Background:

- The growth of fatigue cracks under cyclic loading is discussed in Section 4.9. During cyclic loading crack of length a grows a small amount during each load cycle N. An experimental observation is that the $\log_{10}(da/dN)$ is related to $\log_{10}(\Delta K_I)$, as shown in Figure 4.20
- In the linear region (stage 2): $\log(da/dN) = C + n\log(\Delta K)$ or, equivalently:

$$da/dN = C(\Delta K)^n$$

...known as the Paris Law

Lab #3 : Measure K_I using Strain Gage(s) Lab #4: Collect Fatigue Data; Generate a Paris Plot

"The Plan":

- Subject (uninstrumented) panel to fatigue loading
- Apply fatigue loading continuously from 31 Oct-3 Nov (next Tue-Frid)
- Have on-campus students record *a* vs *N* throughout fatigue test
- Provide data to all students; generate Paris plot and determine *C* and *n*.

- Lab #4 conducted between31 Oct-3 Nov (Tuesday-Friday)
- Cyclic loading began about 10am on Tues 31 Oct
- Initial crack length = 5.30 cm = 2.09 in
- Loading: $P_{max} = 4000 \text{ lbf}$, $P_{min} = 100 \text{ lbf}$ @ 0.5 Hz (R = 0.025, $P_{mean} = 2050 \text{ lbf}$)
- Crack vs number of cycles will be collected throughout the week
- Objective: generate Paris plot and determine *C* and *n*.

Mechanical Engineering

		E556 FATIGUE T	EST			4 QTR 2017	
Craci Length (cm) Cycles	Recorded by		Crack Length (cm)	Number of Cycles	Recorded by	
5.3	0 0	TUTTLE		10000			
							S. 18