Lecture note on wind turbine

Prepared by Minoru Taya, Jan. 26, 2016

Main reference: "Wind energy explained:theory, design and application", by F. Manwell, J.G. McGowan and A.L. Rogers, Joh Wiley and Sons, LTD, 2002

Sub reference, "Electronic Composites", by M. Taya, Cambridge University Press, 2005.

1. Fundamentals of wind energy harvesting

Linear momentum model

$$\underline{P} = m\underline{v}$$

m: mass*v*: velocity

For steady-state, conservation of mass

$$(\rho A u)_1 = (\rho A u)_4 = \dot{m} \tag{1}$$

Then,

$$T = U_1(\rho A u)_1 - U_4(\rho A u)_4 = \dot{m}(U_1 - U_4)$$
(2)

where, T: thrust

Fig.1: Actuator disk model of a wind turbine; U-mean air velocity, 1,2,3 and 4 indicate locations

Applying Bernoulli theory at control section 1, 2 (both upstream of turbine)

$$P_1 + \frac{1}{2}\rho U_1^2 = P_2 + \frac{1}{2}\rho U_2^2 \tag{3}$$

For downstream,

$$P_3 + \frac{1}{2}\rho U_3^2 = P_4 + \frac{1}{2}\rho U_4^2 \tag{4}$$

Assuming $P_1 = P_4$, $U_2 = U_3$

Thrust T can be expressed as

$$T = A_2(P_2 - P_3) (5)$$

Using the assumption of $P_1 = P_4$, $U_2 = U_3$

$$P_2 = P_1 + \frac{1}{2}\rho U_1^2 - \frac{1}{2}\rho U_2^2$$

$$P_3 = P_4 + \frac{1}{2}\rho \ {U_4}^2 - \frac{1}{2}\rho {U_3}^2$$

$$P_2 - P_3 = \frac{1}{2}\rho(U_1^2 - U_4^2) \tag{6}$$

Substituting (6) into (5)

$$T = \frac{1}{2}\rho A_2 (U_1^2 - U_4^2) \tag{7}$$

Equating (7) to (2)

$$T = \dot{m}(U_1 - U_4) = \frac{1}{2}\rho A_2(U_1^2 - U_4^2)$$

$$\rho A_2 U_2 (U_1 - U_4) = \frac{1}{2} \rho A_2 (U_1 - U_4) (U_1 + U_4)$$

$$\therefore U_2 = \frac{1}{2} (U_1 + U_4)$$
(8)

Define a as the fractional decrease in wind velocity between free stream and rotor plane, then

$$a \equiv \frac{(U_1 - U_2)}{U_1} \tag{9}$$

$$U_2 = U_1(1 - a) \tag{10}$$

From (8) and (10)

$$\frac{1}{2}(U_1 + U_4) = U_1(1 - a)$$

$$U_4 = U_1(1 - 2a) \tag{11}$$

 aU_1 : induction velocity

Power of wind turbine, P is equal to thrust (T) times velocity (U_2) , from (7)

$$P = \frac{1}{2}\rho A_2 (U_1^2 - U_4^2) U_2 = \frac{1}{2}\rho A_2 (U_1 - U_4) (U_1 + U_4) U_2$$
 (12)

Substituting (10), (11) into (12)

$$P = \frac{1}{2}\rho A U^3 4a (1-a)^2 \tag{13}$$

where $A_2 = A$, $U_1 = U$

Power coefficient, C_p is given by

$$C_p = \frac{P}{\frac{1}{2}\rho U^3 A} = \frac{Rotor\ power}{Power\ in\ the\ wind}$$
 (14)

From (13) and (14)

$$C_p = 4a(1-a)^2 \tag{15}$$

The maximum of C_p is obtained by taking its derivative $\frac{dC_p}{da}$ and setting it to be zero.

$$\frac{dC_p}{da} = 4\{(1-a)^2 + 4a2(1-a)(-1)\} = 0$$

$$a_{max} = \frac{1}{3}$$
(16)

Substituting $a = \frac{1}{3} in (15)$

$$C_{p,max} = \frac{16}{27} = 0.5926 \tag{17}$$

Substituting (10), (11) into (7)

$$T = \frac{1}{2}\rho A_2 (U_1^2 - U_4^2) = \frac{1}{2}\rho A_2 \{U_1^2 - U_1^2 (1 - 2a)^2\}$$

= $\frac{1}{2}\rho A_2 U_1^2 \{1 - (1 - 2a)^2\} = \frac{1}{2}\rho A U_1^2 [4a(1 - a)]$ (18)

where $A_2 = A$

Thrust coefficient, C_T is given by

$$C_T = \frac{T}{\frac{1}{2}\rho U^2 A} = \frac{Thrust force}{Dynamic force}$$

$$= 4a(1-a)$$
(19)

The maximum of C_T is obtained from

$$\frac{dC_T}{da} = 0 \rightarrow a = \frac{1}{2} \tag{20}$$

 C_T becomes the maximum, $C_T = 1$ at $a = \frac{1}{2}$

At
$$a = \frac{1}{2}$$
,

$$U_4 = U_1(1 - 2a) = 0$$

At maximum power output $(a = \frac{1}{3})$

$$C_T = \frac{8}{9} \tag{21}$$

It is noted from Fig. 2, the above model (Betz) is valid only for $a \le \frac{1}{2}$

At $a = \frac{1}{2}$, $C_{p,max} = \frac{16}{27} = 0.5926$, is theoretically the maximum rotor power efficiency.

Practical turbine efficiency, $\eta_{overall}$ is given by

$$\eta_{overall} = \frac{P_{out}}{\frac{1}{2}\rho AU^3} = \eta_{mech}C_p$$

$$\therefore P_{out} = \frac{1}{2}\rho AU^3(\eta_{mech}C_p)$$
(22)

Fig. 2: Operating parameters for a Betz turbine: U-velocity of undisturbed air, U_4 -air velocity behind the rotor, C_p -pwer coefficient, and C_T -thrust coefficient

The previous model did not account for the rotating turbine blades which induces angular momentum in the wake region, see Fig. 3.

Conservation of angular momentum

Fig. 3: Stream tube model of flow behind rotating wind turbine blade.

Fig. 4: Geometry for rotor analysis; U – velocity of undisturbed air, a - induction factor, r – radius ω : angular velocity of the air flow in the wake

 Ω : angular velocity of turbine blade

Assume $\Omega \gg \omega$

Then, the pressure gap before and after the rotor location is estimated as

$$P_2 - P_3 = \rho \left(\Omega + \frac{1}{2}\omega\right)\omega r^2 \tag{23}$$

For the annual element (dr), thrust, dT is given by

$$dT = (P_2 - P_3)dA = \rho \left(\Omega + \frac{1}{2}\omega\right)\omega r^2 \cdot 2\pi r \, dr \tag{24}$$

Define angular induction factor, a' as

$$a' = \frac{\omega}{2\Omega} \tag{25}$$

Induced velocity at the rotor is sum of axial component Ua, and $r\Omega a'$.

By using (25), (24) is reduced to

$$dT = 4a'(1+a')\frac{1}{2}\rho\Omega^{2}r^{2}2\pi r dr$$
 (26)

From (18) applied to the annual area element $(2\pi rdr)$

$$dT = 4a(1-a)\frac{1}{2}\rho U^{2}2\pi r dr$$
 (27)

Equating (26) to (27), we obtain

$$\frac{a(1-a)}{a'(1+a)} = \frac{\Omega^2 r^2}{U^2} \equiv \lambda_r^2$$
 (28)

where λr is local speed ratio. Tip speed ratio, λ is given by

$$\lambda = \frac{\Omega R}{U} \tag{29a}$$

Intermediate speed ratio (at r), λ_r is given by

$$\lambda_r = \frac{\Omega_r}{U} = \frac{\lambda r}{R} \tag{29b}$$

Let us consider the conservation of angular momentum focusing on the annual element. The torque (Q) expected on the rotor is equal to the change in the angular momentum;

$$dQ = d\dot{m}(\omega r)r = (\rho U_2 2\pi r dr)(\omega r)r \tag{30}$$

Since $U_2 = U(1-a)$, i.e., Eq (10) and $a' = \frac{\omega}{2\Omega}$, Eq (25),

$$dQ = 4a'(1-a)\frac{1}{2}\rho U\Omega r^2 2\pi r dr \tag{31}$$

The power generated in each element, dP is

$$dP = \Omega dQ \tag{32}$$

Substituting (31) into (32) and using (29)

We arrive at

$$dP = \frac{1}{2}\rho A U^3 \left[\frac{8a'(1-a)\lambda_r^3}{\lambda^2} d\lambda_r \right]$$
 (33)

where $A = \pi R^2$

Incremental contribution to the power coefficient (dC_p) from annual ring is

$$dC_p = \frac{dP}{\frac{1}{2}\rho AU^3} \tag{34}$$

Thus, total power coefficient (C_p) is given by

$$C_p = \frac{1}{\lambda^2} \int_0^{\lambda} a' (1 - a) \lambda_r^3 d\lambda_r \tag{35}$$

From (28), we can express a' in terms of a,

$$a' = -\frac{1}{2} + \frac{1}{2} \sqrt{1 + \frac{4}{\lambda_r^2} a(1 - a)}$$
 (36)

Integrand in (35) is

$$f(a) = (1-a)\left\{-\frac{1}{2} + \frac{1}{2}\sqrt{1 + \frac{4}{\lambda_r^2}a(1-a)}\right\}$$
(37)

The maximum of f(a) gives the maximum of C_p ,

 $\frac{df(a)}{da} = 0$ gives us

$$\lambda_r^2 = \frac{(1-a)(4a-1)^2}{(1-3a)} \tag{38}$$

Substituting (38) into (28) for maximum power in each annual ring

$$a' = \frac{1 - 3a}{4a - 1} \tag{39}$$

By taking derivatives of (38), we obtain

$$2\lambda_r d\lambda_r = \frac{6(4a-1)(1-2a)^2}{(1-3a)^2} da \tag{40}$$

Substituting (38)~(40) into (35), the maximum power coefficient, $C_{p,max}$ is obtained as

$$C_{p,max} = \frac{24}{\lambda^2} \int_{a_1}^{a_2} \left[\frac{(1-a)(1-2a)(1-4a)}{(1-3a)} \right]^2 da$$
 (41)

where a_1 corresponds to axial induction factor for $\lambda_r = 0$, a_2 to the axial induction factor for $\lambda_r = \lambda$.

From (38),

$$\lambda^2 = \frac{(1 - a_2)(1 - 4a_2)^2}{(1 - 3a_2)} \tag{42}$$

Note in (42), $a_1 = 0.25$, $\lambda_r = 0$

Note in (42), $a_2 = \frac{1}{3}$, $\lambda \to \infty$, thus $a_2 = \frac{1}{3}$ is the upper limit of axial induction factor

Integral in (41) is performed by setting x = (1 - 3a), then, $C_{p,max}$ is expressed as

$$C_{p,max} = \frac{8}{729\lambda^2} \left[\frac{64}{5} x^5 + 72x^4 + 124x^3 + 38x^2 - 63x - 12 \ln x - \frac{4}{x} \right]_{x=(1-3a_2)}^{x=0.25}$$
(43)

¹ Eggleston, D. M. and Stoddard, F. S., 1987, Wind Turbine Engineering Design, Van Nostrand Reinhold, New York.

The relation between λ , a_2 , $C_{P,max}$ is given in Table 1.

λ	a_2	$C_{P,max}$
0.5	0.2983	0.289
1.0	0.3170	0.416
1.5	0.3245	0.477
2.0	0.3279	0.511
2.5	0.3297	0.533
5.0	0.3324	0.570
7.5	0.3329	0.581
10	0.3330	0.585

Table 1

The numerical results of (43) are shown in Fig. 5, and induction factors: axial (a), rotational (a') are plotted as a function of $\left(\frac{r}{R}\right)$ in Fig. 6.

Fig. 5: Theoretical maximum power coefficient as a function of tip speed ratio for an ideal horizontal axis wind turbine, with and without wake rotation

$$\lambda = \frac{\Omega R}{U}$$

U: entering wind speed

 Ω : angular velocity of blade

R: radius of rotor

Fig. 6: Induction factors for an ideal wind turbine with wake rotation: tip speed ratio, $\lambda = 7.5$; a-axial induction factor, a'-angular induction factor, r-radius, and R-rotor radius

Effect of Drag and Blade number on optimum performance

Wilson *et.al.* (1976)² obtain the formula for $C_{p,max}$

$$C_{p,max} = \left(\frac{16}{27}\right)\lambda \left\{\lambda + \frac{1.32 + \left(\frac{\lambda - 8}{20}\right)^2}{B^{\frac{2}{3}}}\right\}^{-1} - \frac{0.57\lambda^2}{\frac{C_l}{C_d}\left(\lambda + \frac{1}{2B}\right)}$$

where, λ is speed ratio $(\frac{\Omega R}{U})$, B is number of blades, C_l is lift coefficient of a blade, C_d is the drag coefficient of blade. If no drag is considered, maximum achievable power coefficient is given in Fig. 7.

Fig. 7: Maximum achievable power coefficient as a function of number of blades, no drag

² Wilson, R. E., Lissaman, P. B. S. and Walker, S. N., 1976, "Aerodynamic performance of wind turbines," Energy research and development administration, ERDA/NSF/04014-7611.

Fig. 8 shows the maximum power achievable as a function of tip speed ratio for 3-blade wind turbine if the lift to drag ratio, $\frac{c_l}{c_d}$ is considered.

Fig. 8: Maximum achievable power coefficients of a 3-blade optimum rotor as a function of the lift to drag ratio, $\frac{c_l}{c_d}$

2. Fundamental of electromagnetic motor

Magnetic flux density B (Wb/m^2) is related to magnetic field H (A/m) by

$$\underline{B} = \mu \underline{H} \tag{1}$$

where μ is magnetic permeability, and it is conveniently expressed by

$$\mu = \mu_r \mu_0 \tag{2}$$

 $\mu_0 = 4\pi \times 10^{-7} \ Wb/(A \cdot m)$, for free space (or in vacuum) μ_r is relative permeability, thus it is non-dimensional.

Non-magnetic materials, $\mu_r = 1$, and ferromagnetic materials, μ_r is very large, $10^3 \sim 10^5$. There are two kinds of ferromagnetic materials, soft and hard (or permanent) magnet, see Fig. 1.

For ferromagnetic materials, Eq. (3) is normally used.

$$\underline{B} = \mu_0 \left(\underline{H} + \underline{M} \right) \tag{3a}$$

or
$$= \mu_0 H + M \tag{3b}$$

(3a) is newer expression then the unit of \underline{M} is the same as \underline{H} (i.e., A/m), and (3b) is the older expression, still used by materials scientists. Then the unit of \underline{M} is $\frac{Wb}{m^2} = Tesla$. In Eq. (3), \underline{M} is called as magnetization vector (magnetic dipole moment per unit volume), and it is related to H as

$$\underline{M} = \chi_m \underline{H} \tag{4}$$

where χ_m is magnetic susceptibility. From (1), (2), (3a) and (4),

$$\underline{B} = \mu_0 (\underline{H} + \chi_m \underline{H})$$

$$= \mu_0 (1 + \chi_m) \underline{H}$$
(5)

Thus, $\mu = \mu_0 (1 + \chi_m)$

$$\mu_r = \frac{\mu}{\mu_0} = 1 + \chi_m \tag{6}$$

Fig. 1: M-H curve of ferromagnetic materials. Soft magnet has very small H_c , hard magnet has large H_c

Fig. 2: Solenoid with number of turn, N

Let us consider simple solenoid which has N turns. If electric current (I) flows through the solenoid, magnetic flux density B is induced and its magnitude B is given by

$$B = \mu I \frac{N}{L} \tag{7}$$

where L is inductance [Henry=H].

Magnetic flux (Φ) is defined by

$$\underline{\Phi} = \int \underline{B} \cdot d\underline{A} \tag{8}$$

where $d\underline{A}$ is area element vector. The magnitude of $\underline{\Phi}$ is

$$\Phi = BA
= \frac{\mu I N A}{L}$$
(9)

Faraday's law

Electromagnetic force (or voltage) E is given by

$$E = -\frac{d\Phi}{dt} \tag{10}$$

A current flowing in conductor in the presence of magnetic field results in an induced force, acting on the conductor. This is the fundamental property of motors. A conductor which is forced to move through a magnetic field will have a current induced in the conductor. This is the fundamental property of generators. The force in a conductor of incremental length dl, the current (I), magnetic flux density $d\underline{B}$ are related by

$$d\underline{F} = \underline{I}dl \times d\underline{B} \tag{11}$$

It is noted in (11) ' \times ' is vector (or cross) product between two vectors. If vectors \underline{Idl} and \underline{dB} are perpendicular, the force vector which is perpendicular to both Idl and dB, becomes the maximum.

Ampere's law

Current flowing in a conductor induces a magnetic field \underline{H} in the vicinity of the conductor, which is called Ampere's law.

$$\oint \underline{H} \cdot d\underline{l} = I \tag{12}$$

If conductor is solenoid with N turns,

$$V_m = \oint H_s ds = NI \tag{13}$$

 H_s is the magnetic field along the magnetic circuit, and V_m is the electromagnetic force. (13) is reduced to

$$V_m = \oint H_s ds = \oint \frac{B}{\mu} ds = \oint \frac{\Phi}{\mu S} ds = \Phi \oint \frac{ds}{\mu S} = \Phi R_m$$
 (14)

where R_m is magnetic resistance,

$$R_m = \oint \frac{ds}{us} \tag{15}$$

S is the cross sectional area through which Φ passes.

Let us consider electromagnetic (Fig. 3), from (13) and (14),

$$V_m = NI = R_m \Phi$$

$$\therefore \Phi = \frac{NI}{R_m}$$
(16)

For Fig. 3 circuit,

$$R_m = \frac{l_y}{\mu_r \mu_0 S_y} + \frac{2g}{\mu_0 S_g} \tag{17}$$

where l_y and S_y are the length of magnetic circuit in the yoke, cross sectional area of the yoke, g is the gap distance, S_g is the cross sectional area of the gap.

For a rotor rotating with angle θ , Fig. 4,

$$R_m = \frac{l_y}{\mu_r \mu_0 S_y} + \frac{2g}{\mu_0 S_g\left(\frac{r\theta}{L}\right)} \tag{18}$$

Fig. 3: Simple magnetic device; g-width of air gap, i-current and Φ -magnetic flux

Fig. 4: Simple magnetic torque device; g-width of air gap, i-current, Φ -magnetic flux, L-length of the face of the poles, Q_e -electrical torque, r-radius and θ -rotation angle.