ME556: Experimental Stress Analysis I

Take-Home Final Exam:

- Distributed via e-mail at/before 2pm on Tuesday 5 December
- Open-book, open notes
- Cannot be discussed with anyone other than Prof. Mark Tuttle
- If questions, call or e-mail:
 - tuttle@uw.edu
 - 206-543-5710
- Submit completed exam by 5pm on Thursday 7 December to dropbox:

https://www.dropbox.com/request/9d9vP8PYXIQ7ILkHoWbQ Clearly describe how solutions were obtained

Review of Stress, Strain, and Hooke's Law

• Both σ_{ij} and ε_{ij} are symmetric second-order tensors (assuming body forces negligible and tensoral shear strain used)

- Both σ_{ij} and ε_{ij} are symmetric second-order tensors (assuming body forces negligible and tensoral shear strain used)
- Six components must be specified to define a stress (or strain) tensor

- Both σ_{ij} and ε_{ij} are symmetric second-order tensors (assuming body forces negligible and tensoral shear strain used)
- Six components must be specified to define a stress (or strain) tensor
- Definition of engineering stress is independent of strain

- Both σ_{ij} and ε_{ij} are symmetric second-order tensors (assuming body forces negligible and tensoral shear strain used)
- Six components must be specified to define a stress (or strain) tensor
- Definition of engineering stress is independent of strain
- Definition of engineering strain is independent of stress

- Both σ_{ij} and ε_{ij} are symmetric second-order tensors (assuming body forces negligible and tensoral shear strain used)
- Six components must be specified to define a stress (or strain) tensor
- Definition of engineering stress is independent of strain
- Definition of engineering strain is independent of stress
- σ_{ij} and ε_{ij} rotate from one coordinate system to another according to the laws of tensor transformation

- Both σ_{ij} and ε_{ij} are symmetric second-order tensors (assuming body forces negligible and tensoral shear strain used)
- Six components must be specified to define a stress (or strain) tensor
- Definition of engineering stress is independent of strain
- Definition of engineering strain is independent of stress
- σ_{ij} and ε_{ij} rotate from one coordinate system to another according to the laws of tensor transformation
- Empirical "constitutive" models used to relate σ_{ij} and ε_{ij} ... Hooke's Law most common

- Both σ_{ij} and ε_{ij} are symmetric second-order tensors (assuming body forces negligible and tensoral shear strain used)
- Six components must be specified to define a stress (or strain) tensor
- Definition of engineering stress is independent of strain
- Definition of engineering strain is independent of stress
- σ_{ij} and ε_{ij} rotate from one coordinate system to another according to the laws of tensor transformation
- Empirical "constitutive" models used to relate σ_{ij} and ε_{ij} ... Hooke's Law most common
- Mathematical form of Hooke's law depends on
 - Material type (e.g., isotropic vs anisotropic)
 - Stress or strain state (e.g., 3-D, plane stress, plane strain, uniaxial stress, uniaxial strain)

Review of Methods to Predict Failure

• Yield criterion:

- Yield criterion:
 - common criterion for isotropic materials include von Mises, Tresca, Max Normal Stress, or Mohr's criteria

- Yield criterion:
 - common criterion for isotropic materials include von Mises, Tresca, Max Normal Stress, or Mohr's criteria
 - reviewed von Mises criterion (aka Maxwell-Huber-Hencky-von Mises criterion)
 - 3D stress states
 - Plane stress states

- Yield criterion:
 - common criterion for isotropic materials include von Mises, Tresca, Max Normal Stress, or Mohr's criteria
 - reviewed von Mises criterion (aka Maxwell-Huber-Hencky-von Mises criterion)
 - 3D stress states
 - Plane stress states
- Fracture Mechanics

- Yield criterion:
 - common criterion for isotropic materials include von Mises, Tresca, Max Normal Stress, or Mohr's criteria
 - reviewed von Mises criterion (aka Maxwell-Huber-Hencky-von Mises criterion)
 - 3D stress states
 - Plane stress states
- Fracture Mechanics
 - Mode I, Mode II, Mode III loading

- Yield criterion:
 - common criterion for isotropic materials include von Mises, Tresca, Max Normal Stress, or Mohr's criteria
 - reviewed von Mises criterion (aka Maxwell-Huber-Hencky-von Mises criterion)
 - 3D stress states
 - Plane stress states
- Fracture Mechanics
 - Mode I, Mode II, Mode III loading
 - Corresponding stress intensity factors: K_{I} , K_{II} , K_{III}

- Yield criterion:
 - common criterion for isotropic materials include von Mises, Tresca, Max Normal Stress, or Mohr's criteria
 - reviewed von Mises criterion (aka Maxwell-Huber-Hencky-von Mises criterion)
 - 3D stress states
 - Plane stress states
- Fracture Mechanics
 - Mode I, Mode II, Mode III loading
 - Corresponding stress intensity factors: K_{I} , K_{II} , K_{III}
 - Critical values: K_{Ic}, K_{IIc}, K_{IIIc}

- Yield criterion:
 - common criterion for isotropic materials include von Mises, Tresca, Max Normal Stress, or Mohr's criteria
 - reviewed von Mises criterion (aka Maxwell-Huber-Hencky-von Mises criterion)
 - 3D stress states
 - Plane stress states
- Fracture Mechanics
 - Mode I, Mode II, Mode III loading
 - Corresponding stress intensity factors: K_{I} , K_{II} , K_{III}
 - Critical values: K_{Ic} , K_{IIc} , K_{IIIc}
 - Measurement of K_I using strain gages (Lab 3)

- Yield criterion:
 - common criterion for isotropic materials include von Mises, Tresca, Max Normal Stress, or Mohr's criteria
 - reviewed von Mises criterion (aka Maxwell-Huber-Hencky-von Mises criterion)
 - 3D stress states
 - Plane stress states
- Fracture Mechanics
 - Mode I, Mode II, Mode III loading
 - Corresponding stress intensity factors: K_I, K_{II}, K_{III},
 - Critical values: K_{Ic}, K_{IIc}, K_{IIIc}
 - Measurement of K_I using strain gages (Lab 3)
 - Use ΔK_I to predict fatigue life via Paris Law/Paris Plot (Lab 4)

Strain Measurement Systems:

Strain Measurement Systems:

• Mechanical (levers, dial gages, etc)

Strain Measurement Systems:

- Mechanical (levers, dial gages, etc)
- Optical (covered in ME557 Experimental Stress Analysis II, offered Winter quarter, taught by Prof. Junlan Wang)

Strain Measurement Systems:

- Mechanical (levers, dial gages, etc)
- Optical (covered in ME557 Experimental Stress Analysis II, offered Winter quarter, taught by Prof. Junlan Wang)
- Electrical
 - Based on capacitance measurements
 - Based on inductance measurements
 - Based on resistance measurements (*strain gages*)

Resistance Strain Gages (Gauges):

• Wire vs Foil

- Wire vs Foil
- Foil:
 - Produced using photolithography
 - Common alloys
 - Proper bonding practices (Lab 1)

- Wire vs Foil
- Foil:
 - Produced using photolithography
 - Common alloys
 - Proper bonding practices (Lab 1)
- Theory
 - Strain sensitivity (S_A) vs Gage Factor (S_g)
 - Transverse sensitivity coefficient (K_t)
 - Temperature effects

- Wire vs Foil
- Foil:
 - Produced using photolithography
 - Common alloys
 - Proper bonding practices (Lab 1)
- Theory
 - Strain sensitivity (S_A) vs Gage Factor (S_g)
 - Transverse sensitivity coefficient (K_t)
 - Temperature effects
 - Change in S_g (usually minimal; often ignored)
 - Apparent strain due to temperature (usually pronounced; never ignored) ...self-temperature-compensated (STC) gages

- Commercially available forms:
 - Uniaxial (Lab 1, Lab 2)
 - Biaxial rosettes
 - Three-element rosettes
 - Rectangular (Labs 3, 4)
 - Delta
 - Special forms
 - Shear strain gages
 - Stress gages
 - Residual stress gages ("hole drilling method")
 - Strip gages ("virtual" Lab 6)

Wheatstone Bridge Circuit:

• Basic description (4 arms, excitation voltage, output voltage)

- Basic description (4 arms, excitation voltage, output voltage)
- Circuit analysis

- Basic description (4 arms, excitation voltage, output voltage)
- Circuit analysis
 - "Balanced" condition

- Basic description (4 arms, excitation voltage, output voltage)
- Circuit analysis
 - "Balanced" condition
 - Nonlinearities

- Basic description (4 arms, excitation voltage, output voltage)
- Circuit analysis
 - "Balanced" condition
 - Nonlinearities
 - Methods of increasing sensitivity

- Basic description (4 arms, excitation voltage, output voltage)
- Circuit analysis
 - "Balanced" condition
 - Nonlinearities
 - Methods of increasing sensitivity
 - Full-bridge, ¹/₂ -bridge, ¹/₄-bridge

- Basic description (4 arms, excitation voltage, output voltage)
- Circuit analysis
 - "Balanced" condition
 - Nonlinearities
 - Methods of increasing sensitivity
 - Full-bridge, ¹/₂ -bridge, ¹/₄-bridge
 - Three-leadwire system

- Basic description (4 arms, excitation voltage, output voltage)
- Circuit analysis
 - "Balanced" condition
 - Nonlinearities
 - Methods of increasing sensitivity
 - Full-bridge, ¹/₂ -bridge, ¹/₄-bridge
 - Three-leadwire system
 - Leadwire effects ("gage factor desensitization")

- Basic description (4 arms, excitation voltage, output voltage)
- Circuit analysis
 - "Balanced" condition
 - Nonlinearities
 - Methods of increasing sensitivity
 - Full-bridge, ¹/₂ -bridge, ¹/₄-bridge
 - Three-leadwire system
 - Leadwire effects ("gage factor desensitization")
 - Shunt calibration

Strain Gage-Based Load Cells:

- Common configurations (S-beam, shear-beam, torque, etc)
- Common specifications (capacity, excitation, output, etc)

Brief Discussion of

- Amplifiers
 - Gain
 - Phase
 - Cutoff frequency ("3 dB down point" or "half-power point")

Brief Discussion of

- Amplifiers
 - Gain Bode plots
 - Phase _
 - Cutoff frequency ("3 dB down point" or "half-power point")

Brief Discussion of

- Amplifiers
 - Gain Bode plots
 - Phase _
 - Cutoff frequency ("3 dB down point" or "half-power point")
- Digital Data Acquisition
 - Unipolar vs bipolar A/D boards and D/A boards
 - Range and wordlength
 - Potential aliasing errors