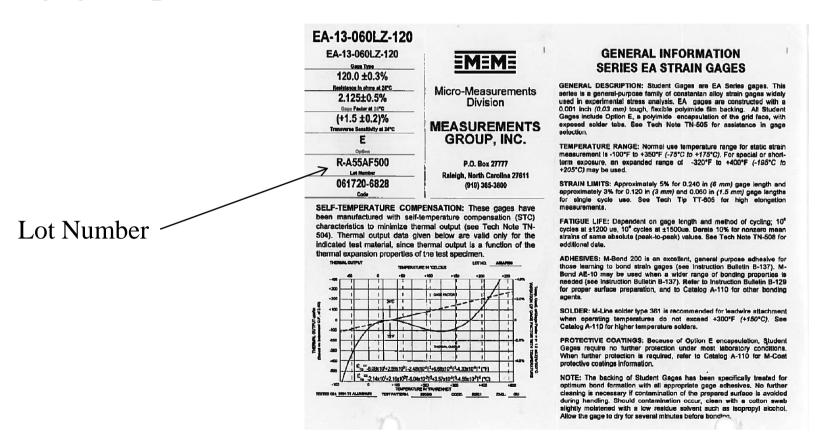
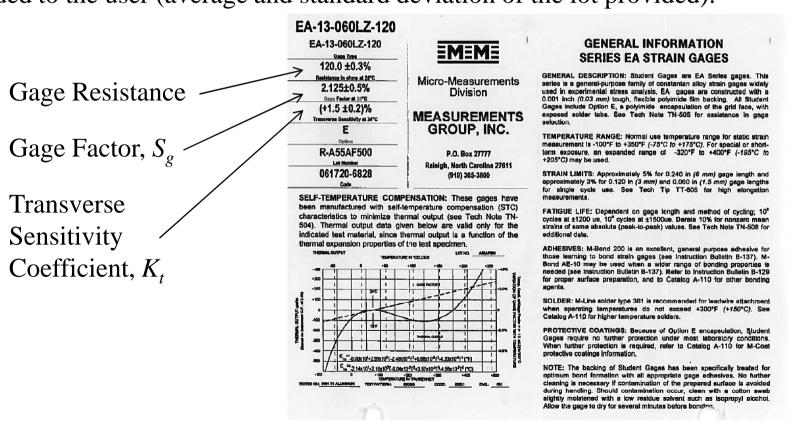

Strain Gage Calibration Factors for Constant Room Temperature Conditions


(Or equivalently, measurement of the room temperature <u>Gage Resistance</u>, <u>Gage Factor</u> and <u>Transverse</u> <u>Sensitivity Coefficient</u>)

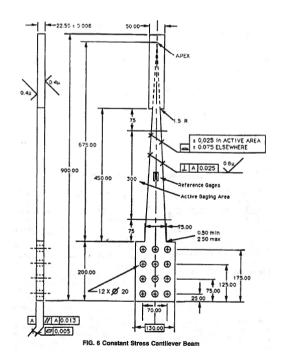
As previously discussed, photolithography is used to produce a large number of strain gages from a single parent metal foil...called a strain gage "lot"


The lot number is provided by the manufacturer when a strain gage is purchased:

Typical data sheet provided with strain gages

Gage Resistance, Gage Factor and Transverse Sensitivity

• The gage resistance, gage factor (S_g) and transverse sensitivity coefficient (K_t) are strain gage calibration constants *measured by the gage manufacturer* and provided to the user (average and standard deviation of the lot provided):


Typical data sheet provided with strain gages

Gage Resistance, Gage Factor and Transverse Sensitivity

- The gage resistance, gage factor (S_g) and transverse sensitivity coefficient (K_t) are strain gage calibration constants *measured by the gage manufacturer* and provided to the user (average and standard deviation of the lot provided):
 - The gage factor S_g relates the change in gage resistance due to axial strains
 - The transverse sensitivity coefficient K_t relates the change in gage resistance to transverse strains
- Both S_g and K_t are measured in accordance with ASTM E251-92

Measurement of the Gage Factor

- Several gages from a lot of gages are bonded to a constant stress cantilever beam described in the E251 standard and made from a standard calibration material (normally 1018 steel).
- Specimen design and loading frame allows both tensile and compressive stress/strains to be easily applied

Sketch of constant stress beam (from ASTM E251-92)

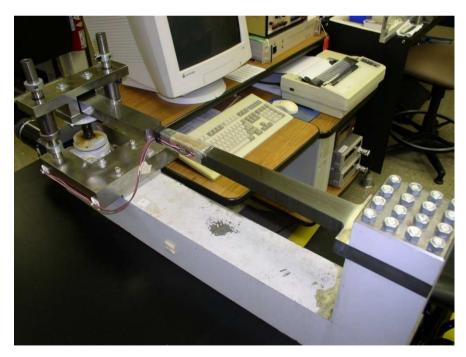


Photo courtesy Becky Showalter, M-M Group

Measurement of the Gage Factor (cont'd)

- Initial resistance is measured (*R*)
- Stress is increased until an axial strain $\varepsilon = \pm 1000 \ \mu \varepsilon$ is induced at gage site (i.e., separate gages mounted on tensile and compressive sides of cantilever beam)
- Corresponding change in resistance is measured (ΔR)
- Gage factor calculated: $S_g = \frac{\left(\Delta R/R\right)}{\varepsilon}$
- Measurement repeated for several gages; average and tolerance provided to user

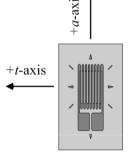
Measurement of the Gage Factor (cont'd)

• Note: The strain sensitivity of the gage alloy, S_A , is often confused with the gage factor, S_{ϱ} :

$$S_A = \frac{\left(\Delta R/R\right)}{\varepsilon} \qquad \qquad S_g = \frac{\left(\Delta R/R\right)}{\varepsilon}$$

(....confusion is understandable!!)

• Suppose a constantan foil gage is used. Would you expect the gage factor for the constantan foil gage to differ from the strain sensitivity of the constantan wire?


Measurement of the Gage Factor (cont'd)

- During measurement of S_A the constantan <u>wire</u> is subjected to a uniaxial stress and allowed to contract "naturally" (i.e., according to the Poisson ratio of constantan, V_{const})
- During measurement of S_g the constantan foil is bonded to a <u>calibration</u> <u>material</u>, and the assembly is subjected to a uniaxial stress; the constantan foil gage does not contract "naturally", but rather is forced to contract according to the Poisson ratio of the calibration material, ν_o (Poisson ratio of 1018 steel is 0.285)
- So, the state of strain during measurement of S_A is not necessarily equivalent to the state of strain during measurement of S_g
- Would you expect the gage factor for the constantan foil gage to differ from the strain sensitivity of the constantan wire?

Yes (....unless
$$v_o = v_{const}$$
)

Significance of the Transverse Sensitivity Coefficient

• Given: a strain gage subjected to in-plane strains referenced to the *a-t* coordinate system: \mathcal{E}_a , \mathcal{E}_t , γ_{at}

• Define three types of strain gage strain sensitivities

$$S_a = \text{axial strain sensitivity} = (\Delta R/R)/\varepsilon_a$$

$$S_t$$
 = transverse strain sensitivity = $(\Delta R/R)/\varepsilon_t$

$$S_s$$
 = shear strain sensitivity = $(\Delta R/R)/\gamma_{at}$

Significance of the Transverse Sensitivity Coefficient

• Assuming gage alloys exhibits linear strain sensitivities, principle of superposition applies:

$$\frac{\Delta R}{R} = S_a \varepsilon_a + S_t \varepsilon_t + S_s \gamma_{at} \tag{6.4}$$

• Experimental measurements show:

$$S_s$$
 = shear strain sensitivity = 0

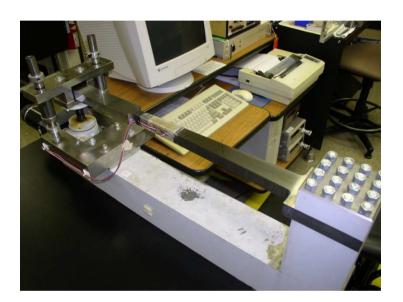
• Define the transverse sensitivity coefficient: $K_t = S_t/S_a$

Eq (6.4) becomes:

$$\frac{\Delta R}{R} = S_a(\varepsilon_a + K_t \varepsilon_t) \tag{6.5}$$

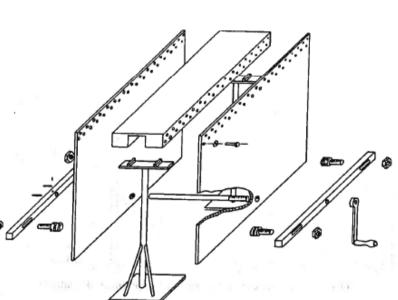
Significance of the Transverse Sensitivity Coefficient

• During measurement of the S_g :


$$\mathcal{E}_t = -V_o \mathcal{E}_a$$

• According to Eq (6.5) then:

$$\frac{\Delta R}{R} = S_a (1 - v_o K_t) \varepsilon_a$$



$$S_g = \frac{\left(\Delta R/R\right)}{\varepsilon_a} = S_a (1 - v_o K_t)$$

Measurement of the Transverse Sensitivity Coefficient

• K_t is measured using a special fixture that induces an (in-plane) uniaxial <u>strain</u> field (described in ASTM E251 standard)

Sketch of transverse sensitivity test rig (from ASTM E251-92)

FIG. 14 Transverse-Sensitivity Test Rig

- Separate gages oriented to measure
 - Axial strain: $S_a = (\Delta R/R)/\varepsilon_a$
 - Transverse strain: $S_t = (\Delta R/R)/\varepsilon_t$
 - $-K_t = S_t/S_a$

Photo courtesy Becky Showalter, M-M Group

Measurement of the Transverse Sensitivity Coefficient

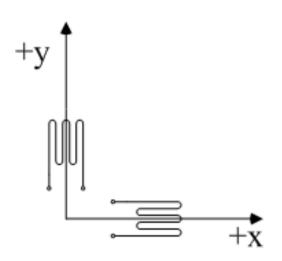

• Transverse sensitivity is an undesirable effect...gage manufacturers have successfully minimized (but not eliminated) this phenomenon

Table 6.3 Gage factor S_g , axial sensitivity S_a , transverse sensitivity S_t , and transverse-sensitivity factor K_t for several different foil-type strain gages.

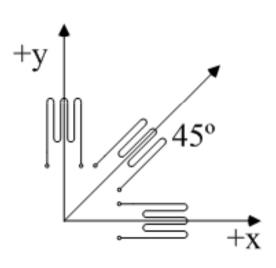
Gage Designation	Sg	Sa	St	Kt (%)
EA-06-015CK-120	2.13	2.14	0.0385	1.8
EA-06-030TU-120	2.02	2.03	0.0244	1.2
WK-06-030TU-350	1.98	1.98	0.0040	0.2
EA-06-062DY-120	2.03	2.04	0.0286	1.4
WK-06-062DY-350	1.96	1.96	-0.0098	-0.5
EA-06-125RA-120	2.06	2.07	0.0228	1.1
WK-06-125RA-350	1.99	1.98	-0.0297	-1.5
EA-06-250BG-120	2.11	2.11	0.0084	0.4
WA-06-250BG-120	2.10	2.10	-0.0063	-0.3
WK-06-250BG-350	2.05	2.03	-0.0690	-3.4
WK-06-250BF-1000	2.07	2.06	-0.0453	-2.2
EA-06-500AF-120	2.09	2.09	0.0	0
WK-06-500AF-350	2.04	1.99	-0.1831	-9.2
WK-06-500BH-350	2.05	2.01	-0.1347	-6.7
WK-06-500BL-1000	2.06	2.03	-0.0893	-4.4

*This data is approximate as the values depend on the lot of foil used in gage fabrication.

Correcting for Transverse Sensitivity Effects Biaxial (Tee) Rosettes

- Denote measured strains as \mathcal{E}_{mx} and \mathcal{E}_{my}
- Strains corrected for transverse sensitivity effects are:

$$\varepsilon_{x} = \frac{(1 - v_{o} K_{t})}{(1 - K_{t}^{2})} \left[\varepsilon_{mx} - K_{t} \varepsilon_{my} \right]$$


$$\varepsilon_{y} = \frac{(1 - v_{o} K_{t})}{(1 - K_{t}^{2})} \left[\varepsilon_{my} - K_{t} \varepsilon_{mx} \right]$$

where:

 K_t = transverse sensitivity coefficient

 v_o = Poisson ratio of the calibration material used by gage manufacturer (usually v_o = 0.285)

Correcting for Transverse Sensitivity Effects 3-Element Rectangular Rosettes

- Denote measured strains as ε_{mx} , ε_{m45} , and ε_{my}
- Strains corrected for transverse sensitivity effects are:

$$\varepsilon_{x} = \frac{(1 - v_{o}K_{t})}{(1 - K_{t}^{2})} \left[\varepsilon_{mx} - K_{t}\varepsilon_{my} \right]$$

$$\varepsilon_{45} = \frac{(1 - v_{o}K_{t})}{(1 - K_{t}^{2})} \left[\varepsilon_{m45} - K_{t}(\varepsilon_{mx} + \varepsilon_{my} - \varepsilon_{m45}) \right]$$

$$\varepsilon_{y} = \frac{(1 - v_{o}K_{t})}{(1 - K_{t}^{2})} \left[\varepsilon_{my} - K_{t}\varepsilon_{mx} \right]$$

where:

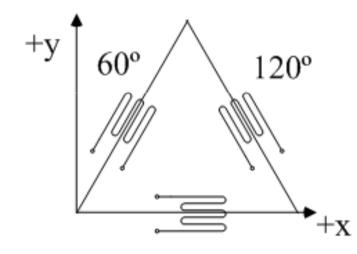
 K_t = transverse sensitivity coefficient

 v_o = Poisson ratio of the calibration material used by gage manufacturer (usually v_o = 0.285)

Correcting for Transverse Sensitivity Effects 3-Element Delta Rosettes

- Denote measured strains as ε_{mx} , ε_{m60} , and ε_{m120}
- Strains corrected for transverse sensitivity effects are:

120°
$$\varepsilon_{x} = \frac{(1 - v_{o} K_{t})}{(1 - K_{t}^{2})} \left[\left(1 + \frac{K_{t}}{3} \right) \varepsilon_{mx} - \frac{2K_{t}}{3} \left(\varepsilon_{m60} + \varepsilon_{m120} \right) \right]$$


$$\varepsilon_{60} = \frac{(1 - v_o K_t)}{(1 - K_t^2)} \left[\left(1 + \frac{K_t}{3} \right) \varepsilon_{m60} - \frac{2K_t}{3} (\varepsilon_{mx} + \varepsilon_{m120}) \right]$$

$$\varepsilon_{120} = \frac{(1 - v_o K_t)}{(1 - K_t^2)} \left[\left(1 + \frac{K_t}{3} \right) \varepsilon_{m120} - \frac{2K_t}{3} (\varepsilon_{mx} + \varepsilon_{m60}) \right]$$

where:

 K_t = transverse sensitivity coefficient

 v_o = Poisson ratio of the calibration material used by gage manufacturer (usually v_o = 0.285)

