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Force Vectors (Tensors)
e A force, F, is a vector (also called a "1st-order tensor")

e The description of any vector (or any tensor) depends
on the coordinate system used to describe the vector:
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Normal and Shear Forces

A "normal" force acts perpendicular to a surface

e A "shear" force acts tangent to a surface

P = Normal Force
V = Shear Force
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Forces Inclined to a Plane

e A force inclined to a plane can always be described
as a combination of normal and shear forces

Inclined Force P = Normal Force

! V = Shear Force
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Moments

A moment (also called a "torque" or a "couple") 1s a
force which tend to cause rotation of a rigid body

A moment 1s also vectoral quantity...
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Static Equilibrium

» A rigid solid body is in "static equilibrium" if it is:

— atrest, or

— moves with a constant velocity

e Static equilibrium exists if: > F=0 and >M =0

50 lbf 50 lof

=60 |bf

(BALL ACCELERATES) (NO ACCELERATION)

50 lbf
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Free Body Diagrams and "Internal Forces"

e An imaginary "cut" 1s made at plane of interest

* Apply >F=0 and > M =0 to either half to
determine internal forces, R

F(L F
R (=F)
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Free Body Diagrams and "Internal Forces”

e The imaginary cut can be made along an arbitrary
plane

e Internal force R can be decomposed to determine the
normal and shear forces acting on the arbitrary plane
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Stress

Fundamental Definitions

 Two "types" of stress:
— normal stress = 0 = P/A
— shear stress =T1=V/A
— where P and V must be uniformly distributed over A

P= Nx)rmal Force o = P/A
V = Shear Force T=V/A

A = Cross-Sectional Area
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Distribution of Internal Forces

e Forces are distributed over the internal plane...
they may or may not be uniformly distributed

.
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Infinitesimal Elements

e A free-body diagram of an "infinitesimal element" 1s
used to define "stress at a point”

e Forces can be considered "uniform" over the
infinitesimally small elemental surfaces
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Labeling Stress Components

e Two subscripts are used to 1dentify a stress

‘¢ 29 ¢¢ 9 . .
component, e.g., “0Oy,” or “T,/” (note: for convenience
we sometimes write O, = Oy, Or O, = T,,)

+y T T Xy
Gxx ' +x> > Gxx
1
Xy
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Admissable Pure Shear Stress States

+yI b T

+X

(inadmissable)

"L

+X

> F=0
> M#0

(inadmissable)

+y1 b T
+X
T
yX

If :‘TYX‘ = ‘TXY‘

then :

D> F=0
> M=0

(admissable)
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Stress Sign Conventions

e The algebraic sign of an element face 1s “positive”
of the outward-pointing unit normal to the face
“points” 1n a positive coordinate direction

e A stress component 1s positive if:

— stress component acts on a positive face and “points” in
a positive coordinate direction, or

— stress component acts on a negative face and “points”
in a negative coordinate direction
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Stress Sign Conventions

VY C‘fyy
‘ T Ty 1 b Ty
- l +; > Oxx - ‘ +x> >0,
l \j

O, and O, positive,

all stresses positive ,
T, negative
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The Stress Tensor

Stress 1s a "2nd-order tensor", and 1in the most general
case six components of stress exist "at a point”




Plane Stress
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e If all non-zero stress components exist in a single
plane (1e., if 0,, = T,, =T, = 0), the state of stress
1s called "plane stress”
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Uniaxial Stress

If only one normal stress exists 1f 0,, =0, =T
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Xy

=T,, = T,, = 0), the state of stress 1s called a

"uniaxial stress"”
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Free Body Diagram Defines the
Coordinate System
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Free Body Diagram Defines the
Coordinate System
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Free Body Diagram Defines the
Coordinate System
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Stress Transformations

e (G1ven stress components in the x-y coordinate
system (Oy,, Oyy, Ty,), What are the corresponding
stress components 1n the x'-y' coordinate system?

Oy y
TX y'
+y
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Stress Transformations

e Stress components in the xX'-y' coordinate system may
be related to stresses in the x-y coordinate system using
a free body diagram and enforcing > F=0

ZFX' =0

+y'
Txy \ Tx'y' /Ae

\\\ +y O-yy
\\\ ‘

T

cut"
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Stress Transtformation Equations

* By enforcing 2F, =0, 2F,, = 0, it can be shown:
O..=0,cos G+ g, sin” @ + 21, cosOsin O

_ . 2 2 n_ :
O,,=0.sin"@+0 cos”0-2r cosfsinf

Ty = (Jyy = Jxx)cos fsinf+r1, (0082 8 —sin* 9)
Important note: angle &is positive from the +x-
direction fowards the +y'-direction (for the
elements drawn 1n this presentation, a positive
angle f1is counter-clockwise)
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Stress Transtformation Equations

e Using matrix notation, these can also be written:

.. cos” 8 sin” @ 2cosfsinf  ||O,
1T b = sin” @ cos* 8 —2cosfsinf o, .
= —cos@sin@ cosBsin@ (cos” @—sin” ) T,
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Stress Transtformation Equations

e These transformation equations can also be
visualized using Mohr’s circle of stress:

Oyy
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~ Txy
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I (O-YY’TXY) (Gx'x' T x'y')
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20 20
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Oyy Tov
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Principal Stresses
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 In the principal stress coordinate system the shear
stress 1S zero, and the normal stresses are max/min...

2
O'XX+0' o —0
— yy xXx yy 2
0117022_ i\/( j +Txy
2 2

2T
6, = 1 tan '{W)
2 O'XX —O'yy

3% OR, EQUIVALENTLY

—_ -1 0-11 _Jxx
Hp = tan (T

Xy



Prof. M. E. Tuttle University of Washington

Maximum Shear Stress

e In the maximum shear stress coordinate system the
in-plane shear stress 1s at a maximum and in-plane
normal stresses are equal

+yf\q§/ Tm\( o,
@ e

o =g _ O t0yy 0 +0y
X, Yy, T -
T 7 2 2
2
O.. -0
7, =% ( xxz )’)’j +T2
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“Transtformation’ of Stress
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Sample Problem

e (Given the following stress components (where the x-axis
1s horizontal and positive to the right, and the y-axis 1s
vertical and positive upwards):

O,, =3500pst 0, =-30000 psi T,, = 20000 psi
(a) Sketch the stress element 1n the x-y coordinate system
(b) Sketch the stress element in the x'-y' coordinate
system, oriented S0°CCW
(c) Sketch the stress element 1n the principal stress
coordinate system
(d) Sketch the stress element in the maximum shear stress
coordinate system
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Sample Problem (answers)

+y 4 30000 psi 30038 b 3538 psi
pSi
—¢—~ 20000 psi +X'
+y'
Part (a) /_‘\ +50°
3500 psi
3
T 19968 psi
39338 psi V2 oe0 osi
, psi
+2
12838 psi 76088 o
Part (¢) P
0
” 20
£ 25° 13,250 psi

+Xq

Part (b)
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Sample Problem
Use of Stress Transformation Equations (example)

(Ux'x' \ cos’ 6 sin’ @ 2cos@sind | 3.5ksi |
10y e = sin” @ cos” @ —2cosfsin@ |3 —30ksi;
(Tyy | | —cos Osinf cosBsind (cos’> &—sin’ 6) | 20ksi |
(T cos? 50 sin’ 50 2¢0s50sin50  |[ 3.5ksi’
10y (= sin” 50 cos” 50 —2¢0s50sin50 |3 —30ksi
Tuy | [—c0s50sin50 cosSOsinS0 (cos® 50 ~sin” 50) || 20ksi
(.| [ 3.538ksi )

101y ¢ =4 =30.038ksi ¢

oy | | -19.968ksi




Sample Problem
Use of Mohr’s Circle

(GyyeTuy) = (-30ksi,20ksi)

30 ksi —
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2(50°CCW)=100°CCW

(TyyaTay)

Tm

-20 ksi —

-30 ksi—

(G s=Tuy) = (3.5ksi1,-20ks1)
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"Stress”: Summary of Key Points

Normal and shear stresses are both defined as a (force/area)

Six components of stress must be known to specify the "state
of stress" at a point

Stress 1s a tensorial quantity; values of individual stress
components depend on the coordinate system used

Stress 1s defined strictly on the basis of static equilibrium;
definition 1s independent of:

— material properties
— strain

— temperature
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Strain

Fundamental Definitions

"Strain" 1s a measure of the deformation of a solid
body

e There are two "types" of strain; normal strain (€) and
shear strain (Y)

E= (change in length) units =1n/in, m/m, etc

(original length)

y =(change in angle) units =radians
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The Strain Tensor

e Strain i1s a 2nd-order tensor, and in the most general
case, six components of strain exist "at a point":

Exxo gyy’ €25 yxy’ Yxz> yyZ

e Since strain 1s a tensorial quantity, the values of the
individual strain components which define the "state
of strain" depend on the coordinate system used...

e This review will primarily involve strains which
exist within a single plane
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Strain Within a Plane

e We often encounter two distinct conditions that
result in problems 1involving “strains within a plane”:

— Plane Stress: All non-zero stress components lie within a

single plane (e.g., O, Oy, 1,, #0,0,,=7T,,=7,=0). If

the material 1s 1sotropic, the plane stress condition induces
four non-zero strain components: €, € and Y,

XX° yy? zz’

— Plane Strain: All non-zero strain components lie within a
single plane (e.g., &, €, sy 70, €, = Yy, = VY,, = 0). By
definition, the plane strain COIldlthIl 1nv01ves three non-
zero strain components: €,,, €., and Y,

yy’
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Strain Within a Plane

/ abc = /2 radians sabc < /2 radians

b C +; b ‘ +X
fo—'* LEX+A€X

Original Shape Deformed Shape
Ex =lim O(Afx/ Uy)
Eyy = gy"_rfg(/—wy/ )

= | abc
YXY F;x.ﬁylino Az )
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Strain Sign Convention

e A positive (tensile) normal strain 1s associated with an

increase 1n length

* A shear strain 1s positive if the angle between two
positive faces (or two negative faces) decreases

+yTE

All Strains Positive

€« Positive
€, and yxy Negative
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Visualization of Strain
(Assuming link made of an isotropic material)

[

(0)
+y (Loading)
L 3 Eyy > 0
X €x <0
Yy = 0
O
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Visualization of Strain
(Assuming link is made of an isotropic material)

+y X' (Loading) |
3 Exx' = &yy > 0
yx'y' > 0
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Strain Transformations

e (Given strain components 1n the x-y coordinate
system, what are the corresponding strain
components in the x'-y' coordinate system?

ty

Given: Exx, Eyy, and Yxy Find: &xx , Eyy, and Yxy'
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Strain Transformation Equations

e Based strictly on geometry, it can be shown:

X

: 14 :
oy = EcO8 G+ sin’ 6’+(xy 2cosfsind
2

Epy =€ sin” 8+ .y cos” @ - [VWJZ cos@sinf
2

yx'y'
2

=(&,, —€,)cosfsin G + [y;yj(cosz 8 —sin” )

Important note: angle &is positive from the +x-direction
towards the +y-direction (counterclockwise as drawn in
this presentation)
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Well, I'll Be Darned!!!

e The stress transformation equations are based
strictly on the equations of static equilibrium

e The strain transformation equations are based
strictly on geometry

 Nevertheless, the stress and strain transformation
equations are nearly 1dentical!! (...because both
stress and strain are 2"d-order tensors...)
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Strain Transformation Equations

e Using matrix notation, these can also be written

(£ cos” 8 sin” @ 2cosfsinf E. |
¢ Epy = sin” @ cos’ @ —2cos@sind [ £, ¢
Vi !2 —cosfsin@ cosfsinf (cos” 8 —-sin” H) Viy /2]
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Strain Transformation Equations

e These transformation equations can also be
visualized using Mohr’s circle of strain:

+y T
y/21l
(Eyy,Yxy/2)

.......... — (Exx',~Yxy/2)
. 20 _

""""""

(Exx,—VYxy/2)
(Eyy,Yxy/2) Yo

Y

niversity of Washington



Prof. M. E. Tuttle University of Washington

Principal Strains

 In the principal strain coordinate system the shear
strain 1s zero and the normal strains are max/min...

2 2
£, +E £, ¢
E1,€xp = — 2+ aa 2+ y—xy
+2 2 2 2
(€11, €22)
1 n_{ Ve )

XX yy

\l 5 % OR, EQUIVALENTLY ***
p

(2, -€.)
6, = tan 1( 11 J
Vi
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“Transformation’ of Strain

Exx, Eyy, xy)
+y ( y (SX'X', Eyy, yx'y')

.
' . \
+y //’ \
. \
-7 \
.
e
\
\
\
\

(Equivalent)
- .

- T
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"Strain": Summary of Key Points

€ = (A length)/(original length) Y = (A angle)
Six components of strain specify the "state of strain”

Strain 1s a tensorial quantity; numerical values of individual strain
components depend on the coordinate system used

Strain 1s defined strictly on the basis of a change in shape;
definition 1s independent of:

— material properties
— stress
— temperature

"Suprisingly,"” the stress and strain transformation equations are
nearly identical
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Sample Problem

e (Given the following strain components (where the x-
axis 1s horizontal and positive to the right, and the y-axis
1s vertical and positive upwards):
€ = 2000 pin/in €, =-1350 pin/in vy, = 2200 prad

e (a) Sketch (not to scale) the strain element in the x-y
coordinate system
(b) Sketch (not to scale) the strain element in the x’-y’
coordinate system, oriented S0°CW
(c) Sketch (not to scale) the strain element in the
principal strain coordinate system
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Sample Problem (answers)

+y Y
%
+X'
Part (a): Part (b): Part (¢):
€., = 2000 Min/in €. = -1049 Hin/in €1 = 2329 Hin/in
€,y = -1350 Hin/in €,y = 1699 pin/in €,, =-1679 Hin/in

Yiy = 2200 prad Yoy = 2917 prad Gp =16.6°
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Hooke’s Law

e The structural engineer 1s typically interested in
the measuring the state of stress induced in a
structure during service

e The state of stress cannot be measured directly....

e The state of strain can be measured directly....

 Hence, we must develop a relationship between
the stress tensor and the strain tensor...this
relationship 1s called a “constitutive model”, and
the most common 1s “Hooke’s Law”
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Hooke’s Law (Cont’d)

e The form of Hooke’s depends on whether the
material 1s 1Sotropic or anisotropic:
— Isotropic materials: same properties in all directions

— Anisotropic materials: properties vary with direction

e More than one “type” of anisotropic behavior. Three
will be mentioned 1n this review:
— Transversely 1sotropic
— Orthotropic
— Generally anisotropic
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Isotropic vs Anisotropic Materials

Anisotropy occurs because of some type of order in
the microstructure

[ — 12 I s

E, = E; E| = E;

Isotropic Materials Anisotropic Materials
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Hooke’s Law

 Hooke’s Law will be reviewed/discussed 1n the
following order:
— Isotropic materials
— Anisotropic
e Transversely 1sotropic
e Orthotropic
e Generally anisotropic
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Isotropic Material Properties
The Uniaxial Tensile Test

e Specimen is subjected to axial tensile force, inducing a uniaxial
state of stress in the "gage" region

e Stress 1s increased until fracture occurs; corresponding axial and
transverse strains are measured throughout the test (all shear
strains = 0)

Ex =D €, =€, =Dww=0t Y=Y, =Y, =0

t w

S *y
7{ ’ }bﬂ;

GXX

. 7 +‘x
rrrrrrrr 1 r T T T T T =
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The Tensile Stress-Strain Curve
A plot of axial stress vs axial strain

o

Tensile Strength

Fracture Stress

0.2% Offset
Yield Strength

; /,0 >
0.2% Strain to Fracture €
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Load-Unload Cycles

[Tensile Strength

[Tensile Strength [Tensile StrengtH

0.2% Offset

0O,
Yield Strength 0.2% Offset

Yield Strength

0.2% Offset
Yield Strength

gl &£ & <

' /
| |<e-Eiastic strain |7—>|‘|Elastic Strain | @— Inelastic Strain—a-|<a|Elastic Strain

nelastic
Strain
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Material Property:
Young’s Modulus

e At stress levels below the Y
yield stress the response 1s
called "linear elastic"

* The slope of the linear region 5= “
1s called "Young's modulus” |Yield Strength
or the "modulus of elasticity", In Linear Region:
E E [

e In the linear region and for a
uniaxial stress-state (only!!!):

o=Ee (or) €=0/E

o = E¢
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Material Property:

Poisson's Ratio

e Poisson's ratio 1s based on the ratio of two normal
strains cause by a uniaxial stress: VvV =-(g/€,)

e Poisson’s ratio is a measure of the coupling
between O, and €y &,

* In this case: v = (-€,,/ XX) (-€,/€)

t w

S *y
7{ ’ }bﬂ;

—fL a S —| +7
I >
Ty
GXX
GXX g —
|||||||||||||||||||||| _ +X
+— e e | —>
- +z
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Material Property:

Poisson's Ratio

e Poisson's ratio 1s based on the ratio of two normal
strains cause by a uniaxial stress: VvV =-(g/€,)

e Poisson’s ratio 1s a measure of the coupling
between O, and €y &,

* In this case: v = (-€,,/ XX) (-€,/€)

t w

S *y
7{ ’ }bﬂ;

—fL a S —| +7
I >
Ty
GXX
GXX g —
|||||||||||||||||||||| _ +X
+— e e | —>
- +z
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Material Properties
The Torsion Test

e Thin-walled cylindrical specimen subjected to a
torque, inducing a uniform shear stress T,, in the
gage region of the specimen

e Shear stress (1.e., torque) increased until fracture
occurs; shear strain measured throughout test

+y §

G |

i

( -~ x
T
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The Shear Stress- Shear Strain Curve

e At linear levels, the slope of 4
the shear stress -shear strain '
curve 1s called the “‘shear
modulus™

e In the linear region (only!!)
Ty = QY (on) Y, =T,,/G G
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Number of Independent Material
Properties

e Three material properties have been defined; E, v,
and G

e For an i1sotropic material, only two of these three
properties are independent...it can be shown:

E

G =
2(1+)
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Derivation of Hooke’s Law
For an isotropic material subjected to general 3D streses

 We assume the strain
tensor 1s linearly related to
the stress tensor....(when 1s
this a bad assumption?)

e Assuming the linear
assumption 1s appropriate,
the principle of
superposition can be used
to develop a Hooke’s law:
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Hooke’s Law (cont’d)
Strains caused by O, only:

T (What strains are induced

= by g, only?)
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Hooke’s Law (cont’d)
Strains caused by O, only:

x s €=k 0,=/E)0,,
J_# €,y = Ky 0= (-V/E) Oy
Ty h gzz = k31 Gxx = (_V/ E) GXX
5 yxy = k41 O-XX =
yyz = kSl GXX =
J"-*l yzx = k61 GXX =
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Hooke’s Law (cont’d)
Strains caused by 0, only:

. o €x = Kip O,y = (-V/E) O,
, €,y =Ky, 0,, = (1/E) O,
X N €,, = ks, 0,, = (-V/E) O,
/ yxy = k42 ny =
Oy o Yy, = Kksp Oy =
yzx = k62 ny =
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Hooke’s Law (cont’d)
Strains caused by O, only:

+x exx — k13 GZZ - (_V/E) GZZ
/T_# _ €,y =Ky 0,,=(-V/E) O,
ty ) gzz = k33 C)-zz = (I/E) GZZ
P — = —k _
Oz; O:: yxy ™43 GZZ —
yyz = k53 GZZ =
yzx - k63 GZZ -
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Hooke’s Law (cont’d)

Strains caused by T, only:

K 2z — K3y Txy o
$: ______ = Yoy = Kag Ty, = (1/G)T, =[2(1+V)/E] T
yyz - k54 Txy =0
I’:'I.'l-'
- yzx = k64 Txy =
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Hooke’s Law (cont’d)

Strains caused by T, only:

+x exx le Tyz =0
)—,;, : €y = ko5 Ty, =
) | T €. =k =

Ty '4 ------- z 77 35 Tyz
Yy, = Kss T,,= (l/G)Tyz =[2(1+V)/E] Ty,
yzx = k65 Tyz =



Hooke’s Law (cont’d)

Strains caused by T, only:

yxy = k46 TZX B
R Tzx yyz - k56 TZX —
Vox = Kee T

Prof. M. E. Tuttle University of Washington
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Hooke’s Law (cont’d)

Strain &, caused by all stress components acting
simultaneously:




Prof. M. E. Tuttle University of Washington

Hooke’s Law (cont’d)

Strain &, caused by all stress components acting
simultaneously:

+x A +
+z L’ E:XX = ?
%o % o-. (since strain-stress relation

oy Tax assumed linear, we can
apply the principle of
superposition and simply
add up contribution of
each stress component):
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Hooke’s Law (cont’d)

Strain &, caused by all stress components acting
simultaneously:

exx = kll GXX
h ¢ aSE Oyy
: +z TL’ - T k13 0,
%’ ./“4—1! 3 T k14 Txy
= T k15 Tyz

’1}_1- + k16 TZX
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Hooke’s Law (cont’d)

Strain &, caused by all stress components acting
simultaneously:

€, =/E) o,

" . + (-VE)D,,

* tz TL’ r. + ('V/E) GZZ

- ,%4 = +(0) T,y
;> +(0) 1y,

Cﬂw ’1}_1- -- + (O) TZX



Prof. M. E. Tuttle University of Washington

Hooke’s Law (cont’d)

Rearranging:

+x e '
%": -

-I-_v
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Hooke's Law
Repeating process for all six strain components

1T ' 2(1+I/)Txy
gxx:E_Jxx_V(ayy-l_JZZ). yxy: r
_ I ' _2(+v)r
Eyy = E O yy ~V(Oyy +Jzz)_ Vxz = r -
_ 2(1+|/)ryz

1
€2z :E[JZZ V(O y +Jyy)] yyz 5



Prof. M. E. Tuttle University of Washington

Hooke’s Law

Matrix Notation

el [1 -v =-v 0 0 0 |(o.
Eyy -v 1 -v 0 0 0 a,,
E.l _1|-v -v 1 0 0 0 0.

lv.[TE[0 0 o0 20+») o0 o |7, |
V. 0 0 0 0) 2(1+v) 0 7.,
V) 0 0 O 0 0 20+V) || T,y |
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Hooke’s Law

Inverting the six equations leads to a more convenient
form for experimental analysis...

E _ Ebyy

Tu= gyl e ] =y
_ E B — LYy,

O = eyl Vet e]  Te=) T
B E 3 _ Eyyz

= 1+v)1-2v) [(1 W TV e T Eyy )] 'z T 2(1+v)



Hooke’s Law

Matrix Notation
((1-v)
O xx v
Tyy v
o

zz | _ E 0
Tyz (I1+v)1-2v)

Ty 0

L Txy J 0

v
(1-v)
v
0

0

v
v
(1-v)
0

0

0

0
0

0
(1-2v)
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o O O O

1-2v)

S N

o o O O

-]

1-2v) ||
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Hooke's Law For Plane Stress

assume 0,, = T, =T, =0

+y 4
O-yy
\
——m Ty
OkX—J [—»(Ixx
o : :
yy 1 20 +v)r
gxx:E_Jxx_V(a-yy'l'O-ZZ). Vxy = E =
17 ' _2(1+v)r
Eyy _E_O-yy_v(o-xx'l'a-zz)_ Vxz = E =
B 2(1+I/)Tyz

1
€2z :E[O-zz ~ V(O +0_yy>] Yyz



Hooke's Law For Plane Stress

assume O, = T,,

+y 'y
O;YY
——m Ty
%x_j [_. o
y l +X
O-YY
5xx
E
Yy

=T7,=0
Oy — V(o d,,)
U - V(Uxx T zz)
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2(1+ v)r
Vxy =

2(1 + v)r/
Viz =

21+ v);/
Vyz =
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Hooke's Law For Plane Stress
assume 0,, = T, =T, =0

XZ

+y 4
v Eyy = —(J %4 )
W g\ XX
— = Txy
O-XX — V
<_J [_“IXX €2z ‘f(axﬂayy)
N \
| h 2(1+ V)7,
Oyy Vxy = E
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Hooke's Law For Plane Stress

assume O, = T, = T, =0

XZ

E
+v 4 —_
Y Oy = 5 [exx + vgyy]
O;yy (1 -V )
N G E
O y Tyy = 2 [‘9 yy T vgxx]
- — Oxx (1 —_— V )
~ l X - E v
O Yoo+t Y
Oz7 =1y = Tyz =0
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Hooke's LLaw for Uniaxial Stress
UO;XZO;Z: Txy: TXZ: TyZZO

+y‘

ny

i 2(1+|/)r
E/ V(Jyy+ ZZ) Vxy = /

£, = E[%_ V(O4y t O'yy)] Vyz = . V)Z/
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Hooke's Law for Uniaxial Stress

HO;XZO;Z:TW:TXZ:TyZZO

ty

-y
O'fy E yy 5
EXX = EZZ = - Vo-yy
E
l +X yxy =V = yyZ =(
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Hooke’s Law
Anisotropic materials

e As before, assume stress 1s linearly related to strain....

e Anisotropic material exhibit two “unusual” features (as
compared to 1sotropic materials):
— Properties differ with direction (e.g, in general E,, #E, #E,))
— This can lead to unusual “coupling” effects:
* A normal stress may cause shear strains

* A shear stress may cause normal strains
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Hooke’s Law — Anisotropic Materials
Strains caused by O, only:

. (What strains are induced by

= g, only?)
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Hooke’s Law — Anisotropic Materials
Strains caused by O, only:

+x Oyy
& (What strains are induced by
= g, only?)
JT_Tl ...Tor generally anisotropic

materials, g, will induce six
components of strain (1.e.,
o.. will induce a 3-D strain
tensor)
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Hooke’s Law — Anisotropic Materials
Strains caused by O, only:

+x Oxx gxx = kll GXX
%‘: eyy = k21 O-XX
1y 5 ezz = k31 GXX
yxy = k41 Oxx
yyz = kSl GXX
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Hooke’s Law — Anisotropic Materials
Strains caused by O, only:

In general: k,; #Kk,; K3, Ky #Ks; #Ke; #0
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Hooke’s Law — Anisotropic Materials
Strains caused by 0, only:

+x o exx = k12 ny

)_J:: eyy k22 ny

+,F E:ZZ — k32 O-yy
= =k,, O

/ yxy 42 Myy

G}y;‘ yyz - k52 ny
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Hooke’s Law — Anisotropic Materials
Strains caused by O, only:

o exx = k13 GZZ

> - eyy = k23 GZZ

Ty h ezz = k33 GZZ
+-— . = =k, 0

O-- - yxy ™43 Mgz

yyz = k53 O,
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Hooke’s Law — Anisotropic Materials
Strains caused by T, only:

™
|

W

—

+x XX 14 txy
Txy —
: ; ezz B k34 Txy

L: “““ Yiy = Kas Tyy
yyz = k54 Txy
Ty _

! Yo = Ko Ty
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Hooke’s Law — Anisotropic Materials
Strains caused by T, only:

X Exx = le Tyz

,/T—Jr’: | €y = 11525 Ty

+_F I.*_____ ______ T_VZ (C.:ZZ — 35 TyZ
P == 1 _

bz —'_"'"/ yxy - k45 Tyz

yyz = k55 Tyz

yzx = k65 Tyz
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Hooke’s Law — Anisotropic Materials
Strains caused by T, only:

+x exx = k16 TZX

)—J:: e — €yy = Kog Tox

Ty ezz = k36 Tx
Lo S — k. T

9 S N yxy M6 tzx

] Tx yyz = k56 TZX

yzx - k66 TZX
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Hooke’s Law — Anisotropic Materials

Strain &, caused by all stress components acting
simultaneously:
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Hooke’s Law — Anisotropic Materials

Strain &, caused by all stress components acting
simultaneously:

+x A +
+z L’ E:XX = ?
%o % o-. (since strain-stress relation

oy Tax assumed linear, we can
apply the principle of
superposition and simply
add up contribution of
each stress component):
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Hooke’s Law — Anisotropic Materials

Strain &, caused by all stress components acting
simultaneously:

+x A '
%‘: L » exx = kll GXX
Ly = 12 Zyy
Oz T k13 GZZ

7
Oy “ T k14 Txy
T k15 Tyz
T k16 TZX
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Hooke’s Law — Anisotropic Materials

Repeating this process for each strain component
results in six simultaneous equations

O-\‘ Ly

+x "'
s = X *
Ly =
o
T

Oy
Tyy

gxx = kll GXX T k12 ny T k13 GZZ T k14 T + k15 T + k16 TZX
gyy = k21 O-XX T k22 ny T k23 GZZ T k24 T + k25 T + k26 TZX
gzz = k31 GXX T k32 ny T k33 GZZ T k34 T + k35 T + k36 TZX
Yiy = Kg1 Opx T Kyp Oy + ky3 0, + Ky Txy +kys Tyz +Kyp Ty
Yy, = Ks1 Oy + K5y Oy + Ks3 0, + Ky Ty + Kss Ty, + Ko Ty
Yox = K1 Oxx + Kep Oy + Kg3 0, + Ky Ty + Kes T . T Kee Ty
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Hooke’s Law — Anisotropic Materials
...the six eq’s can be expressed using matrix notation

Vo) kel ke2 ko3 kea kes kee || Tux |
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Hooke’s Law — Anisotropic Materials
Inverting the six equations:

O = K1 Ex T K €yt K3 €, Ky Yy T Kys Yy, + Kig Vix
Oy = Koy €+ Ky €0t Koz €, + Koy Yiy T Kos Yy, + Kog Vig
O, = Ky €t Ky &+ Kz €, + Ky iy + K5 Yy, + Kig Vg
Txy = K41 8XX T K42 Eyy T K43 8ZZ T K44 yxy T K45 yyz T K46 yzx
Tyz = KSl EXX T K52 8yy T K53 EZZ T K54 yxy T K55 yyz T K56 yzx

TZX = K61 EXX T K62 8yy T K63 EZZ T I<64 yxy T K65 yyz T I<66 yzx

(2.11)
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Hooke’s Law — Anisotropic Materials
Using matrix notation:

gxx

Oy | | K21 Koo Koz Kyy Kps Kyg |[€yy
)9z || K31 K3 K3z Kaa Kzs Ko |) &z |
Ty | | K41 Kap Kyz Kyga Kys Kye || Viy

Ty, | | Ks1 Ksp Ks3 Ksq Ks5  Ksg ||V
Tx) | Ket Kep Koz Kesa Kes5 Koo || Vox )

* K;; = [K;;] = “coefficients of elasticity”
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Hooke’s Law — Anisotropic Materials
Inverting the six equations:

e Apparently, there are 36 coefficients of elasticity, however
* Strain energy considerations show that the [K;;] matrix must be

symmetric....number of independent coefficients reduces from
36 to 21:

O] | K1t K2 Kz Kia Kis Kig |[€xx]
Oy | | K12 Koo Kpz3 Kps Kps Kog || Eyy
)9z || K3 Koz K3z Kzg Kis o K3e || €2 |
Ty | | Kia Koa K3y Kyq Kys Kye ||V
Ty, | | Ki5 K5 K35 Kys5 Kss5 Ksg || Yy,
T ) [ Kie Ky Kzg Kue Ksg Keg || Vax
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Hooke’s Law — Anisotropic Materials
Anisotropy originates due to microstructure

e Unidirectional composites possess an inherent “principal material
coordinate system”, defined by the fiber orientation

Y
il
TX
{1 = ;} +7
- / 7
= / 7
= / 7
—
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Hooke’s Law — Anisotropic Materials
Anisotropy originates due to microstructure

e If the stress and strain tensor are described relative to the principal
material coordinate system, then there 1s no coupling between normal
stress and shear strain, and no coupling between shear stress and
normal strain:

e N e D

Ow| |Kit Ko Kz 0 0 0 |]&
Ol Ko Kyp K3 0 0 0 ||,
)0z |_| K13 Koz K3z 0 0 0 )&, |
T xy 0 0 0 Kyg O O || Viy
Ty, 0 0 0 Kss O Vyz
Tz ) | K66_ | Vzx )
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Hooke’s Law — Anisotropic Materials
Anisotropy originates due to microstructure

« If fiber distribution Iy
differs in y- and z- ™

directions, then:

EXX > Eyy ;é Ezz
O] K Ko K3 00 0 0 |fg,
Orthotropic Material  |o,,| |K;; Ky»n Ky 0 0 0 ||&,
)0z || Kiz Koz Kzz 0 00 )|
w10 0 0 Ky 0 0 ||y,
Ty, 0 0 0 Kss 0 ||V,
\TZX, | K66_ \yzx,

2.21)
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Hooke’s Law — Anisotropic Materials
Anisotropy originates due to microstructure

« If fiber distribution ’
in y- and z-directions a

1s 1dentical, then:

EXX > Eyy = Ezz
(o] (K1 Kpip Ky 0 0 0 (£,
Transversely Isotropic o K, Ky Kn 0 0 0 ||

Material > Ki» Ko»x K 0 0 0 o
|0 _ 12 Kp3 Kpp Kyrko, J €= |

Txy 0 0 0 > 0 0 yxy

Tyz 0 0 0 K66 0 yyz

(T ox ] K66_ Vx )

(2.32)
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Hooke’s Law
Summary of Key Points

e Hooke’s Law 1s valid under linear-elastic
conditions only

 The mathematical form of Hooke’s Law depends
on the problem involved:
— Isotropic vs anisotropic materials
— 3-D stress/strains
— Plane stress states
— Plane strain states

— Uniaxial stress
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Failure Predictions

e [Isotropic metals: methods to predict failure are
reasonably well-developed and are typically based on:

— Yield criterion (i.e., predict the stress or strain tensor
necessary to cause nonlinear behavior), and/or

— Fracture mechanics (i.e., predict the stress or strain tensor
that will cause either stable or unstable crack growth)

e Anisotropic materials (composites): methods to
predict failure are not as well-developed, and often
vary from company-to-company or industry-to-
industry...predicting failure of anisotropic materials 1s
a active research topic and will not be discussed 1n this
review
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Failure Predictions for Isotropic Metals
Yield criterion

e Context: a structure 1s subjected to external loads,
causing a 3-D state of stress. What load level will
cause nonlinear behavior (yielding)?
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Failure Predictions for Isotropic Metals
Yield criterion

e The von Mises criterion is most commonly used to predict
yielding of 1sotropic metals such as steel or aluminum alloys
(aka the Maxwell-Huber-Hencky-von Mises criterion)

e Other common yield criterion include the Tresca, Max
Normal Stress, or Mohr’s criterion...these criterion will not
be reviewed here
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Failure Predictions for Isotropic Metals
The von Mises criterion: 3D stress states

* Yielding occurs if:

ZZ

1

5[(0“ —Uyy)2 +(0, -0 )Y +(o,.-0.) +6(r§y + r; + rﬁz)]z o,
or, equivalently, if:

1

E[(O-u _0-22)2 +(022 _033)2 +(J33 - 11)2]2 0-13

where g, = 0.2% offset yield strength (usually tensile)
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Failure Predictions for Isotropic Metals
The von Mises criterion — Plane stress states

e If a plane stress state exists, yielding occurs if:
2 2 2 2
\_Jxx -0,0, t0o + 3rny >0,

or, equivalently, if:
2 2 2
\_0-11 —0,0, T UzzJ 20y

where g, = 0.2% offset yield strength

A+Xx O ATX
4 7. . Oy | | o -
! '/l\\ayy . g
: ty Xy
Oxx
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Failure Predictions for Isotropic Metals
Application

e Failure predictions based on yield criterion are typically based on
the concept of “fully plastic” loading
— Elastic-perfectly plastic behavior assumed (aka elastoplastic)
— Failure predicted when entire cross-section is predicted to have yielded

— This approach provides a reasonably conservative estimate, since in reality
metal alloys strain-harden (i.e., are not elastic-perfectly plastic)

P

(b)
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Failure Predictions for Isotropic Metals
Application

e Failure predictions based on yield criterion are typically based on
the concept of “fully plastic” loading
— Elastic-perfectly plastic behavior assumed (aka elastoplastic)
— Failure predicted when entire cross-section is predicted to have yielded

— This approach provides a reasonably conservative estimate, since in reality
metal alloys strain-harden (i.e., are not elastic-perfectly plastic)

(@ (e




Prof. M. E. Tuttle University of Washington

Failure Predictions for Isotropic Metals
Fracture Mechanics

Inglis (1913) and Westergaard (1939) derived theoretical solutions for stresses
near a crack based on the theory of elasticity (which is, in turn, based on
Hooke’s Law)

These solutions show that the stresses near a crack tip are “singular”

O 5

) | o

N

o |
0 a 2a 3a
Distance Along Crack Plane, x

Ak 3, 2k
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Failure Predictions for Isotropic Metals
Fracture Mechanics

e The Inglis and Westergaard solutions are obviously incorrect near the crack
tip...otherwise O, = oo if g, # 0.00000....

* Due to very high stresses and stress gradients, traditional yield criterion (e.g., the
von Mises criterion) cannot be applied to predict failure at/near the crack...must

use fracture mechanics instead
ODO

) 5 | |

+y ‘/— O'yy=
‘ S 3 \ 1-@)

; 2a - ;2

| X—a

0 a 2a 3a
Distance Along Crack Plane, x

g L=
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Failure Predictions for Isotropic Metals
Fracture Mechanics

In 1958 Irwin noted that the general
solutions for stresses near a crack tip
can be written in polar coordinates
(and for small r) as:

__K :
0,(r,0) =—— f,;(6) + higher order terms

Vo

where:

[ (6) = dimensionless function
that depends on geometry Crack front

K = the “stress intensity factor,”
whose value depends on geometry,
size and location of the crack,
and the magnitude of loading ; units = stress-length!/>
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Failure Predictions for Isotropic Metals
Fracture Mechanics

Three types of loading modes are defined:
— Mode I: the “opening mode”... characterized by K,
— Mode II: the “shearing mode”... characterized by K,

— Mode III: the “tearing mode”... characterized by K

Modes I and II are most commonly encountered in practice...if loads associated
with both Mode I and Mode II are present the loading condition is called “mixed
mode” loading

“Figure 4.10 Three modes of
crack loading: (a) opening; (b)
- shearing; (c) tearing.

{a) ) {ed
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Failure Predictions for Isotropic Metals
Fracture Mechanics

Since K increases as loading is increased, it was proposed the failure will occur
when K 1s increases to a “critical” level.

The “critical stress intensity factor” for each mode (K, ., K;;., K;;.) 1s treated as a
material property and tabulated like characteristic properties (e.g., E, V, or 0y)

Predictions based on K, are most accurate for brittle materials or materials with
very low levels of ductility (...why?)

Failure of highly ductile materials is
better predicted using the critical
strain energy release rate (G,)

...not reviewed here

“Figure 4.10 Three modes of
crack loading: (a) opening; (b)
- shearing; (c) tearing.

{a) ) {ed
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Failure Predictions for Isotropic Metals
Fracture Mechanics

To repeat, the value of the stress intensity factor geometry, size and location of
the crack, and the magnitude of loading

K, has been tabulated for many geometries (both standard lab specimens and
typical structural geometries)...for example:

— Murakami, Y (ed), Stress Intensity Factors Handbook, Vols 1&2, Pergamon Press,
(1987)

— (A few are listed in Shukla and Dally, sec 4.4)

Values for K;; and K;;; are also available but for fewer geometries

The tabulated values of K, K;;, K,;; are often curve fits of data obtained from:
— Experiments, especially photoelasticity

— Numerical analyses (usually finite-element analyses)
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Failure Predictions for Isotropic Metals
Fracture Mechanics

e For example, K, for an edge crack in a plate under uniaxial stress is (Shukla and
Dally, Sec 4.4, combine Eqs 4.22 and 4.23):

2 3 4
K, =om 1.12—0.231(ij+10.55(ij —21.71(ﬁj +30.38(£j
% W % %




Prof. M. E. Tuttle University of Washington

Failure Predictions for Isotropic Metals
Fracture Mechanics applied to fatigue failure

The variation in the stress intensity factor can be used to predict sub-critical

crack growth during fatigue loading:

Gy
Time

O-max
Klmax

O-mm
KImin

Stress (o) or SIF (K))
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Failure Predictions for Isotropic Metals
Fracture Mechanics applied to fatigue failure

e The variation in the stress intensity factor can be combined with the Paris Law to
predict sub-critical crack growth during fatigue loading:

da
—=C(AK )" ‘
o =CUK,) _

where: .

N =load cycle
C, m = experimentally-determined

constants " .
AKI = Klmax - Klmin

Idealized plot extracted from:
https://en.wikipedia.org/wiki/Paris%27_law



