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Force Vectors (Tensors)

• A force,    , is a vector (also called a "1st-order tensor")

• The description of any vector (or any tensor) depends 

on the coordinate system used to describe the vector:
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Normal and Shear Forces

• A "normal" force acts perpendicular to a surface

• A "shear" force acts tangent to a surface

P = Normal Force

V = Shear Force
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Forces Inclined to a Plane

• A force inclined to a plane can always be described 

as a combination of normal and shear forces

P = Normal Force

V = Shear Force

Inclined Force
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Moments

• A moment (also called a "torque" or a "couple") is a 

force which tend to cause rotation of a rigid body

• A moment is also vectoral quantity...

M

M
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Static Equilibrium

• A rigid solid body is in "static equilibrium" if it is:

– at rest, or 

– moves with a constant velocity

• Static equilibrium exists if: ∑ ∑ ==   0M  and  0F
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Free Body Diagrams and "Internal Forces"

• An imaginary "cut" is made at plane of interest

• Apply to either half to 

determine  internal forces,  
∑ ∑ ==   0M  and  0F
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Free Body Diagrams and "Internal Forces"

• The imaginary cut can be made along an arbitrary 

plane

• Internal force     can be decomposed to determine the 

normal and shear forces acting on the arbitrary plane
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Stress

Fundamental Definitions

• Two "types" of stress:

– normal stress  = σ = P/A

– shear stress    = τ = V/A

– where P and V must be uniformly distributed over A

P = Normal Force

V = Shear Force

σ = P/A

τ = V/A

A = Cross-Sectional Area
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Distribution of Internal Forces

• Forces are distributed over the internal plane... 

they may or may not be uniformly distributed
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Infinitesimal Elements

• A free-body diagram of an "infinitesimal element" is 

used to define "stress at a point"

• Forces can be considered "uniform" over the 

infinitesimally small elemental surfaces
+x

+y
+z

dx

dy
dz



Prof. M. E. Tuttle University of Washington

Labeling Stress Components

• Two subscripts are used to identify a stress 

component, e.g., “σxx” or “τxy” (note: for convenience 

we sometimes write σx = σxx or σxy = τxy)
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Admissable Pure Shear Stress States

+x

+y τ
xy

τ
xy

τ
yx

τ
yx

+x

+y τ
xy

+x

+y τ
xy

τ
xy

ble)(inadmissa

0 M     

0F     

≠

≠

∑
∑

ble)(inadmissa

0M    

0F    

∑
∑

≠

=

e)(admissabl      

0M         

0F         

:then

ττ:If xyyx

∑
∑

=

=

=



Prof. M. E. Tuttle University of Washington

Stress Sign Conventions

• The algebraic sign of an element face is “positive” 

of the outward-pointing unit normal to the face 

“points” in a positive coordinate direction

• A stress component is positive if:

– stress component acts on a positive face and “points” in 

a positive coordinate direction, or

– stress component acts on a negative face and “points” 

in a negative coordinate direction
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Stress Sign Conventions
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The Stress Tensor

• Stress is a "2nd-order tensor", and in the most general 

case six components of stress exist "at a point"

 

F2

_F1

_

F4

_

_
F5

_
F3

+x

+y

+z

σxx

τxy

τxz

σyy

τyx

τyz

σzz

τzy

τzx



Prof. M. E. Tuttle University of Washington

Plane Stress

• If all non-zero stress components exist in a single 

plane (i.e., if σzz = τxz = τyz = 0), the state of stress 

is called "plane stress" 
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Uniaxial Stress

• If only one normal stress exists (if σxx = σzz = τxy

= τxz = τyz = 0), the state of stress is called a 

"uniaxial stress"
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Free Body Diagram Defines the 

Coordinate System 
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Free Body Diagram Defines the 

Coordinate System 
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Free Body Diagram Defines the 

Coordinate System 
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Stress Transformations

• Given stress components in the x-y coordinate 

system (σxx, σyy, τxy), what are the corresponding 

stress components in the x'-y' coordinate system?
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Stress Transformations 

• Stress components in the x'-y' coordinate system may 

be related to stresses in the x-y coordinate system using 

a free body diagram and enforcing 0F =∑

+x

+y
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τxy
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θ
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Stress Transformation Equations

• By enforcing ΣFx' = 0, ΣFy' = 0, it can be shown:

Important note: angle θ is positive from the +x-

direction towards the +y'-direction (for the 

elements drawn in this presentation, a positive 

angle θ is counter-clockwise)
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Stress Transformation Equations

• Using matrix notation, these can also be written:
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Stress Transformation Equations

• These transformation equations can also be 

visualized using Mohr’s circle of stress: 
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Principal Stresses

• In the principal stress coordinate system the shear 

stress is zero, and the normal stresses are max/min...
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Maximum Shear Stress

• In the maximum shear stress coordinate system the 

in-plane shear stress is at a maximum and in-plane 

normal stresses are equal
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“Transformation” of Stress
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Sample Problem

• Given the following stress components (where the x-axis 

is horizontal and positive to the right, and the y-axis is 

vertical and positive upwards):

σxx = 3500 psi       σyy = -30000 psi   τxy = 20000 psi

(a) Sketch the stress element in the x-y coordinate system

(b) Sketch the stress element in the x'-y' coordinate 

system, oriented 50°CCW

(c) Sketch the stress element in the principal stress 

coordinate system

(d) Sketch the stress element in the maximum shear stress 

coordinate system
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Sample Problem (answers)

+x

+y

3500 psi

30000 psi

20000 psi

Part (a) Part (b)

Part (c) Part (d)
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Sample Problem
Use of Stress Transformation Equations (example)
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Sample Problem
Use of Mohr’s Circle
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"Stress": Summary of Key Points

• Normal and shear stresses are both defined as a (force/area)

• Six components of stress must be known to specify the "state 

of stress" at a point

• Stress is a tensorial quantity; values of individual stress 

components depend on the coordinate system used 

• Stress is defined strictly on the basis of static equilibrium; 

definition is independent of:

– material properties

– strain

– temperature
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Strain 

Fundamental Definitions

• "Strain" is a measure of the deformation of a solid 

body

• There are two "types" of strain; normal strain (ε) and 

shear strain (γ)

etc m/m, in/in,  units       
length) (original

length)in  (change ==ε

radians  units         angle)in  (change ==γ
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The Strain Tensor

• Strain is a 2nd-order tensor, and in the most general 

case, six components of strain exist "at a point":

εxx, εyy, εzz, γxy, γxz, γyz

• Since strain is a tensorial quantity, the values of the 

individual strain components which define the "state 

of strain" depend on the coordinate system used…

• This review will primarily involve strains which 

exist within a single plane
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Strain Within a Plane

• We often encounter two distinct conditions that 

result in problems involving “strains within a plane”:

– Plane Stress: All non-zero stress components lie within a 

single plane (e.g., σxx, σyy, τxy ≠ 0 , σzz = τxz = τyz = 0).  If 

the material is isotropic, the plane stress condition induces 

four non-zero strain components: εxx, εyy, εzz, and γxy

– Plane Strain: All non-zero strain components lie within a 

single plane (e.g., εxx, εyy, γxy ≠ 0 , εzz = γxz = γyz = 0).  By 

definition, the plane strain condition involves three non-

zero strain components: εxx, εyy, and γxy
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Strain Within a Plane
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Strain Sign Convention

• A positive (tensile) normal strain is associated with an 

increase in length

• A shear strain is positive if the angle between two 

positive faces (or two negative faces) decreases 

+x

+y

+x

+y

All Strains Positive ε    Positive 

ε    and γ    Negative
xx

yy xy
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Visualization of Strain
(Assuming link made of an isotropic material)

F

F

+x

+y
εyy > 0 

εxx < 0 

γxy = 0

(Loading)
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Visualization of Strain
(Assuming link is made of an isotropic material)

+x'+y'

εx'x'  =  εy'y'  > 0 

γx'y'  > 0

(Loading)

F

F

45 deg
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Strain Transformations

• Given strain components in the x-y coordinate 

system, what are the corresponding strain 

components in the x'-y' coordinate system?

+x

+y

Find: εx'x' , εy'y ', and γx'y'

+x'
+y'

+θ
?

Given: εxx, εyy, and γxy
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Strain Transformation Equations

• Based strictly on geometry, it can be shown:

Important note: angle θ is positive from the +x-direction 

towards the +y-direction (counterclockwise as drawn in 

this presentation)
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Well, I'll Be Darned!!!

• The stress transformation equations are based 

strictly on the equations of static equilibrium

• The strain transformation equations are based 

strictly on geometry

• Nevertheless, the stress and strain transformation 

equations are nearly identical!! (…because both 

stress and strain are 2nd-order tensors…)
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Strain Transformation Equations

• Using matrix notation, these can also be written
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Strain Transformation Equations

• These transformation equations can also be 

visualized using Mohr’s circle of strain:
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Principal Strains

• In the principal strain coordinate system the shear 

strain is zero and the normal strains are max/min...
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“Transformation” of Strain

(Equivalent)

θp

+x

+y

(εxx, εyy,γxy)

(ε11, ε22)

+x'

+y'

θ'
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"Strain": Summary of Key Points 

• ε = (∆ length)/(original length)         γ = (∆ angle)

• Six components of strain specify the "state of strain" 

• Strain is a tensorial quantity; numerical values of individual strain 

components depend on the coordinate system used 

• Strain is defined strictly on the basis of a change in shape; 

definition is independent of:

– material properties

– stress

– temperature

• "Suprisingly," the stress and strain transformation equations are 

nearly identical
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Sample Problem

• Given the following strain components (where the x-

axis is horizontal and positive to the right, and the y-axis 

is vertical and positive upwards):

εxx = 2000 µin/in    εyy = -1350 µin/in   γxy = 2200 µrad

• (a) Sketch (not to scale) the strain element in the x-y 

coordinate system 

(b) Sketch (not to scale) the strain element in the x’-y’ 

coordinate system, oriented 50°CW

(c) Sketch (not to scale) the strain element in the 

principal strain coordinate system
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Sample Problem (answers)

+x

+y

+x'

+y'

-50
o

+1

+2

16.6
o

Part (a):

εxx = 2000 µin/in

εyy = -1350 µin/in

γxy = 2200 µrad

Part (b):

εx’x’ = -1049 µin/in

εy’y’ = 1699 µin/in

γx’y’ = 2917 µrad

Part (c):

ε11 = 2329 µin/in

ε22 = -1679 µin/in

θp = 16.6°
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Hooke’s Law

• The structural engineer is typically interested in 

the measuring the state of stress induced in a 

structure during service

• The state of stress cannot be measured directly….

• The state of strain can be measured directly….

• Hence, we must develop a relationship between 

the stress tensor and the strain tensor…this 

relationship is called a “constitutive model”, and 

the most common is “Hooke’s Law”
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Hooke’s Law (Cont’d)

• The form of Hooke’s depends on whether the 

material is isotropic or anisotropic:

– Isotropic materials: same properties in all directions

– Anisotropic materials: properties vary with direction 

• More than one “type” of anisotropic behavior. Three 

will be mentioned in this review:

– Transversely isotropic

– Orthotropic

– Generally anisotropic
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Isotropic vs Anisotropic Materials

Anisotropy occurs because of some type of order in 

the microstructure
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Hooke’s Law

• Hooke’s Law will be reviewed/discussed in the 

following order:

– Isotropic materials

– Anisotropic

• Transversely isotropic

• Orthotropic

• Generally anisotropic
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Isotropic Material Properties
The Uniaxial Tensile Test

• Specimen is subjected to axial tensile force, inducing a uniaxial

state of stress in the "gage" region 

• Stress is increased until fracture occurs; corresponding axial and 

transverse strains are measured throughout the test (all shear 

strains = 0)

εxx = ∆l/l εyy = εzz = ∆w/w = ∆t/t    γxy = γyz = γxz = 0
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The Tensile Stress-Strain Curve
A plot of axial stress vs axial strain
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Load-Unload Cycles
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Material Property:
Young’s Modulus

• At stress levels below the 

yield stress the response is 

called "linear elastic"

• The slope of the linear region 

is called "Young's modulus" 

or the "modulus of elasticity", 

E

• In the linear region and for a 

uniaxial stress-state (only!!!):   

σ = Eε (or)    ε = σ/E

σ

ε

0.2% Offset  
Yield Strength

1

 E

In Linear Region: 
 

          σ = Eε
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Material Property:
Poisson's Ratio

• Poisson's ratio is based on the ratio of two normal 

strains cause by a uniaxial stress:   ν = -(εt/εa)

• Poisson’s ratio is a measure of the coupling

between σxx and εyy, εzz

• In this case: ν = (-εyy/εxx) = (-εzz/εxx)



Prof. M. E. Tuttle University of Washington

Material Property:
Poisson's Ratio

• Poisson's ratio is based on the ratio of two normal 

strains cause by a uniaxial stress:   ν = -(εt/εa)

• Poisson’s ratio is a measure of the coupling

between σxx and εyy, εzz

• In this case: ν = (-εyy/εxx) = (-εzz/εxx)
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Material Properties
The Torsion Test

• Thin-walled cylindrical specimen subjected to a 

torque, inducing a uniform shear stress τxy in the 

gage region of the specimen

• Shear stress (i.e., torque) increased until fracture 

occurs; shear strain measured throughout test

T
T

+x

+y

τxy
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The Shear Stress- Shear Strain Curve

• At linear levels, the slope of 

the shear stress -shear strain 

curve is called the “shear 

modulus”

• In the linear region (only!!)

τxy = Gγxy (or)  γxy = τxy/G

τ

γ

G
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Number of Independent Material 

Properties

• Three material properties have been defined; E, ν, 

and G

• For an isotropic material, only two of these three 

properties are independent…it can be shown:

)1(2 ν+
= E

G
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Derivation of Hooke’s Law 
For an isotropic material subjected to general 3D streses

• We assume the strain 

tensor is linearly related to 

the stress tensor….(when is 

this a bad assumption?)

• Assuming the linear 

assumption is appropriate, 

the principle of 

superposition can be used 

to develop a Hooke’s law:

F3

F4

M1

M2

+x

+y

+z σxx

σyy

σzz

τxy

τzy
τxz

F
1

F
2
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Hooke’s Law (cont’d)
Strains caused by σxx only:

(What strains are induced 

by σxx only?)
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Hooke’s Law (cont’d)
Strains caused by σxx only:

εxx = k11 σxx = (1/E) σxx

εyy = k21 σxx = (-ν/E) σxx

εzz = k31 σxx = (-ν/E) σxx

γxy = k41 σxx = 0

γyz = k51 σxx  = 0

γzx = k61 σxx = 0
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Hooke’s Law (cont’d)
Strains caused by σyy only:

εxx = k12 σyy = (-ν/E) σyy

εyy = k22 σyy = (1/E) σyy

εzz = k32 σyy = (-ν/E) σyy

γxy = k42 σyy = 0

γyz = k52 σyy  = 0

γzx = k62 σyy  = 0
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Hooke’s Law (cont’d)
Strains caused by σzz only:

εxx = k13 σzz = (-ν/E) σzz

εyy = k23 σzz = (-ν/E) σzz

εzz = k33 σzz = (1/E) σzz

γxy = k43 σzz = 0

γyz = k53 σzz  = 0

γzx = k63 σzz  = 0
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Hooke’s Law (cont’d)
Strains caused by τxy only:

εxx = k14 τxy = 0

εyy = k24 τxy = 0

εzz = k34 τxy = 0

γxy = k44 τxy = (1/G)τxy=[2(1+ν)/E] τxy

γyz = k54 τxy = 0

γzx = k64 τxy = 0
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Hooke’s Law (cont’d)
Strains caused by τyz only:

εxx = k15 τyz = 0

εyy = k25 τyz = 0

εzz = k35 τyz = 0

γxy = k45 τyz = 0

γyz = k55 τyz = (1/G)τyz =[2(1+ν)/E] τyz

γzx = k65 τyz = 0
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Hooke’s Law (cont’d)
Strains caused by τzx only:

εxx = k16 τzx = 0

εyy = k26 τzx = 0

εzz = k36 τzx = 0

γxy = k46 τzx = 0

γyz = k56 τzx = 0

γzx = k66 τzx = (1/G)τzx =[2(1+ν)/E] τzx
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Hooke’s Law (cont’d)
Strain  εxx caused by all stress components acting 

simultaneously:

εxx = ?
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Hooke’s Law (cont’d)
Strain  εxx caused by all stress components acting 

simultaneously:

εxx = ?

(since strain-stress relation 

assumed linear, we can 

apply the principle of 

superposition and simply 

add up contribution of 

each stress component):
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Hooke’s Law (cont’d)
Strain  εxx caused by all stress components acting 

simultaneously:

εxx = k11 σxx

+ k12 σyy

+ k13 σzz

+ k14 τxy

+ k15 τyz

+ k16 τzx
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Hooke’s Law (cont’d)
Strain  εxx caused by all stress components acting 

simultaneously:

εxx = (1/E) σxx

+ (-ν/E)σyy

+ (-ν/E) σzz

+ (0) τxy

+ (0) τyz

+ (0) τzx
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Hooke’s Law (cont’d)
Rearranging:

The picture can't be displayed.

[ ]        )(
1

zzyyxxxx
E

σσνσε +−=
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Hooke's Law 
Repeating process for all six strain components
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Hooke’s Law
Matrix Notation
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Hooke’s Law
Inverting the six equations leads to a more convenient 

form for experimental analysis…

[ ]

[ ]

[ ]
)1(2

        )()1(
)21)(1(

)1(2
        )()1(

)21)(1(

)1(2
        )()1(

)21)(1(

ν
γ

τεενεν
νν

σ

ν
γτεενεν

νν
σ

ν
γ

τεενεν
νν

σ

+
=++−

−+
=

+
=++−

−+
=

+
=++−

−+
=

yz
yzyyxxzzzz

xz
xzzzxxyyyy

xy
xyzzyyxxxx

EE

EE

EE



Prof. M. E. Tuttle University of Washington

Hooke’s Law
Matrix Notation
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Hooke's Law For Plane Stress
assume σzz = τxz = τyz = 0

σxx

σyy

σyy

σxx
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Hooke's Law For Plane Stress
assume σzz = τxz = τyz = 0
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Hooke's Law For Plane Stress
assume σzz = τxz = τyz = 0
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Hooke's Law For Plane Stress

assume σzz = τxz = τyz = 0
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Hooke's Law for Uniaxial Stress

If σxx = σzz = τxy = τxz = τyz = 0

σyy

σyy
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Hooke's Law for Uniaxial Stress

If σxx = σzz = τxy = τxz = τyz = 0

σyy

σyy
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Hooke’s Law
Anisotropic materials

Prof. M. E. Tuttle University of Washington

• As before, assume stress is linearly related to strain....

• Anisotropic material exhibit two “unusual” features (as 

compared to isotropic materials):

– Properties differ with direction (e.g, in general  Exx ≠ Eyy ≠ Ezz) 

– This can lead to unusual “coupling” effects:

• A normal stress may cause shear strains

• A shear stress may cause normal strains
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Hooke’s Law – Anisotropic Materials
Strains caused by σxx only:

(What strains are induced by 

σxx only?)
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Hooke’s Law – Anisotropic Materials 
Strains caused by σxx only:

(What strains are induced by 

σxx only?)

…for generally anisotropic 

materials, σxx will induce six

components of strain (i.e., 

σxx  will induce a 3-D strain 

tensor)
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Hooke’s Law – Anisotropic Materials 
Strains caused by σxx only:

εxx = k11 σxx

εyy = k21 σxx

εzz = k31 σxx

γxy = k41 σxx

γyz = k51 σxx

γzx = k61 σxx
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Hooke’s Law – Anisotropic Materials 
Strains caused by σxx only:

εxx = k11 σxx

εyy = k21 σxx

εzz = k31 σxx

γxy = k41 σxx

γyz = k51 σxx

γzx = k61 σxx

In general: k11 ≠ k21 ≠ k31 ≠ k41 ≠ k51 ≠ k61 ≠ 0
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Hooke’s Law – Anisotropic Materials 
Strains caused by σyy only:

εxx = k12 σyy

εyy = k22 σyy

εzz = k32 σyy

γxy = k42 σyy

γyz = k52 σyy

γzx = k62 σyy
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Hooke’s Law – Anisotropic Materials 
Strains caused by σzz only:

εxx = k13 σzz

εyy = k23 σzz

εzz = k33 σzz

γxy = k43 σzz

γyz = k53 σzz

γzx = k63 σzz
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Hooke’s Law – Anisotropic Materials 
Strains caused by τxy only:

εxx = k14 τxy

εyy = k24 τxy

εzz = k34 τxy

γxy = k44 τxy

γyz = k54 τxy

γzx = k64 τxy
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Hooke’s Law – Anisotropic Materials 
Strains caused by τyz only:

εxx = k15 τyz

εyy = k25 τyz

εzz = k35 τyz

γxy = k45 τyz

γyz = k55 τyz

γzx = k65 τyz
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Hooke’s Law – Anisotropic Materials 
Strains caused by τzx only:

εxx = k16 τzx

εyy = k26 τzx

εzz = k36 τzx

γxy = k46 τzx

γyz = k56 τzx

γzx = k66 τzx
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Hooke’s Law – Anisotropic Materials 
Strain  εxx caused by all stress components acting 

simultaneously:

εxx = ?
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Hooke’s Law – Anisotropic Materials 
Strain  εxx caused by all stress components acting 

simultaneously:

εxx = ?

(since strain-stress relation 

assumed linear, we can 

apply the principle of 

superposition and simply 

add up contribution of 

each stress component):
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Hooke’s Law – Anisotropic Materials 
Strain  εxx caused by all stress components acting 

simultaneously:

εxx = k11 σxx

+ k12 σyy

+ k13 σzz

+ k14 τxy

+ k15 τyz

+ k16 τzx
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Hooke’s Law – Anisotropic Materials 
Repeating this process for each strain component 

results in six simultaneous equations

εxx = k11 σxx + k12 σyy + k13 σzz + k14 τxy + k15 τyz + k16 τzx

εyy = k21 σxx + k22 σyy + k23 σzz + k24 τxy + k25 τyz + k26 τzx

εzz = k31 σxx + k32 σyy + k33 σzz + k34 τxy + k35 τyz + k36 τzx

γxy = k41 σxx + k42 σyy + k43 σzz + k44 τxy + k45 τyz + k46 τzx

γyz = k51 σxx + k52 σyy + k53 σzz + k54 τxy + k55 τyz + k56 τzx

γzx = k61 σxx + k62 σyy + k63 σzz + k64 τxy + k65 τyz + k66 τzx
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Hooke’s Law – Anisotropic Materials 
…the six eq’s can be expressed using matrix notation
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Hooke’s Law – Anisotropic Materials 
Inverting the six equations:

σxx = K11 εxx + K12 εyy + K13 εzz + K14 γxy + K15 γyz + K16 γzx

σyy = K21 εxx + K22 εyy + K23 εzz + K24 γxy + K25 γyz + K26 γzx

σzz = K31 εxx + K32 εyy + K33 εzz + K34 γxy + K35 γyz + K36 γzx

τxy = K41 εxx + K42 εyy + K43 εzz + K44 γxy + K45 γyz + K46 γzx

τyz = K51 εxx + K52 εyy + K53 εzz + K54 γxy + K55 γyz + K56 γzx

τzx = K61 εxx + K62 εyy + K63 εzz + K64 γxy + K65 γyz + K66 γzx

(2.11)



Prof. M. E. Tuttle University of Washington

Hooke’s Law – Anisotropic Materials 
Using matrix notation:
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• Kij = [Kij] = “coefficients of elasticity”
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Hooke’s Law – Anisotropic Materials 
Inverting the six equations:
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•Apparently, there are 36 coefficients of elasticity, however

• Strain energy considerations show that the [Kij] matrix must be 

symmetric….number of independent coefficients reduces from 

36 to 21:
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Hooke’s Law – Anisotropic Materials 
Anisotropy originates due to microstructure

• Unidirectional composites possess an inherent “principal material 

coordinate system”, defined by the fiber orientation
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Hooke’s Law – Anisotropic Materials 
Anisotropy originates due to microstructure
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• If the stress and strain tensor are described relative to the principal 

material coordinate system, then there is no coupling between normal 

stress and shear strain, and no coupling between shear stress and 

normal strain:
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Hooke’s Law – Anisotropic Materials 
Anisotropy originates due to microstructure
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• If fiber distribution  

differs in y- and z-

directions, then:

Exx > Eyy ≠ Ezz

Orthotropic Material

(2.21)
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Hooke’s Law – Anisotropic Materials 
Anisotropy originates due to microstructure
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• If fiber distribution  

in y- and z-directions  

is identical, then:

Exx > Eyy = Ezz

Transversely Isotropic

Material

(2.32)
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Hooke’s Law
Summary of Key Points

• Hooke’s Law is valid under linear-elastic 

conditions only

• The mathematical form of Hooke’s Law depends 

on the problem involved:

– Isotropic vs anisotropic materials

– 3-D stress/strains

– Plane stress states

– Plane strain states

– Uniaxial stress



Failure Predictions
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• Isotropic metals: methods to predict failure are 

reasonably well-developed and are typically based on:

– Yield criterion (i.e., predict the stress or strain tensor 

necessary to cause nonlinear behavior), and/or

– Fracture mechanics (i.e., predict the stress or strain tensor 

that will cause either stable or unstable crack growth)

• Anisotropic materials (composites): methods to 

predict failure are not as well-developed, and often 

vary from company-to-company or industry-to-

industry…predicting failure of anisotropic materials is 

a active research topic and will not be discussed in this 

review



Failure Predictions for Isotropic Metals
Yield criterion
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• Context: a structure is subjected to external loads, 

causing a 3-D state of stress. What load level will 

cause nonlinear behavior (yielding)?
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Failure Predictions for Isotropic Metals
Yield criterion
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• The von Mises criterion is most commonly used to predict 

yielding of isotropic metals such as steel or aluminum alloys 

(aka the Maxwell-Huber-Hencky-von Mises criterion)

• Other common yield criterion include the Tresca, Max 

Normal Stress, or Mohr’s criterion…these criterion will not 

be reviewed here 
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Failure Predictions for Isotropic Metals
The von Mises criterion: 3D stress states
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• Yielding occurs if:

or, equivalently, if:

where σY = 0.2% offset yield strength (usually tensile)
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Failure Predictions for Isotropic Metals
The von Mises criterion – Plane stress states
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• If a plane stress state exists, yielding occurs if:

or, equivalently, if:

where σY = 0.2% offset yield strength
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Failure Predictions for Isotropic Metals
Application
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• Failure predictions based on yield criterion are typically based on 

the concept of “fully plastic” loading

– Elastic-perfectly plastic behavior assumed (aka elastoplastic)

– Failure predicted when entire cross-section is predicted to have yielded

– This approach provides a reasonably conservative estimate, since in reality 

metal alloys strain-harden (i.e., are not elastic-perfectly plastic) 
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Failure Predictions for Isotropic Metals
Fracture Mechanics
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• Inglis (1913) and Westergaard (1939) derived theoretical solutions for stresses 

near a crack based on the theory of elasticity (which is, in turn, based on 

Hooke’s Law)

• These solutions show that the stresses near a crack tip are “singular”



Failure Predictions for Isotropic Metals
Fracture Mechanics
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• The Inglis and Westergaard solutions are obviously incorrect near the crack 

tip…otherwise σyy│x→a = ∞  if σ∞ ≠ 0.00000….

• Due to very high stresses and stress gradients, traditional yield criterion (e.g., the 

von Mises criterion) cannot be applied to predict failure at/near the crack…must 

use fracture mechanics instead



Failure Predictions for Isotropic Metals
Fracture Mechanics
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• In 1958 Irwin noted that the general 

solutions for stresses near a crack tip 

can be written in polar coordinates 

(and for small r) as:

where:

fij (θ) = dimensionless function 

that depends on geometry

K = the “stress intensity factor,” 

whose value depends on geometry,

size and location of the crack, 

and the magnitude of loading ; units = stress-length1/2
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Failure Predictions for Isotropic Metals
Fracture Mechanics
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• Three types of loading modes are defined:

– Mode I: the “opening mode”… characterized by KI

– Mode II: the “shearing mode”… characterized by KII

– Mode III: the “tearing mode”… characterized by KIII

• Modes I and II are most commonly encountered in practice…if loads associated 

with both Mode I and Mode II are present the loading condition is called “mixed 

mode” loading 



• Since K increases as loading is increased, it was proposed the failure will occur 

when K is increases to a “critical” level.

• The “critical stress intensity factor” for each mode (KIc, KIIc, KIIIc) is treated as a 

material property and tabulated like characteristic properties (e.g., E, ν, or σY)

• Predictions based on Kc are most accurate for brittle materials or materials with 

very low levels of ductility (…why?)

• Failure of highly ductile materials is 

better predicted using the critical 

strain energy release rate (Gc)

…not reviewed here

Failure Predictions for Isotropic Metals
Fracture Mechanics

Prof. M. E. Tuttle University of Washington



Failure Predictions for Isotropic Metals
Fracture Mechanics
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• To repeat, the value of the stress intensity factor geometry, size and location of 

the crack, and the magnitude of loading

• KI has been tabulated for many geometries (both standard lab specimens and 

typical structural geometries)…for example:

– Murakami, Y (ed), Stress Intensity Factors Handbook, Vols 1&2, Pergamon Press, 

(1987)

– https://en.wikipedia.org/wiki/Stress_intensity_factor

– (A few are listed in Shukla and Dally, sec 4.4)

• Values for KII and KIII are also available but for fewer geometries

• The tabulated values of KI, KII, KIII are often curve fits of data obtained from:

– Experiments, especially photoelasticity

– Numerical analyses (usually finite-element analyses)



Failure Predictions for Isotropic Metals
Fracture Mechanics
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• For example, KI for an edge crack in a plate under uniaxial stress is (Shukla and 

Dally, Sec 4.4, combine Eqs 4.22 and 4.23):
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Failure Predictions for Isotropic Metals
Fracture Mechanics applied to fatigue failure
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• The variation in the stress intensity factor can be used to predict sub-critical 

crack growth during fatigue loading:

S
tr

e
s
s
 (

σ)
 o

r 
S

IF
 (

K
I)

Time 

σ m
ax

,

K
Im

ax

σ m
in

,

K
Im

in



Failure Predictions for Isotropic Metals
Fracture Mechanics applied to fatigue failure
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• The variation in the stress intensity factor can be combined with the Paris Law to 

predict sub-critical crack growth during fatigue loading:

where:

N = load cycle

C, m = experimentally-determined 

constants

∆KI = KImax - KImin

m

IKC
dN

da
)(∆=

Idealized plot extracted from: 

https://en.wikipedia.org/wiki/Paris%27_law


