian filter has intermediate localization properties in both physi-
cal and spectral space, although it is closer to the box filter.

Another method of separating between large and small scales is expanding the
velocity field in a set of orthonormal basis-functions and then truncating the
summation to define the large-scale field (a projection). The discarded modes
represent the SGS range. For Fourier modes, this method is equivalent to a spec-
tral cutoff filter. For other basis functions that are spatially more compact such
as wavelets (e.g. see Meneveau 1991), or for POD eigenfunctions (e.g. see Ber-
kooz et al 1993), the task of deriving the equations for the resolved field is more
complicated than with homogeneous spatial filters. Hence, to date these directions
have not been much pursued for LES. Recently, Farge et al (1999) have proposed
an interesting separation into non-Gaussian resolved, and Gaussian unresolved,
motions in two-dimensional turbulence.

2.3 Comparisons Between Real and Modeled Stresses

Once the data are processed to generate signals or fields of measured sD(x, t) and
sD,mod(x, t), one must decide how precisely they should be compared. Contrary
to the traditional Reynolds stress tensor, sD(x, t) and sD,mod(x, t) are fluctuating
stochastic variables. Figure 1a is a representative field of (Liu et al 1994)Ds (x, t)12

demonstrating a high degree of spatial variability. An integrated figure of merit
of the local agreement between real and modeled stresses within realizations of
the flow has often been given in terms of their correlation coefficient q(sD, sD,mod)
(Clark et al 1979); representative results are presented in Sections 3 and 5. Very
often, however, one is not interested in so much detail, but only in the ability of
LES to generate the correct flow statistics, such as distributions of mean and rms
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6 MENEVEAU n KATZ

Figure 1 Contour plots of subgrid-scale (SGS) shear stress distribution in the far-field
of a round turbulent jet measured by using particle image velocimetry. (a) The experi-
mental SGS stress; (b) the prediction of the Smagorinsky model with cs 4 0.1 (replotted
from Liu et al 1994).

velocities, spectra, etc. It is often argued that the most important statistical feature
of sD is how it affects the mean dissipation of kinetic energy (for supporting
arguments, see Section 6). The mean resolved kinetic energy _ (Piomelli et al
1991) evolves according to

]_ ]_ ]Aj D¯ ¯ ˜` ^ũ & 4 1 1 2m ^S S & 1 P ` ^ f ũ &. (4)j ij ij i i]t ]x ]xj j

Here _ 4 1⁄2 ^ũiũi&, and the brackets denote ensemble averaging. Aj is a flux term
consisting of resolved velocity third-order moments, as well as pressure, SGS
stress, and viscous stress transport. The second term on the right hand side is
dissipation of resolved energy due to molecular viscosity. This term is negligible
for large D/g and high Reynolds numbers. The last term is energy injection by
body forces. In the inertial range, the most important effect of the unresolved
scales on the evolution of _ is , the so-called SGS dissipation ofD D˜P [ 1^s S &ij ij

kinetic energy. Typically PD acts as a sink of resolved kinetic energy. It also
appears as a source term for SGS kinetic energy 1⁄2 . In fact, PD 4 e when theDsii

SGS kinetic energy is assumed to be in equilibrium and D is in the inertial range
(Lilly 1967). Equation 4 indicates that a model must faithfully reproduce PD so
that the LES computes the correct evolution of _. However, as discussed in
Section 6, providing the correct mean dissipation is in general only a necessary
but not a sufficient condition to reproduce the correct flow statistics.

Given the special importance of SGS energy dissipation, it has been the focus
of a number of studies. For instance, Piomelli et al (1991) study the details of

and its average in DNS of plane channel flow. Before averaging, a sig-D˜1s Sij ij
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SCALE-INVARIANCE AND MODELS FOR LES 7

nificant portion of the flow exhibits backscatter, that is, negative values of
in which energy is transferred from SGS to resolved scales. The mean,D˜1s Sij ij

PD, however, is found to be positive. A priori studies of the SGS energy dissi-
pation in isotropic turbulence have shown that most of the energy that is trans-
ferred to the SGS range below D originates from the octave above, that is, from
scales between D and 2D (Domaradzki et al 1993).

3. SMAGORINSKY MODEL

The Smagorinsky model (Smagorinsky 1963, Lilly 1967) for the deviatoric part
of the stress, , is defined asD D1s 1 ⁄3 s dij kk ij

D,smag ˜s 4 12m S , (5)ij T ij

where mT is the (scalar) eddy viscosity and S̃ij 4 1⁄2(]j ũi ` ]i ũj) is the resolved
strain-rate tensor. mT is constructed as the product of a length scale (;D) and a
velocity difference at that scale [;D|S̃|, where |S̃| [ (2S̃ijS̃ij)1/2]. Thus

D 2 ˜m 4 (c D) |S|, (6)T s

where is the Smagorinsky coefficient which, in principle, may depend on scale.Dcs

The Smagorinsky model has been described previously by Moin & Kim (1982),
Rogallo & Moin (1984), Lesieur & Métais (1996), and in depth by Pope (2000).

A comparison between , shown in Figure 1b, and the real distribution,D,smags12

shown in Figure 1a, exhibits significant differences. This deficiency of eddy vis-
cosity models was originally observed from DNS data by Clark et al (1979),
McMillan & Ferziger (1980), and Bardina et al (1980). Quantitatively, the cor-
relation coefficient q(sD, sD,smag) typically ranges from 0 to ;0.25 (Clark et al
1979, Liu et al 1994). The correlations are slightly larger (q ; 0.4) when the
SGS force ¹ • sD is compared with ¹ • sD,smag. Typically the correlation is still
higher (q ; 0.5–0.7) when comparing the local SGS dissipation rate withD˜1s Sij ij

(Clark et al 1979).D,smag˜1s Sij ij

The foregoing comparisons imply that, for an individual realization of the flow,
the eddy viscosity model does not adequately capture the proper physics of SGS
turbulence. This behavior is in contrast to molecular viscosity. For instance, a
priori testing to study the viscous stress tensor in the context of the kinetic theory
of gases would consist of measuring all of the molecules’ instantaneous fluctu-
ating velocities, computing the stress tensor by averaging inside a small control
volume, and comparing with the imposed macroscopic shear. If the control vol-
ume is large compared with the mean free path and the macroscopic shear is low
compared with the inverse collision times, the relationship between the stress and
shear should be (nearly) deterministic and linear (Landau & Lifshitz, 1980). In
turbulence, there is no such separation of length and time scales. Therefore, it is
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8 MENEVEAU n KATZ

not surprising that comparisons of with S̃ij yield poor results. This problemDs (x, t)ij

is a familiar one in the context of Reynolds stresses (see e.g. Speziale 1991),
where it occurs at the largest scales of turbulence. None of the several variants
of the eddy viscosity model (see Sections 3.1 and 4) is exempt from this funda-
mental problem.

As discussed in Section 2, the Smagorinsky model can also be tested a priori
by comparing mean SGS dissipation, that is, comparing withD D˜1^s S & 4 Pij ij

. For homogeneous turbulence, can be adjusted to enforce thatD,smag D˜1^s S & cij ij s

. This procedure was first used by Lilly (1967) in his landmarkD D,smag˜ ˜^s S & 4 ^s S &ij ij ij ij

paper, for isotropic turbulence with D in the inertial range. Equation 4 for statis-
tically stationary isotropic turbulence with D k g yields ^ fi ũi& 4 PD. Using the
equilibrium assumption PD 4 e and replacing with the Smagorinsky model,Dsij

one obtains

3/2 D 2 3/2˜ ˜e 4 2 (c D) ^(S S ) & (7)s ij ij

as a necessary condition for the model to reproduce the correct energetics of the
resolved scales. With the approximation , a Kolmogorov spectrum3 2 3/2¯ ¯^|S| & . ^|S| &
(Equation 1), and a spectral cutoff filter to evaluate ^|S̄|2&, Lilly’s (1967) classical
result (for cK 4 1.6) is obtained. The coefficient isD 11 4/3c 4 p (2/3c ) ' 0.16s K

thus scale-invariant in the inertial range. When dealing with grids of unequal sizes
in each direction (e.g. D1 , D2 , D3), the above derivation can be repeated by
using an anisotropic three-dimensional filter (Scotti et al 1993). To zero order in
log(ai) (where a1 4 D1/D3 and a2 4 D2/D3 are the two grid aspect ratios), the
analysis yields that D in the definition of mT must be replaced with a length-scale
based on the cell volume, Deq 4 (D1D2D3)1/3. This expression is equal (and thus
serves as a formal justification) to the empirical length scale originally proposed
by Deardorff (1974). For very large filter anisotropies, Scotti et al (1993) show
that, in addition to the use of Deq, should be replaced with ƒ(a1, a2), whereD Dc cs s

ƒ(a1, a2) ' cosh{(4/27)[(ln a1)2 1 ln a1 ln a2 ` (ln a2)2]}1/2.

3.1 Other Eddy Viscosity Models

There are many variants of the Smagorinsky model that differ mainly in how the
eddy viscosity is defined. One variant is the so-called kinetic energy model (Schu-
mann 1975), in which mT 4 Cee

1/2D and . An additional scalar transportD1e 4 ⁄2 sii

equation for e is solved, in which diffusion and dissipation terms must be mod-
eled. This approach incorporates memory effects and has been popular in simu-
lations of atmospheric flows (Moeng 1984, Shaw & Schumann 1992, Mason
1994).

Kraichnan (1976) used two-point closures to show that, if one considers in
detail how the eddy viscosity acts upon different wavenumber modes, the eddy
viscosity must be allowed to depend on the wavenumber magnitude based on a
function mT(k, kc) (the spectral eddy viscosity), where kc 4 p/D. For the spectral
cutoff filter, the closures predict that mT(k, kc) has a cusp near kc (Kraichnan 1976,
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SCALE-INVARIANCE AND MODELS FOR LES 9

Leslie & Quarini 1979, Chasnov 1991). This prediction has been verified in DNS
(Domaradzki et al 1987) and has been used in pseudospectral LES. As reviewed
in Lesieur & Métais (1996), the cusp behavior is simple to implement in such
simulations, but it is more involved to implement in physical space for inhomo-
geneous flows. A possible approach is to use higher-order Laplacians or hyper-
viscosity terms (e.g. see Dantinne et al 1998). Details about the SGS turbulence
can also be incorporated by solving model equations of E(k, t), for k $ kc. An
interesting initial attempt in this direction coupling LES with an explicit model
of E(k, t) based on the eddy-damped quasi normal approximation (EDQNM) is
described in Chollet & Lesieur (1981).

An alternative to the Smagorinsky model is the so-called structure function
model (Métais & Lesieur 1992). The eddy viscosity is expressed in terms of a
physical-space estimate of the energy spectral density near kc. A number of var-
iants of this model that involve various secondary filtering operations, along with
a number of applications, are described in Lesieur & Métais (1996). Eddy vis-
cosity SGS models have also been studied with renormalization group techniques
(Yakhot et al 1989, Smith & Woodruff 1998).

3.2 Limitations

As mentioned in Section 2.3, measurements of the local SGS dissipation,
, often exhibit regions in which the dissipation is negative (Piomelli et alD˜1s Sij ij

1991, Liu et al 1994). In contrast, the eddy viscosity model is always purely
dissipative, that is, $ 0. It assumes erroneously that the eigenvectorsD,smag˜1s Sij ij

of the tensor are aligned with those of S̃ij.
D D1s 1 ⁄3 s dij kk ij

The Smagorinsky model also has limitations in terms of mean quantities, such
as mean SGS dissipation, when the grid scale approaches the limits of the inertial
range. For instance, when the resolved flow is laminar, the standard value of cs

overestimates the SGS stress and dissipation, often preventing transition to tur-
bulence (Piomelli & Zang 1991). A similar problem exists in the viscous sublayer,
where must drop to 0 at the wall as (x2 is the wall-normal coordinate).D 3s x12 2

Conversely, with a fixed coefficient remains finite owing to the mean shear.D,smags12

The model is thus too dissipative and in the past has required empirical wall-
damping functions. Such functions are also needed in LES of high-Reynolds-
number flows over smooth or rough walls, when one cannot afford to resolve the
viscous sublayer (Mason 1994). In those cases the first grid point falls in the log
layer (if it exists), and the grid scale is comparable to the distance to the wall,
that is, the local integral scale. In the other limit (D r g), the coefficient must
vary with D even in isotropic turbulence, to reproduce the correct SGS dissipation
rate in the viscous range (Voke 1996, Meneveau & Lund 1997, Pope 2000). The
presence of stratification, shear, or rotation also affects SGS dissipation in such
a way that a constant scale-invariant coefficient is inappropriate (see Canuto &
Cheng 1997). The same is true when turbulence is rapidly distorted away from
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10 MENEVEAU n KATZ

equilibrium conditions by, e.g., rapid straining (McMillan et al 1980, Liu et al
1999, Piomelli et al 1997). In general, then, to faithfully reproduce SGS dissi-
pation, cs cannot be assumed to be flow and situation independent unless D is
contained well inside an ideal inertial range of locally isotropic and homogeneous
turbulence.

Besides SGS dissipation, when the grid scale approaches the integral scale
(D r ,), the mean SGS stress can contribute significantly to the meanD^s &ij

momentum transport (the ensemble average of Equation 2). It is typically quite
difficult for the eddy viscosity model to reproduce the correct distributions of
both mean energy dissipation and mean stresses (see e.g. Bastiaans et al 1998).
In spite of these fundamental drawbacks, the Smagorinsky model has been pop-
ular in many applications owing to its simplicity, numerical robustness, and lack
of numerical instabilities. However, it often leads to inaccurate results (see Section
5.3).

4. THE DYNAMIC MODEL

The dynamic model (Germano et al 1991) consists of using the resolved scales
to measure the model coefficient during the simulation, thus avoiding the need to
prescribe or tune the coefficient. The approach uses the assumption of scale invar-
iance by applying the coefficient measured from the resolved scales to the SGS
range. Formally, the dynamic procedure is based on the Germano identity (Ger-
mano 1992)

D DaL (x, t) 4 s (x, t) 1 s (x, t), where (8)ij ijij

L 4 ũ ũ 1 ũ ũ (9)ij i j i j

is the resolved stress tensor, and an overline denotes test filtering at a scale( )
aD. This identity can be used to determine unknown model coefficients during
the simulation. For this purpose, modeling approximations for and areD Das sij ij

replaced in Equation 8. For the Smagorinsky model one obtains

1
D 2L 1 L d 4 (c ) M , where (10)ij kk ij s ij3

2Dacs2 2 ˜ ˜ ˜ ˜M 4 12 D a |S| S 1 |S| S . (11)ij ij ij3 1 2 4Dcs

It has been assumed that is spatially uniform to justify extracting it from underDcs

the test-filtering operation (Ghosal et al 1995). From here on we follow the most
common choice of a 4 2. Explicit assumption of scale invariance, i.e. 2Dc 4s

, allows Mij to be fully determined from the resolved motions during LES.Dcs

Because Equation 10 should hold at every point and time and for five inde-
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SCALE-INVARIANCE AND MODELS FOR LES 11

Figure 2 Near-wall scaling of the dynamic coefficient in channel flow at Rs 4 1050.
Solid and dotted lines are results using different resolutions. The dashed line represents a

slope (from Piomelli 1993, Figure 8a).`3x2

pendent tensor elements (Mij is trace free in incompressible flow), it is an over-
determined system that a single cannot satisfy exactly. Because theDcs

Smagorinsky model does not reproduce the details of the stresses (regardless of
the value of ), Equation 10 must be understood to hold, at best, in an averageDcs

sense only. The various formulations of the dynamic model differ on how this
condition is enforced. Originally, Germano et al (1991) have contracted Equation
10 with . One obtains . A subsequent and more wide-D 2˜ ˜ ˜S (c ) 4 ^L S &/^M S &ij s ij ij ij ij

spread approach (Lilly 1992) is based on minimizing the square error, % 4
and leads toD 2 2^[L 1 (c ) M ] &ij s ij

^L M &ij ijD 2(c ) 4 . (12)s ^M M &ij ij

Without the averaging, the dynamic model has been found to yield a highly
variable eddy viscosity field (e.g. see Liu et al 1995) including significant portions
with negative values, which is destabilizing in numerical simulations. Highly
variable coefficients also complicate deriving Equation 10 from Equation 8,
because depends on location and cannot simply be extracted from the test-filterDcs

operation (for an in-depth discussion and a rigorous, but somewhat involved,
remedy, see Ghosal et al 1995, Piomelli & Liu 1995). The procedure of averaging
over directions of statistical homogeneity used by Germano et al (1991) circum-
vents these problems. It has been given a formal basis by Ghosal et al (1995),
who show that this procedure minimizes the total error in the homogeneous region
over which the averaging is performed. Using this approach, Piomelli (1993) has
obtained accurate results in channel flow by averaging the equations over planes
parallel to the walls. Figure 2 shows that the resulting dynamic coefficient (mul-
tiplied by the x2–dependent grid-scale D) displays the correct behavior near the3x2

wall.
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12 MENEVEAU n KATZ

The dynamic Smagorinsky model has since been applied to many flows, gen-
erally with good results. As examples, we mention LES of rotating channel flow
(Piomelli & Liu 1995), mixing layers (Ghosal & Rogers 1997), scalar mixing in
coannular jets (Akselvoll & Moin 1996), and a two-dimensional turbulent bound-
ary layer over a bump (Wu & Squires 1997). Results from a workshop on LES
of flow around bluff bodies can be found in Rodi et al (1997). They report that
the dynamic model predicts the distributions of eddy viscosity better than the
traditional Smagorinsky model, but this improvement does not necessarily lead
to better flow predictions mainly owing to numerical issues.

Piomelli et al (1988) provide an early discussion of the consistency between
numerical techniques, filter type, and SGS models. Analyses of the effects of
numerical methods (such as discretization) on the dynamic model have so far
been somewhat inconclusive. Most successful tests typically use spectral methods
and cutoff filtering in homogeneous directions. Problems with finite-difference
implementations of the dynamic model in channel flow have been pointed out
(Lund & Kaltenbach 1995), but good results were obtained by Balaras et al
(1995). Lund & Kaltenbach (1995) propose prefiltering of the velocity before
evaluating model coefficients to avoid inclusion of the smallest resolved scales,
which are those most contaminated by numerical errors. Najjar & Tafti (1996),
on the other hand, argue that the dynamic model has the ability to adjust appro-
priately to details of the numerical discretization. In Scotti et al (1997) the
dynamic model is found to automatically reproduce the main trends of the cor-
rection function, ƒ(a1, a2) of Section 3, for high aspect-ratio, pancake-type grids.
However, for pencil-type grids (i.e. two directions are better resolved and only
one is coarse), the dynamic model leads to considerable underprediction of the
coefficient. Clearly, our understanding of the interplay between numerical and
modeling issues is presently quite limited.

4.1 Averaging in Complex Geometries

Difficulties in applying Equation 12 arise in flows that do not possess directions
of statistical homogeneity. Carati et al (1996) propose ensemble averaging of
many simultaneous computations that do not require homogeneous directions. A
disadvantage is that random meandering of large-scale structures from one real-
ization to another inevitably leads to spatial smearing of the coefficient field.

Another option is time averaging. To comply with Galilean invariance, time
averaging should be formulated in a Lagrangian frame of reference. The Lagran-
gian dynamic model (Meneveau et al 1996) accumulates the required averages
over flow pathlines by backwards time integration, with a weighting function that
gives decreasing weights to past events. An exponential weighting function allows
one to write the required averages as the solutions to a pair of forward relaxation-
transport equations. The chosen relaxation time scale increases when LijMij , 0
to prevent the coefficient from becoming negative. This formulation has been
applied successfully to forced and decaying isotropic turbulence and in fully
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SCALE-INVARIANCE AND MODELS FOR LES 13

developed and transitional channel flow (Meneveau et al 1996), in particle-laden
flows (Wang & Squires 1996), in reacting flows (Réveillon & Vervisch 1996), in
nonequilibrium flows (Sarghini et al 1999; see also Section 5.3), and in simula-
tions on unstructured deforming meshes (Haworth & Jansen 1999). Owing to the
relatively short time scale, the model is capable of responding quickly to unstead-
iness in the mean flow. The sensitivity to a prescribed time scale parameter has
been found to be small.

4.2 Generalizations

The relationship between different scales embodied in the Germano identity has
been used in other models and evolution equations. As an alternative to the Sma-
gorinsky model, in the so-called Kolmogorov model (Carati et al 1995b), the
eddy viscosity is expressed in terms of its inertial-range scaling mT 4 Ce1/3D4/3.
The dimensional quantity Ce1/3 is assumed to be scale invariant and is determined
from the dynamic procedure. To model backscatter of kinetic energy from small
to large scales, a random force can be added to the eddy-viscosity model (Leith
1990, Chasnov 1991, Mason & Thomson 1992, Schumann 1995). An attempt to
obtain the backscatter model coefficient dynamically is described in Carati et al
(1995a).

For LES involving transport of scalars such as temperature or concentration,
the SGS Prandtl number can be obtained dynamically (Moin et al 1991). This
reference also treats compressible turbulence, in which a model is also required
for the trace of the SGS stress (because p̃ and not the combination isDp̃ ` qsii

required in the equation of state). Using as base model , CI can beD 2 2˜s 4 C D |S|ii I

determined from the Germano identity. Réveillon & Vervisch (1996) have suc-
cessfully applied this model by using the Lagrangian averaging approach. The
dynamic approach has also been used successfully to evaluate the two model
coefficients for the unclosed diffusion and dissipation terms appearing in the
kinetic energy equation (Ghosal et al 1995, Menon et al 1996). Moreover, a
dynamic eddy diffusion model for the vorticity transport equation has been devel-
oped (Mansfield et al 1998) and applied to Lagrangian vorticity-based LES of
colliding vortex rings (Mansfield et al 1999).

In reacting flows, other parameters must be prescribed, providing additional
possibilities to apply the dynamic procedure. So-called pdf methods (Pope 1985,
Colucci et al 1998) require solving a transport equation for the scalar probability-
density function (pdf), which allows one to evaluate the reaction term exactly. A
generalization of the pdf method to LES, discussed in Pope (1990) and Gao &
O’Brien (1993) requires modeling of the diffusion of the large-eddy pdf. Gao &
O’Brien (1993) propose to apply the dynamic model to solve for the unknown
eddy diffusion coefficient. DesJardin & Frankel (1998) have applied the dynamic
model to close SGS enthalpy-velocity and SGS velocity-kinetic energy correla-
tions required in the mixture fraction and thermal-energy equations. Im et al
(1997) use the dynamic approach to close the G-equation for tracking flamelet
propagation.
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14 MENEVEAU n KATZ

Another possible use of the Germano identity consists of evaluating the error
% during a simulation (Meneveau & Katz 1999a). This procedure estimates the
SGS model’s accuracy in reproducing the flow features at scales between the grid
and test filters and could potentially be used to compare different models during
LES [see Anderson & Meneveau (1999)].

4.3 Breaking of Scale Invariance

As discussed in Section 3.2, scale invariance near the grid filter scale D does not
always hold. In Meneveau & Lund (1997), the standard dynamic model, which
assumes , is applied to forced isotropic turbulence across the transition2D Dc 4 cs s

from LES to DNS (D r g). The dynamic coefficient decreases with decreasing
D/g, in agreement with results from a priori tests. However, the results are incor-
rect quantitatively.

The coefficient also depends on scale when D r ,. In this limit, Porté-Agel et
al (1998b) examine the dynamic model in LES of wall-bounded flows in which
the viscous sublayer is not resolved. To account for dependence on D, they pro-
pose a scale-dependent dynamic model that makes the much weaker assumption
of power-law behavior ( with f ? 0). Two Germano identities areaD D fc 4 c as s

written for two different test-filter ratios (e.g. a1 4 2, a2 4 4), providing two
equations for two unknowns: and f. Thus, the dynamic procedure is used toDcs

learn how the coefficient varies with D from the resolved scales, improving the
accuracy of the extrapolation to smaller scales. Evidently, the dynamic procedure
offers the opportunity for many further generalizations.

5. THE SIMILARITY MODEL

In the similarity model, first introduced by Bardina et al (1980), the assumption
of scale invariance is used in a strong and almost literal sense. Here the full
structure of the velocity field at scales below D is postulated to be similar to that
at scales above D. This postulate has been given an empirical basis from band-
pass–filtered PIV measurements (Liu et al 1994). In that paper, vector maps from
successive bands of scales show that certain structures occur simultaneously at
different scales at nearly the same locations. Consequently, it is suggested that

must also be similar to a stress tensor constructed from the resolved velocityDsij

field,

D,sims 4 C (ũ ũ 1 ũ ũ ). (13)ij sim i j i j

Here again an overline represents a second filter, now at some scale cD with c $
1. As an illustration, Figure 3a, which shows determined using the sameD,sims12

data as in Figure 1, agrees much better with of Figure 1a than does.D D,smags s12 12

Many different forms of the similarity model exist. Although they differ in details
(e.g. the value of Csim and c), they have common basic characteristics and trends.

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

00
0.

32
:1

-3
2.

 D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 U
N

IV
E

R
SI

T
Y

 O
F 

W
A

SH
IN

G
T

O
N

 -
 H

E
A

L
T

H
 S

C
IE

N
C

E
S 

L
IB

R
A

R
IE

S 
on

 0
5/

20
/0

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



SCALE-INVARIANCE AND MODELS FOR LES 15

Figure 3 Modeled subgrid-scale shear stress distribution in the far-field of a round tur-
bulent jet (replotted from Liu et al 1994). (a) Similarity model with c 4 2 and Csim 4
1, (b) mixed model with cs 4 0.08, c 4 2, and Csim 4 0.9 (see Meneveau & Katz
1999a). Both use the same data as Figure 1.

Below we summarize the various versions without ascribing great significance to
the differences. The original Bardina model uses c 4 1. Liu et al (1994) propose
c 4 2, whereas Akhavan et al (1999) use c 4 4/3. There are also differences in
whether the trace of is subtracted or not and also in the type of secondaryD,simsij

filtering. Choices for the most appropriate filter and its relationship with the
numerical method are, as yet, unresolved matters.

The a priori tests of Bardina et al (1980) performed with Gaussian or box
filters show high correlations between real and modeled stresses, typically as high
as 80% (although lower for the SGS force and dissipation). Another realistic
feature of the similarity model is that it produces backscatter of energy. However,
when implemented in simulations, the similarity model alone does not dissipate
enough energy and typically leads to inaccurate results. Faced with this difficulty,
Bardina et al (1980) suggest adding a dissipative Smagorinsky term. The resulting
mixed model is

D,mix D 2 ˜ ˜s 4 C (ũ ũ 1 ũ ũ ) 1 2 (c D) |S| S . (14)ij sim i j i j s ij

This mixed model combines the strengths of both the similarity and the Smago-
rinsky models. Typically the magnitude of the similarity term is significantly
higher than that of the Smagorinsky term. Hence, the eddy viscosity term does
not degrade the high correlation coefficient (Liu et al 1995). Figure 3b shows that
the stress distribution for the mixed model barely differs from the similarity
model.

In simulations of recirculating flows, Zang et al (1993) implement, with good
results, a dynamic mixed model with c 4 1, Csim 4 1, and determined dynam-Dcs

ically (in addition to SGS dissipation, some numerical dissipation occurs owing
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16 MENEVEAU n KATZ

to the upwinding in their code). Wu & Squires (1998) have successfully applied
the dynamic mixed model with Lagrangian averaging in simulations of three-
dimensional boundary layers.

The value of Csim depends on the details of implementation and on the filter.
In early papers, Csim 4 1 has been chosen based on Galilean-invariance arguments
(Speziale 1985). However, with the currently standard definition of Equation 13
which is already Galilean invariant (see Germano 1986), no such limitation exists.
Still, Liu et al (1995) find values close to Csim ' 1 from a priori tests requiring a
correct SGS dissipation rate. Cook’s (1997) analytical results for a Kolmogorov
spectrum with large- and small-scale cutoffs also yield Csim ; 2(1) (but with
variations as the limits of the inertial range are approached). This analysis is based
on the condition that .D D,sim^s & 4 ^s &ii ii

Instead of specifying Csim, it can be obtained from the dynamic procedure. A
two-parameter dynamic mixed model in which both cs and Csim are determined
dynamically has been proposed by Vreman et al (1994a) for c 4 1 and analyzed
for c 4 2 in Liu et al (1995). These coefficients are found by minimizing the
error in the Germano identity leading to a 2 2 2 system of equations. Another
version has been proposed and tested by Salvetti & Banerjee (1995). It includes
an ad hoc modification in the similarity part, which simplifies its implementation.
Horiuti (1997) has proposed another version as discussed in Section 5.3.

Generalizations of the similarity model to compressible flows are described in
Erlebacher et al (1992) (a nondynamic version), as well as in Vreman et al (1995)
and Salvetti & Banerjee (1995) (dynamic versions). Based on analysis of exper-
imental data, the similarity model has also been used for modeling the SGS scalar
variance (Cook & Riley 1994) needed in presumed-pdf combustion models. Other
recent applications of the similarity model to combustion can be found in Des-
Jardin & Frankel (1998) and Jaberi & James (1998).

5.1 The Nonlinear or Gradient Model

Implementation of the mixed model involves additional computational expense
owing to the secondary filterings. The latter can be avoided by expanding ũ in a
Taylor series and performing the filtering analytically (Leonard 1974, Clark et al
1979, Liu et al 1994). The result has the form of a nonlinear, gradient, or tensor
eddy viscosity model,

]ũ ]ũi j2C (ũ ũ 1 ũ ũ ) ù C D , (15)sim i j i j nl ]x ]xk k

where Cnl depends on c and filter type. Equation 15 is applicable only to filters
with finite second moments (i.e. it is not applicable to the cutoff filter). Problems
occur near walls where the nonlinear model does not follow the required behav-3x2

ior (Liu et al 1994). A detailed a priori analysis of the nonlinear model based on
Gaussian-filtered DNS of isotropic turbulence can be found in Borue & Orszag
(1998).
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SCALE-INVARIANCE AND MODELS FOR LES 17

Another justification for such a nonlinear model has been pointed out by Leon-
ard (1997) and Winckelmans et al (1998). For a Gaussian filter, given the filtered
velocity field without truncation to a discrete grid, one could recover the full
velocity field by defiltering. A first-order approximation of computed fromDsij

such a defiltered field is equal to the nonlinear model (Equation 15) with Cnl 4
1/12.

Nonlinear models for LES have also been proposed independently of the sim-
ilarity model. Lund & Novikov (1992) have performed a priori analysis of DNS
by using a spectral cutoff filter, examining all tensorially allowed nonlinear com-
binations of filtered velocity gradients. They have found only weak improvements
in measures of local agreement between real and modeled stresses (such as cor-
relation coefficients) as the number of terms is increased. However, in a posteriori
tests (see also Section 5.3), the addition of nonlinear or similarity terms has proven
beneficial. For instance, Kosović (1997) has proposed a model of the form

, where Rij is the antisym-D,nl 2 2˜ ˜ ˜ ˜ ˜ ˜ ˜s 4 12m S ` c D S S ` c D (R S ` R S )ij T ij 1 ik kj 2 ik kj jk ki

metric part of the filtered velocity gradient. This model would be equivalent to
the mixed nonlinear model if it includes a term c3R̃ikR̃kj and if c1 4 c2 4 c3.
Applications of the model to LES of the atmospheric boundary layer show sig-
nificant improvements over use of only the eddy viscosity part.

5.2 Effects of Spectral Overlap on Correlation

The similarity model has been justified in part by the high correlation between
sD,sim and sD. However, the correlation decreases to almost zero when a spectral
cutoff filter is used. This behavior raises the possibility that the high correlation
observed with other filters could be caused by the use of common information
for computing both the real and modeled stresses. On the other hand, a low
correlation with a spectral filter may be caused by its inherent oscillatory and
nonlocal impact in physical space. This effect can cause scrambling of the spatial
relationship between sD and sD,sim. Hence, comparison requires separating
between large and small scales by using a projection (see Section 2.2), but without
the adverse effects of the cutoff filter. To achieve this goal by using the spatially
local box filter, one can sample ũ on a discrete lattice of mesh-size D (Liu et al
1994, Schumann 1975) and evaluate only from the discrete data. The result-D,simsij

ing correlation typically decreases, but to a still appreciable 60% (Liu et al 1994).
In contrast, a test field with random phases and amplitudes that follow a 15/3
energy spectrum yields a correlation of only ;30%. Thus not all of the elevated
correlation is from a trivial use of the same information in the resolved and SGS
ranges.

5.3 Comparative A Posteriori Studies

Detailed and careful a posteriori studies of various models have begun to appear
in recent years. Vreman et al (1997) present comprehensive results in LES of a
temporally developing mixing layer. As shown in Table 1, they compare a number
of models by using an extensive list of diagnostic variables ranging from the time
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18 MENEVEAU n KATZ

TABLE 1 Comparison of model performance in LES of mixing layer (adapted from Vreman
et al 1997, table 2).a

Diagnostic variable M1 M2 M3 M4 M5 M6

Total kinetic energy
1 3qũ ũ d xi i3# 42

1 ` 1 0 `` `

SGS dissipation D 3˜1 (qs S ) d xij ij3# 4 1 ` 1 `` ` `

Backscatter D 3˜min(1qs S , 0) d xij ij3# 4 1 0 1 1 0 0

Stress magnitude [L2 norm of ]Ds12 1 ` 0 1 ` `

Energy spectrum E(k1) 1 1 1 ` `` 0

Vorticity in a plane [ (x1, x2)]x̃3 1 1 1 ` `` `

Maximum vorticity 1 1 1 ` ` 0

Momentum thickness 1 ` 1 1 ` ``

^ũ8ũ8&1 1 1 ` 1 ` ` ``

1^ũ8ũ8&1 2 1 1 1 0 `` `

aThe symbols 1, 0, and ` refer to bad, reasonable, and good results, respectively. `` is better than `. M1 4 constant
coefficient Smagorinsky model; M2 4 pure similarity model with Csim 4 1 and c 4 1 without eddy viscosity; M3 4

nonlinear model with Cn1 4 1/12, without eddy viscosity but with a clipping procedure to avoid backscatter; M4 4 dynamic
Smagorinsky; M5 4 dynamic mixed model with c 4 1 and Csim 4 1; M6 4 dynamic mixed nonlinear model, with Cn1

4 1/12. Dynamic models use averaging over the homogeneous direction (x1 1 x3 planes).

evolution of total kinetic energy, SGS dissipation, to momentum thickness evo-
lution and rms values. A comparison of their filtered DNS with the LES predic-
tions clearly shows that the mixed dynamic models yield improved results over
the pure Smagorinsky or pure similarity models. Also, use of the dynamic pro-
cedure improves the Smagorinsky model.

Another detailed comparison of various models is described in Sarghini et al
1999. Two flows are considered: fully developed planar channel flow at two
Reynolds numbers and a three-dimensional nonequilibrium flow consisting of a
plane channel flow with impulsively started spanwise motion of the walls. Sargh-
ini et al compare the standard and dynamic Smagorinsky models with wall-
parallel and Lagrangian averaging, as well as dynamic mixed models with
Lagrangian averaging. The comparison is based on profiles of mean velocity,
resolved Reynolds stress, SGS kinetic energy, and SGS dissipation. The results
show that use of the dynamic procedure, Lagrangian averaging, and adding a
similarity term improves the predictions. Also, Sarghini et al find that the simi-
larity term contributes about half of the SGS dissipation. Results with a full two-
parameter dynamic model, in which both cs and Csim are obtained dynamically
with Lagrangian averaging (Anderson & Meneveau 1999), are found to be less
accurate, especially at high Reynolds numbers. Sarghini et al (1999) point out
that this model requires filtering at 4D, which exceeds the local integral scale and
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SCALE-INVARIANCE AND MODELS FOR LES 19

invalidates the scale-invariance assumption near a wall (see also Cook 1997). In
terms of computing costs, Sarghini et al find that even the relatively complicated,
two-parameter, dynamic Lagrangian model increases CPU times by only 30%
over the traditional Smagorinsky model. It appears safe to say that the improve-
ments from better SGS models are more significant than the results that could
possibly be achieved with an improved spatial resolution at a similar CPU cost
(in this case only about 7% finer spatial resolution in each direction, because
1.301/4 ; 1.067).

Another version of the dynamic mixed model has been proposed and tested in
Horiuti (1997). It is based on the Leonard decomposition of the SGS stress into
Reynolds, cross, and Leonard stresses (Leonard 1974, Germano 1986). Each term
is modeled separately by using the scale similarity concept. The conclusions are
generally consistent with Vreman et al (1997) in that the addition of a similarity
term improves the results. As in Sarghini et al (1999), difficulties arise for some
versions of the model when the dynamic procedure is applied to solve for two
coefficients, especially at coarse resolutions. Akhavan et al (1999) consider a
mixed dynamic model with c 4 4/3, Csim 4 1, implemented with a cut-off filter.
The dynamic Smagorinsky coefficient is determined without any averaging. Con-
sequently, negative viscosities arise, which must be clipped to zero for numerical
stability. Simulations in channel and planar jet flow confirm that the addition of
a similarity term yields improved predictions.

Finite-volume simulations of isotropic turbulence have been performed by
Fureby et al (1997). They consider a dynamic eddy viscosity model, a one-
equation model, and a nondynamic mixed model (with c 4 1 and Csim 4 1).
They notice advantages of adding an equation for kinetic energy to account for
memory effects, but notice little effect from the similarity term, except for a small
degradation of the results at coarse resolutions. Anderson & Meneveau (1999)
find that the similarity term has strong effect on the SGS force in finite-volume
simulations of forced and decaying isotropic turbulence. They also find that the
dynamic similarity (and nonlinear) coefficient is more susceptible to yielding
inaccurate results than the dynamic Smagorinsky model at coarse resolutions
(when D r ,). Winckelmans et al (1998) perform spectral LES of decaying iso-
tropic turbulence (with a Gaussian filter, c 4 1, and Cnl 4 1/12) and find a
positive impact of the similarity term on the decay rate of energy and enstrophy.

In concluding this chapter, one is left still wondering about the dynamical
reasons for the overall improvements that result from including the similarity
model in LES. One suspects that there are reasons beyond the higher correlation
coefficients observed in a priori tests, whose status as a determining figure of
merit is still open to debate. Maybe the mixed model simply provides more flex-
ibility with an additional term that is statistically (nearly) orthogonal to the strain-
rate tensor (similar to , the tensor is poorly correlated with S̃ij). In thisD D,sims sij ij

way, one is able to reproduce not only mean energy dissipation, but also some
other mean quantity such as the mean SGS stress. Or maybe improvements are
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20 MENEVEAU n KATZ

caused by the fact that, like the real SGS stress, the similarity model is second
order in velocities. Or, as argued in Liu et al (1994), if one were to solve a
dynamical equation for scales smaller than D (say in a band between D/2 and D),
the additional equation resembles the equation that governs the evolution of the
scales in band D to 2D that are already being simulated in LES. An argument
often made [e.g. Akhavan et al (1999), Sarghini et al (1999)] is that the eddy
viscosity term models distant interactions, that is, among scales below D and
much larger than D, whereas the similarity term models the local interactions,
that is, among scales below D and marginally larger than D.

6. TESTING SGS MODELS, CONTINUED

This section resumes the discussion of Section 2 about various methods of com-
paring modeled and real SGS stresses. As discussed in Section 2.3, many such
comparisons have been based on correlation coefficients. Adrian (1990) proposes
instead to consider how models minimize the square error of the SGS stress
divergence %¹•s [ ^(¹ • sD 1 ¹•sD,mod)2&. Minimizing %¹•s implies minimizing
the mean square error in the prediction of ]ũ/]t (Equation 2). Thus, it suggests a
best possible prediction for the short-time future evolution of the system.
Although the square error and correlation coefficient between two random vari-
ables are simply related [both being second-order moments of their joint distri-
bution (Liu et al 1999)], the square error provides a more stringent test. If the
correlation coefficient is low, the square error is large, but not vice-versa because
even highly correlated variables can have substantially different mean values and/
or variances. For the Smagorinsky model, errors as large as 0.97 out of a maxi-
mum of 1 without a model have been measured (Liu et al 1999). The similarity
model yields smaller errors, of ;0.6.

Optimal estimation theory shows that the predictor (model) that produces the
smallest square error for given available data is equal to the conditional average
of the variable, conditioned on the available data (Adrian 1990, Langford &
Moser 1999). It shows that an optimal LES model that does not include memory
effects is given by the multipoint conditional average gi(Ṽ1, Ṽ2, . . . ṼN . . .) [
^]jsij | Ṽ1, Ṽ2, . . . ṼN . . .& where Ṽ1, Ṽ2, . . . ṼN . . . are velocities at all points of
the flow. Other efforts at formulating SGS models by using optimization concepts
are described in Berkooz (1993) and Chorin et al (1998).

The foregoing arguments are motivated by the desire that a model reproduce
the SGS stress so that the LES predicts the correct flow evolution. As has been
pointed out repeatedly (e.g. Meneveau 1994, Machiels 1997, Langford & Moser
1999), chaotic systems such as the LES equations inherently preclude long-time
predictability. Thus, individual flow realizations produced by LES are not
expected to match with real data after some time. To date only a few studies of
the decorrelation properties of SGS models have been reported (Shtilman & Chas-
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SCALE-INVARIANCE AND MODELS FOR LES 21

nov 1992, Dubois et al 1997). The subject is closely related to the problem of
inverse error-cascade (see Lesieur 1997, Chapter XI).

However, as discussed in Section 2.3, a reasonable expectation is for the model
to reproduce mean values, e.g. the correct ^ũ&. The ensemble average of Equation
2 shows that, for LES to reproduce the correct ^ũ& and second-order resolved
moments, one must at least enforce that ¹ • ^sD,mod& 4 ¹ • ^sD& (or ^sD,mod& 4
^sD& ` C, where C is an arbitrary divergence-free tensor field). This condition is
necessary and also important for mean momentum transport when D r ,. But it
is not a sufficient condition to guarantee correct predictions because, even if it
holds, the LES could lead to erroneous second-order moments, , and thus^ũ8ũ8&i j

to the wrong mean velocity field (Meneveau 1994). Next, the equation for second-
order moments ^ũiũj& includes the SGS dissipation tensor D D ˜P 4 1^s S `ij ik kj

, which should be correctly reproduced by a model. Even this requirementD ˜s S &jk ki

is not a sufficient condition, because third-order moments and pressure-strain
correlations also appear in the equation for resolved Reynolds stresses. Contin-
uing to higher orders gives an unclosed hierarchy of necessary, but not sufficient
conditions (Meneveau 1994).

One exception in which a sufficient condition exists (Meneveau 1994) is based
on the von Karman-Howarth-Kolmogorov (KHK) equation written for structure
functions of the filtered velocity in high-Reynolds-number, locally isotropic tur-
bulence. The equation shows that it is sufficient that the two-point stress-velocity
correlation is correctly predicted by a model, to reproduceD^u (x ` re ) s (x)&1 1 11

the correct resolved third-order structure function ^[ũ1(x ` re1) 1 ũ1(x)]3&. In
Fourier space, the KHK equation for the filtered velocity shows that, if the SGS
dissipation spectrum is correctly predicted, the correct resolved transfer spectrum
results. The latter implies that energy is being transferred at the correct rate among
resolved modes, towards the SGS range.

In an interesting development, Langford & Moser (1999) and Pope (2000)
show that the hierarchy of necessary conditions is closed for the multipoint prob-
ability density function. It turns out that it is sufficient to reproduce the correct
multipoint conditional average gi(Ṽ1, Ṽ2, . . . ṼN . . .) to reproduce all statistics of
the resolved field. Analysis of DNS data in isotropic turbulence (Langford &
Moser 1999) using a spectral-cutoff filter shows that even the optimal predictor
gi (its approximation by several stochastic estimators) leaves the square error very
large and that the nonrandom, predictable part of the SGS stress accounts only
for spectral energy dissipation.

These considerations underscore the special status and importance of SGS
dissipation PD in LES and in a priori tests, especially in isotropic turbulence.
However, for general flows it remains necessary to also consider other criteria to
evaluate SGS models. Ideally one should consider the full multipoint conditional
average gi, but it remains a prohibitively difficult quantity to measure. Progress
can still be made by considering conditional averages based on a finite number
of points. Such conditional averages can be used to isolate specific flow condi-
tions, such as coherent structures (see below).
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22 MENEVEAU n KATZ

7. COHERENT STRUCTURES, NONEQUILIBRIUM, AND
INTERMITTENCY

One of the promises of LES as compared with RANS is that it can capture
unsteady large-scale coherent structures. Indeed, coherent structures have been
repeatedly observed in LES of engineering (e.g. Lesieur & Métais 1996) and
environmental (Lin et al 1996, Khanna & Brasseur 1998) flows. An important
question that so far has received little attention is how the SGS stress and models
affect the coherent structures. As shown in Vreman et al (1997), different models
lead to qualitative differences in the coherent structures of a mixing layer. Of the
models considered, the mixed dynamic model appears to lead to results closest
to those of the filtered DNS.

In a priori studies of the DNS of channel flow, Piomelli et al (1996) have used
conditional averaging to identify coherent structures associated with forward- and
reverse-cascade regions near the wall. The similarity model is found to reproduce
the conditional flow structure better than the Smagorinsky model. Hot-wire data
in a cylinder wake (O’Neil & Meneveau 1997) have been used to measure a one-
dimensional surrogate of the SGS energy dissipation . Phase averagingD ˜1s S11 11

with respect to the spanwise von Karman roller vortices shows that they have a
strong impact on the spatial distribution of the dissipation, even at filter scales
much smaller than those of the large-scale vortices (D is well inside the inertial
range). Both the dynamic Smagorinsky (with a conditionally averaged coefficient)
and the similarity models are able to capture this trend; however, the constant-
coefficient Smagorinsky model gives a much more unrealistic distribution of dis-
sipation. Conditional averaging of atmospheric-boundary-layer data similarly has
shown that strong up- or down-draft events (identified by large temperature
jumps) strongly affect details of the SGS structure (Porté-Agel et al 1998a, 1999).
Conditional averaging of PIV data (Meneveau & Katz 1999b) also shows that the
mixed-similarity model performs well in reproducing the conditional SGS dissi-
pation rate yielding better results than either the Smagorinsky or similarity models
alone. The measurements reported in that paper also quantify the effects of SGS
force on the resolved pressure field and its relationship to high strain-rate and
energy cascade regions.

The instabilities and rollup of vortices as separated boundary layers transition
into turbulent shear layers pose special challenges for SGS modeling. Initially,
small-scale vortices within the shear layer interact to create substantially larger
structures. This rollup is then followed by pairing of vortices to form even larger
eddies. Thus, the shear layer growth includes a reverse-cascading process, and,
indeed, using PIV of flow within pumps, Sinha et al (1999 submitted) show that
PD is consistently negative near a separating boundary layer region. Ideally, D
should be small enough to allow capturing such processes in LES without having
to rely on the SGS model. In practice, however, such resolutions are often pro-
hibitive, and the shear layers cannot be fully resolved. This case is extremely
challenging for an SGS model. It is already well established (Hussain 1986) that
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SCALE-INVARIANCE AND MODELS FOR LES 23

the boundary layer structure has substantial impact on the wavelength of the
rolled-up vortices. As extreme examples, several studies (Bell & Mehta 1993,
Browand & Latigo 1979, Gopalan et al 1999) have demonstrated that the near-
field velocity fluctuations can be three- to sixfold higher when the separating
boundary layer is laminar, compared with those fluctuations of a turbulent bound-
ary layer. Gopalan et al (1999) also show that, in the high-Reynolds-number
laminar case, the rollup of spanwise eddies is preceded by formation of powerful
three-dimensional structures. Another phenomenon is the formation and straining
of axial secondary eddies in the braids between the primary vortices (Bernal &
Roshko 1986). The straining process may shrink the secondary structures into the
subgrid range. If not properly captured by a model, in an LES this effect would
result in vortices with the wrong size. This process also represents direct impact
of large structures on the dynamics of eddies with significantly smaller sizes.

Efforts have also been devoted to examining directly the effects of rapid dis-
tortion (of homogeneous turbulence) on the SGS stress and its models. Early on,
McMillan et al (1980) have used DNS of isotropic turbulence at low Rk (;40)
to study (a priori) the response of the Smagorinsky coefficient and correlation
coefficients to plane strain. More recently, Piomelli et al (1997) examine the
Smagorinsky, dynamic Smagorinsky, and similarity models in DNS of channel
flow undergoing rapid streamwise acceleration and sudden lateral motion of the
wall. The dynamic and mixed models are found to reproduce realistically the
response of SGS dissipation. Rapid axisymmetric expansion has been studied
experimentally in a water tank facility by using cinematic planar PIV (Liu et al
1999). The Smagorinsky model with a constant coefficient, determined from iso-
tropic turbulence data, underpredicts the dissipation during rapid straining. The
cause for this effect can be traced to the direct (or rapid) impact of the mean
distortion on the SGS stress. A similar direct effect has been reported recently in
the analysis of DNS of rapidly distorted turbulence (Shao et al 1999). The simi-
larity model with a constant coefficient, on the other hand, overpredicts SGS
dissipation (Liu et al 1999). Owing to these opposite trends, the mixed model
provides better predictions of the SGS dissipation but still underpredicts the SGS
stress.

The previous discussion focused mainly on the effects of large-scale coherent
structures. But coherent structures also occur at the smallest scales, near g in
DNS. Specifically, the tubular structure of high-vorticity regions [‘‘worms’’ (Vin-
cent & Meneguzzi 1991)] has received considerable attention. Interestingly, such
structures are also observed in LES near the smallest resolved scales (see Mene-
veau et al 1996, Fureby et al 1997), although they are thicker of course. The
presence of such ‘‘fat worms’’ in turbulence has been confirmed from filtered
DNS (e.g. see Figure 17 of Vincent & Meneguzzi 1991). Detailed quantitative
comparisons of such structures are still lacking. A related feature of small-scale
structures is spatial intermittency, usually studied by means of structure functions
(e.g. see Sreenivasan & Antonia 1997). Dimensionally, the SGS stress resembles
squared velocity differences over a distance D (Vreman et al 1994b, Eyink 1996),
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24 MENEVEAU n KATZ

and thus PD(x, t) is dimensionally similar to the third-order structure function
[ũL(x ` reL) 1 ũL(x)]3/D. Indeed, Cerutti & Meneveau (1998) find that scaling
exponents of high-order moments of PD(x, t) compare well with those of longi-
tudinal velocity structure functions. Both sets of exponents clearly depart from
the Kolmogorov (1941) theory that disregards inner intermittency.

8. OTHER RECENT SUBGRID SCALE MODELS

A number of new ideas have emerged in the past few years as alternatives to the
eddy viscosity and similarity models. They do not postulate a specific form for
the stress tensor but, rather, for the subgrid velocity field. The three model classes
summarized in this section display the appropriate inertial-range scale invariance
properties (in the mean).

Domaradzki & Saiki (1997) propose a model in which an ‘‘estimated SGS
velocity field’’ is constructed between the scales D and D/2. In Fourier space, the
required additional modes are determined from two conditions: (a) a self-
consistency condition, that is, that the top-hat–filtered SGS velocity is equal to
the grid level velocity at available grid points; and (b) the assumption that the
phase of the SGS modes is equal to the phase of the nonlinear terms of the
resolved velocity field. A priori tests based on DNS of channel flow and com-
parisons with the Smagorinsky model show improved correlation coefficients
between stresses (;0.5). Interestingly, in a posteriori tests this model was found
to be sufficiently dissipative without an additional eddy viscosity term.

Efforts at generating broad-band synthetic velocity fields that extend down to
the Kolmogorov scale include the linear-eddy model of Kerstein (1988) and sev-
eral fractal models (e.g. see Juneja et al 1994, Benzi et al 1993). For applications
to LES, the model of Scotti & Meneveau (1997) uses fractal interpolation. A local
mapping is constructed that transforms features of the ũ signal, at scales even
coarser than D, onto the complete (known) signal ũ. Iteration of this mapping
generates a fractal, scale-invariant signal. This technique allows the computation
of integrals of any power of the full signal, allowing analytical evaluation of the
SGS stress without explicit construction of the fractal SGS field. Applications to
LES of the one-dimensional Burgers equation and the three-dimensional filtered
Navier-Stokes equations (Scotti & Meneveau 1997, 1999) show that the assump-
tion of fractality (or scale invariance) alone is not enough to produce good results,
owing to insufficient SGS dissipation. In one dimension, this problem can be
solved with an additional transport equation to dynamically determine the local
fractal dimension and SGS kinetic energy. This option is prohibitively compli-
cated in three dimensions. A workable extension to three dimensions uses pre-
scribed fractal dimensions in different eigendirections of the resolved strain rate
tensor, which leads to good results in forced and decaying isotropic turbulence.

Based on the work of Pullin & Saffman (1993), Misra & Pullin (1997) propose
to represent the SGS turbulence as stretched vortices, which are local solutions
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to the Navier-Stokes equations. The SGS stresses are computed analytically from
the implied local velocity field and depend on the SGS kinetic energy and ori-
entation of the SGS vortices. A relationship between the orientation of vortices
and the resolved field must be postulated. Several options, such as aligning the
SGS vortices with the largest positive eigendirection of S̃ij or allowing a fraction
of them to be aligned with the resolved vorticity, have been explored. Tests in
forced and decaying isotropic turbulence (Misra & Pullin 1997) yield promising
results.

9. CONCLUSIONS

In this review we have described several SGS models, including the traditional
Smagorinsky model and two model classes that explicitly use the scale invariance
properties of high-Reynolds-number turbulence: the dynamic- and the mixed-
similarity models. A growing body of literature has been reviewed to exhibit their
strengths and weaknesses. Reflecting the inherent complexity of the SGS closure
problem, there are a number of different criteria for comparing real and modeled
stresses, but few universally agreed upon procedures. It is still premature to ven-
ture a final verdict as to which of the existing models is best for LES. Nonetheless,
a priori tests in a variety of flow conditions show that mixed models are, on the
whole, superior to pure eddy viscosity models. Coefficients obtained dynamically
have also led to improved predictions. To date there are relatively few a posteriori
comparisons of a meaningful variety of models with a consistent set of flow
conditions and numerical methods. However, the available references reach the
same conclusions, namely that the dynamic procedure improves the Smagorinsky
model and that the addition of a similarity term leads to more accurate results in
LES. Hence, it can be concluded that the use of scale invariance concepts in SGS
modeling has proven beneficial.

Returning to Richardson’s rhyme quoted in Section 1, advocacy of scale
invariance-based turbulence models inspires the following variation:

‘‘LES whorls have subgrid whorls,
which feed on their velocity,
but small whorls copy larger whorls,
so we don’t need viscosity
(in the molecular sense).’’

Such a pronouncement is too optimistic. As has been outlined in this article, there
are indications of direct effects of very large-scale events on small-scale features,
of scale dependence in model coefficients, of complex effects of rapid distortion,
etc. Such observations suggest that realistic models will have to tackle deviations
from scale invariance explicitly, especially when dealing with turbulence outside
or near the limits of the inertial range. Nevertheless, scale invariance symmetry
in the inertial range is still a useful constraint, at least as a starting
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point for more refined lines of attack. It may be instructive to recall that, in
renormalization group techniques (e.g. see McComb 1990), scale invariance
arises as a baseline from which deviations are captured by perturbation methods.
SGS modeling with dynamic and/or similarity models may therefore lead to
developments of RNG-like tools that better integrate turbulence theory and simu-
lation. Furthermore, the study and continued development of SGS models require
high-Reynolds-number data and therefore a greater integration of experimental
with numerical and theoretical research in turbulence.
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Porté-Agel F, Meneveau C, Parlange MB.
1998a. Some basic properties of the surro-
gate subgrid-scale heat flux in the atmo-
spheric boundary layer. Boundary Layer
Meteoro. 88:425–44
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