
ME 556 HOMEWORK PROBLEM #4  

Due Tuesday November 14 

 

Consider the U-shaped curved beam shown below (with rectangular cross-section and thickness 

h), which is loaded by force P as indicated.  A free-body diagram reveals that a moment PdM =  

and shear force PV =  are applied to the "curved section" of the beam, as shown.   

 

Based on elasticity solutions for a curved beam (described on the following pages), develop a 

computer-based methodology* to generate plots of the following quantities along a cross-section 

located at an arbitrary angular position, θ : 

 

 (a) The maximum principal stress, 1σ , vs radial position, r. 

 (b) The minimum principal stress, 2σ , vs radial position, r.  

 (c) The angle between {the line of action of force P} and {the +1-axis}, vs  

      radial position, r. 

 

Use the following dimensions and load, and submit plots for the cross-section at °= 45θ :  

 

a = 1.0 in  b = 3.0 in h = 0.125 in   d = 7 in  P = 240 lbf 

 

 

 

 

 

                                                 

* The "computer methodology" may well involve several tools; i.e., the use of  MatLab, Mathematica,EXCEL etc.  

Note: You will use this program during an upcoming lab experiment; during the lab a U-shaped curve beam with 

dimensions different than those considered here will be studied.     
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BACKGROUND  INFORMATION 
 

Two different elasticity solutions must be superimposed to solve this problem (of course, a finite-

element analysis could also be performed, but that is another topic!).  The first solution is for a 

curved beam subjected to a bending moment only, while the second solution is for a curved beam 

subjected to a shear force only.  These two solutions are described separately below:  

 

 

I.  A semi-circular beam (with rectangular cross-section and thickness h) loaded by a pure 

bending moment M is shown below.   Using the theory of elasticity it can be shown* that the 

radial, tangential, and shear stresses induced in the beam are given by: 
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Note that since 0=θτ r  the radial and tangential axes are everywhere the principal axes.  Also 

note that since stresses do not depend on θ , stresses vary only with r.  For example, the radial 

and tangential stresses for the specific case of a =1.0, b= 2.0, h= 1.0, and M = 1.0 are plotted 

below; these same stresses are induced at any angular position °<<° 1800 θ .  
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*Timoshenko and Goodier, Theory of Elasticity, 3rd Edition, McGraw-Hill, Article 29.  NOTE: These authors use 

"log" to denote the natural logarithm.  Also, this problem is similar to Prob 3.24 in the Shukla and Dally textbook. 



 

II A semi-circular beam (with rectangular cross-section and thickness h) loaded by a shear force 

V is shown below.   In this case it can be shown* that the radial, tangential, and shear stresses 

induced are given by: 
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Note that since 0≠θτ r  (in general) the radial and tangential axes are not the principal axes (in 

general).  Also note that stresses depend on both r and θ . For example, rσ , θσ , and θτ r  for the 

specific case of a =1.0, b = 2.0, h =1.0, and V = 1.0 are plotted below for several values of θ .   
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*Timoshenko and Goodier, Theory of Elasticity, 3rd Edition, McGraw-Hill, Article  33. NOTE: These authors use 

"log" to denote the natural logarithm.  Also, this problem is similar to Prob 3.25 in the Shukla and Dally textbook. 


