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Lecture note on wind turbine 

Prepared by Minoru Taya, Jan. 26, 2016 

Main reference: “Wind energy explained:theory, design and application”, by F. Manwell, J.G. McGowan 

and A.L. Rogers, Joh Wiley and Sons, LTD, 2002 

Sub reference, “Electronic Composites”, by M. Taya, Cambridge University Press, 2005. 

1. Fundamentals of wind energy harvesting 

 Linear  momentum  model 

 𝑃 = 𝑚𝑣   

 𝑚: mass 

 𝑣: velocity 

For steady-state, conservation of mass 

 (𝜌𝐴𝑢)1 = (𝜌𝐴𝑢)4 = 𝑚̇  (1) 

Then, 

  𝑇 = 𝑈1(𝜌𝐴𝑢)1 − 𝑈4(𝜌𝐴𝑢)4 = 𝑚̇(𝑈1 − 𝑈4)  (2) 

where, 𝑇: thrust 

 

Fig.1: Actuator disk model of a wind turbine; U-mean air velocity, 1,2,3 and 4 indicate locations 

 

Applying Bernoulli theory at control section 1, 2 (both upstream of turbine) 

 𝑃1 +
1

2
𝜌𝑈1

2 = 𝑃2 +
1

2
𝜌𝑈2

2  (3)  

For downstream, 
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 𝑃3 +
1

2
𝜌𝑈3

2 = 𝑃4 +
1

2
𝜌𝑈4

2  (4) 

Assuming 𝑃1 = 𝑃4, 𝑈2 = 𝑈3 

Thrust 𝑇 can be expressed as  

 𝑇 = 𝐴2(𝑃2 − 𝑃3)  (5) 

Using the assumption of 𝑃1 = 𝑃4, 𝑈2 = 𝑈3 

𝑃2 = 𝑃1 +
1

2
𝜌 𝑈1

2 −
1

2
𝜌𝑈2

2 

𝑃3 = 𝑃4 +
1

2
𝜌 𝑈4

2 −
1

2
𝜌𝑈3

2 

 𝑃2 − 𝑃3 =
1

2
𝜌(𝑈1

2 − 𝑈4
2)  (6) 

Substituting (6) into (5) 

 𝑇 =
1

2
𝜌𝐴2(𝑈1

2 − 𝑈4
2)  (7) 

Equating (7) to (2) 

  𝑇 = 𝑚̇(𝑈1 − 𝑈4) =
1

2
𝜌𝐴2(𝑈1

2 − 𝑈4
2)   

𝜌𝐴2𝑈2(𝑈1 − 𝑈4) =
1

2
𝜌𝐴2(𝑈1 − 𝑈4)(𝑈1 + 𝑈4) 

 ∴ 𝑈2 =
1

2
(𝑈1 + 𝑈4)  (8) 

Define 𝑎 as the fractional decrease in wind velocity between free stream and rotor plane, then 

 𝑎 ≡
(𝑈1−𝑈2)

𝑈1
  (9) 

 𝑈2 = 𝑈1(1 − 𝑎)  (10) 

From (8) and (10) 

1

2
(𝑈1 + 𝑈4) = 𝑈1(1 − 𝑎) 

 𝑈4 = 𝑈1(1 − 2𝑎)  (11) 

 𝑎𝑈1: induction velocity 

Power of wind turbine, 𝑃 is equal to thrust (𝑇) times velocity (𝑈2), from (7) 
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 𝑃 =
1

2
𝜌𝐴2(𝑈1

2 − 𝑈4
2)𝑈2 =

1

2
𝜌𝐴2(𝑈1 − 𝑈4)(𝑈1 + 𝑈4)𝑈2  (12) 

Substituting (10), (11) into (12) 

 𝑃 =
1

2
𝜌𝐴𝑈34𝑎(1 − 𝑎)2  (13) 

where 𝐴2 = 𝐴, 𝑈1 = 𝑈 

Power coefficient, 𝐶𝑝 is given by

 𝐶𝑝 =
𝑃

1

2
𝜌𝑈3𝐴

=
𝑅𝑜𝑡𝑜𝑟 𝑝𝑜𝑤𝑒𝑟

𝑃𝑜𝑤𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑖𝑛𝑑
  (14) 

From (13) and (14) 

 𝐶𝑝 = 4𝑎(1 − 𝑎)2  (15) 

The maximum of 𝐶𝑝 is obtained by taking its derivative 
𝑑𝐶𝑝

𝑑𝑎
 and setting it to be zero. 

 
𝑑𝐶𝑝

𝑑𝑎
= 4{(1 − 𝑎)2 + 4𝑎2(1 − 𝑎)(−1)} = 0 

 𝑎𝑚𝑎𝑥 =
1

3
  (16) 

Substituting 𝑎 =
1

3
 in (15) 

 𝐶𝑝,𝑚𝑎𝑥 =
16

27
= 0.5926  (17) 

Substituting (10), (11) into (7) 

𝑇 =
1

2
𝜌𝐴2(𝑈1

2 − 𝑈4
2) =

1

2
𝜌𝐴2{𝑈1

2 − 𝑈1
2(1 − 2𝑎)2} 

                =
1

2
𝜌𝐴2𝑈1

2{1 − (1 − 2𝑎)2} =
1

2
𝜌𝐴𝑈1

2[4𝑎(1 − 𝑎)]  (18) 

where 𝐴2 = 𝐴 

Thrust coefficient, 𝐶𝑇 is given by 

 𝐶𝑇 =
𝑇

1

2
𝜌𝑈2𝐴

=
𝑇ℎ𝑟𝑢𝑠𝑡 𝑓𝑜𝑟𝑐𝑒

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑓𝑜𝑟𝑐𝑒
  (19) 

= 4𝑎(1 − 𝑎) 

The maximum of 𝐶𝑇 is obtained from  

 
𝑑𝐶𝑇

𝑑𝑎
= 0   𝑎 =

1

2
  (20) 

𝐶𝑇 becomes the maximum, 𝐶𝑇 = 1 at 𝑎 =
1

2
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At 𝑎 =
1

2
, 

𝑈4 = 𝑈1(1 − 2𝑎) = 0 

At maximum power output (𝑎 =
1

3
)  

 𝐶𝑇 =
8

9
  (21) 

It is noted from Fig. 2, the above model (Betz) is valid only for 𝑎 ≤
1

2
 

At 𝑎 =
1

2
, 𝐶𝑝,𝑚𝑎𝑥 =

16

27
= 0.5926, is theoretically the maximum rotor power efficiency. 

Practical turbine efficiency, 𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙 is given by 

𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
𝑃𝑜𝑢𝑡

1
2 𝜌𝐴𝑈3

= 𝜂𝑚𝑒𝑐ℎ𝐶𝑝 

 ∴ 𝑃𝑜𝑢𝑡 =
1

2
𝜌𝐴𝑈3(𝜂𝑚𝑒𝑐ℎ𝐶𝑝)  (22) 

 

Fig. 2: Operating parameters for a Betz turbine: 𝑈-velocity of undisturbed air, 𝑈4-air velocity behind th                                

e rotor, 𝐶𝑝-pwer coefficient, and 𝐶𝑇-thrust coefficient 

The previous model did not account for the rotating turbine blades which induces angular momentum in 

the wake region, see Fig. 3. 

Conservation of angular momentum 
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Fig. 3: Stream tube model of flow behind rotating wind turbine blade. 

 

Fig. 4: Geometry for rotor analysis; 𝑈 – velocity of undisturbed air, 𝑎 -  induction factor, 𝑟 – radius 

𝜔: angular velocity of the air flow in the wake 

Ω: angular velocity of turbine blade 

Assume Ω ≫ ω 

Then, the pressure gap before and after the rotor location is estimated as 

 𝑃2 − 𝑃3 = 𝜌 (Ω +
1

2
𝜔) 𝜔𝑟2 (23) 

For the annual element (𝑑𝑟), thrust, 𝑑𝑇 is given by  

 𝑑𝑇 = (𝑃2 − 𝑃3)𝑑𝐴 = 𝜌 (Ω +
1

2
𝜔) 𝜔𝑟2 ⋅ 2𝜋𝑟 𝑑𝑟   (24) 

Define angular induction factor, 𝑎′ as  

 𝑎′ =
𝜔

2Ω
 (25) 

Induced velocity at the rotor is sum of axial component 𝑈𝑎, and 𝑟Ω𝑎′. 

By using (25), (24) is reduced to  
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 𝑑𝑇 = 4𝑎′(1 + 𝑎′)
1

2
𝜌Ω2𝑟22𝜋𝑟𝑑𝑟  (26) 

From (18) applied to the annual area element (2𝜋𝑟𝑑𝑟) 

 𝑑𝑇 = 4𝑎(1 − 𝑎)
1

2
𝜌𝑈22𝜋𝑟𝑑𝑟  (27) 

Equating (26) to (27), we obtain  

 
𝑎(1−𝑎)

𝑎′(1+𝑎)
=

Ω2𝑟2

𝑈2 ≡ 𝜆𝑟
2 (28) 

where 𝜆𝑟 is local speed ratio. Tip speed ratio, 𝜆 is given by 

 𝜆 =
Ω𝑅

𝑈
 (29a) 

Intermediate speed ratio (at 𝑟), 𝜆𝑟 is given by 

 𝜆𝑟 =
Ω𝑟

𝑈
=

𝜆𝑟

𝑅
  (29b) 

Let us consider the conservation of angular momentum focusing on the annual element. The torque (𝑄) 

expected  on the rotor is equal to the change in the angular momentum; 

 𝑑𝑄 = 𝑑𝑚̇(𝜔𝑟)𝑟 = (𝜌𝑈22𝜋𝑟𝑑𝑟)(𝜔𝑟)𝑟  (30) 

Since 𝑈2 = 𝑈(1 − 𝑎), i.e., Eq (10) and 𝑎′ =
𝜔

2Ω
 , Eq (25), 

 𝑑𝑄 = 4𝑎′(1 − 𝑎)
1

2
𝜌𝑈Ω𝑟22𝜋𝑟𝑑𝑟  (31) 

The power generated in each element, 𝑑𝑃 is  

 𝑑𝑃 = Ω𝑑𝑄  (32) 

Substituting (31) into (32) and using (29) 

We arrive at  

 𝑑𝑃 =
1

2
𝜌𝐴𝑈3 [

8𝑎′(1−𝑎)𝜆𝑟
3

𝜆2 𝑑𝜆𝑟]  (33) 

where 𝐴 = 𝜋𝑅2 

Incremental contribution to the power coefficient (𝑑𝐶𝑝) from annual ring is  

 𝑑𝐶𝑝 =
𝑑𝑃

1

2
𝜌𝐴𝑈3

  (34) 

Thus, total power coefficient (𝐶𝑝) is given by  

 𝐶𝑝 =
1

𝜆2 ∫ 𝑎′(1 − 𝑎)𝜆𝑟
3𝑑𝜆𝑟

𝜆

0
 (35) 
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From (28), we can express 𝑎′ in terms of 𝑎, 

 𝑎′ = −
1

2
+

1

2
√1 +

4

𝜆𝑟
2 𝑎(1 − 𝑎)  (36) 

Integrand in (35) is  

 𝑓(𝑎) = (1 − 𝑎) {−
1

2
+

1

2
√1 +

4

𝜆𝑟
2 𝑎(1 − 𝑎)}  (37) 

The maximum of 𝑓(𝑎) gives the maximum of 𝐶𝑝, 

𝑑𝑓(𝑎)

𝑑𝑎
= 0 gives us 

 𝜆𝑟
2 =

(1−𝑎)(4𝑎−1)2

(1−3𝑎)
  (38) 

Substituting (38) into (28) for maximum power in each annual ring  

 𝑎′ =
1−3𝑎

4𝑎−1
  (39) 

By taking derivatives of (38), we obtain 

 2𝜆𝑟𝑑𝜆𝑟 =
6(4𝑎−1)(1−2𝑎)2

(1−3𝑎)2 𝑑𝑎  (40) 

Substituting (38)~(40) into (35), the maximum power coefficient, 𝐶𝑝,𝑚𝑎𝑥 is obtained as  

 𝐶𝑝,𝑚𝑎𝑥 =
24

𝜆2 ∫ [
(1−𝑎)(1−2𝑎)(1−4𝑎)

(1−3𝑎)
]

2
𝑑𝑎

𝑎2

𝑎1
  (41) 

where 𝑎1corresponds to axial induction factor for 𝜆𝑟 = 0, 𝑎2 to the axial induction factor for 𝜆𝑟 = 𝜆. 

From (38), 

 𝜆2 =
(1−𝑎2)(1−4𝑎2)2

(1−3𝑎2)
  (42) 

Note in (42), 𝑎1 = 0.25,   𝜆𝑟 = 0 

Note in (42), 𝑎2 =
1

3
, 𝜆 → ∞, thus 𝑎2 =

1

3
 is the upper limit of axial induction factor 

Integral in (41) is performed by setting1  𝑥 = (1 − 3𝑎), then, 𝐶𝑝,𝑚𝑎𝑥 is expressed as  

 𝐶𝑝,𝑚𝑎𝑥 =
8

729𝜆2 [
64

5
𝑥5 + 72𝑥4 + 124𝑥3 + 38𝑥2 − 63𝑥 − 12 ln 𝑥 −

4

𝑥
]

𝑥=(1−3𝑎2)

𝑥=0.25
 (43) 

                                                           
1 Eggleston, D. M. and Stoddard, F. S., 1987, Wind Turbine Engineering Design, Van Nostrand Reinhold, New 

York. 
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The relation between 𝜆, 𝑎2, 𝐶𝑃,𝑚𝑎𝑥 is given in Table 1. 

𝜆 𝑎2 𝐶𝑃,𝑚𝑎𝑥 

0.5 0.2983 0.289 

1.0 0.3170 0.416 

1.5 0.3245 0.477 

2.0 0.3279 0.511 

2.5 0.3297 0.533 

5.0 0.3324 0.570 

7.5 0.3329 0.581 

10 0.3330 0.585 

Table 1 

The numerical results of (43) are shown in Fig. 5, and induction factors: axial (𝑎), rotational (𝑎′) are 

plotted as a function of (
𝑟

𝑅
) in Fig. 6. 

 

Fig. 5: Theoretical maximum power coefficient as a function of tip speed ratio for an ideal horizontal axis 

wind turbine, with and without wake rotation 

𝜆 =
Ω𝑅

𝑈
 

         𝑈: entering wind speed 

                  Ω: angular velocity of blade 

 𝑅: radius of rotor 

 

Tip speed ratio, 𝜆 =
Ω𝑅

𝑈
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Fig. 6: Induction factors for an ideal wind turbine with wake rotation: tip speed ratio, 𝜆 = 7.5; 𝑎-axial 

induction factor, 𝑎′-angular induction factor, 𝑟-radius, and 𝑅-rotor radius 

Effect of Drag and Blade number on optimum performance 

Wilson et.al. (1976)2 obtain the formula for 𝐶𝑝,𝑚𝑎𝑥 

𝐶𝑝,𝑚𝑎𝑥 = (
16

27
) 𝜆 {𝜆 +

1.32 + (
𝜆 − 8

20
)

2

𝐵
2
3

}

−𝟏

−
0.57𝜆2

𝐶𝑙
𝐶𝑑

(𝜆 +
1

2𝐵)
 

where, 𝜆 is speed ratio (
Ω𝑅

𝑈
)  , B is number of blades, 𝐶𝑙 is lift coefficient of a blade, 𝐶𝑑 is the drag 

coefficient of blade.  If no drag is considered, maximum achievable power coefficient is given in Fig. 7. 

 

Fig. 7: Maximum achievable power coefficient as a function of number of blades, no drag 

                                                           
2 Wilson, R. E., Lissaman, P. B. S. and Walker, S. N., 1976, “Aerodynamic performance of wind turbines,” Energy 

research and development administration, ERDA/NSF/04014-7611. 
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Fig. 8 shows the maximum power achievable as a function of tip speed ratio for 3-blade wind turbine if 

the lift to drag ratio, 
𝐶𝑙

𝐶𝑑
 is considered. 

 

Fig. 8: Maximum achievable power coefficients of a 3-blade optimum rotor as a function of the lift to 

drag ratio, 
𝐶𝑙

𝐶𝑑
 

2. Fundamental of electromagnetic motor 

Magnetic flux density B (𝑊𝑏/𝑚2) is related to magnetic field H (𝐴/𝑚) by  

 𝐵 = 𝜇𝐻  (1) 

where 𝜇 is magnetic permeability, and it is conveniently expressed by  

 𝜇 = 𝜇𝑟𝜇0  (2) 

𝜇0 = 4𝜋 × 10−7 𝑊𝑏/(𝐴 ⋅ 𝑚), for free space (or in vacuum) 𝜇𝑟 is relative permeability, thus it is non-

dimensional.  

Non-magnetic materials, 𝜇𝑟 = 1, and ferromagnetic materials, 𝜇𝑟 is very large, 103~105. There are two 

kinds of ferromagnetic materials, soft and hard (or permanent) magnet, see Fig. 1. 

For ferromagnetic materials, Eq. (3) is normally used.  

 𝐵 = 𝜇0(𝐻 + 𝑀) (3a) 

or  = 𝜇0𝐻 + 𝑀  (3b) 

(3a) is newer expression then the unit of 𝑀is the same as 𝐻 (i.e., 𝐴/𝑚), and (3b) is the older expression, 

still used by materials scientists. Then the unit of 𝑀  is 
𝑊𝑏

𝑚2 = 𝑇𝑒𝑠𝑙𝑎 . In Eq. (3), 𝑀  is called as 

magnetization vector (magnetic dipole moment per unit volume), and it is related to 𝐻 as 

 𝑀 = 𝜒𝑚𝐻 (4) 

where 𝜒𝑚 is magnetic susceptibility. From (1), (2), (3a) and (4), 
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 𝐵 = 𝜇0(𝐻 + 𝜒𝑚𝐻)  

 = 𝜇0(1 + 𝜒𝑚)𝐻  (5) 

Thus, 𝜇 = 𝜇0(1 + 𝜒𝑚) 

 𝜇𝑟 =
𝜇

𝜇0
= 1 + 𝜒𝑚  (6) 

 

Fig. 1: M-H curve of ferromagnetic materials. Soft magnet has very small 𝐻𝑐, hard magnet has large 𝐻𝑐 

 

Fig. 2: Solenoid with number of turn, N 

Let us consider simple solenoid which has N turns. If electric current (I) flows through the solenoid, 

magnetic flux density 𝐵 is induced and its magnitude 𝐵 is given by 

 𝐵 = 𝜇𝐼
𝑁

𝐿
  (7) 

where 𝐿 is inductance [Henry=𝐻].  

Magnetic flux (Φ) is defined by 

 Φ = ∫ 𝐵 ⋅ 𝑑𝐴 (8) 

where 𝑑𝐴 is area element vector. The magnitude of Φ is 

 Φ = 𝐵𝐴  

 =
𝜇𝐼𝑁𝐴

𝐿
  (9) 

 

Faraday’s law 
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Electromagnetic force (or voltage) E is given by 

 𝐸 = −
𝑑Φ

𝑑𝑡
  (10) 

A current flowing in conductor in the presence of magnetic field results in an induced force, acting on the 

conductor. This is the fundamental property of motors. A conductor which is forced to move through a 

magnetic field will have a current induced in the conductor.  This is the fundamental property of 

generators. The force in a conductor of incremental length 𝑑𝑙, the current (𝐼), magnetic flux density 𝑑𝐵 

are related by 

 𝑑𝐹 = 𝐼𝑑𝑙 × 𝑑𝐵 (11) 

It is noted in (11) ‘×’ is vector (or cross) product between two vectors. If vectors 𝐼𝑑𝑙  and 𝑑𝐵  are 

perpendicular, the force vector which is perpendicular to both 𝐼𝑑𝑙 and 𝑑𝐵, becomes the maximum. 

Ampere’s law  

Current flowing in a conductor induces a magnetic field 𝐻 in the vicinity of the conductor, which is called 

Ampere’s law. 

 ∮ 𝐻 ⋅ 𝑑𝑙 = 𝐼  (12) 

If conductor is solenoid with N turns,  

 𝑉𝑚 = ∮ 𝐻𝑠𝑑𝑠 = 𝑁𝐼 (13) 

𝐻𝑠 is the magnetic field along the magnetic circuit, and 𝑉𝑚 is the electromagnetic force. (13) is reduced to  

 𝑉𝑚 = ∮ 𝐻𝑠𝑑𝑠 = ∮
𝐵

𝜇
𝑑𝑠 = ∮

Φ

𝜇𝑆
𝑑𝑠 = Φ ∮

𝑑𝑠

𝜇𝑆
= Φ𝑅𝑚 (14) 

where 𝑅𝑚 is magnetic resistance,  

 𝑅𝑚 = ∮
𝑑𝑠

𝜇𝑆
  (15) 

𝑆 is the cross sectional area through which Φ passes. 

Let us consider electromagnetic (Fig. 3), from (13) and (14), 

𝑉𝑚 = 𝑁𝐼 = 𝑅𝑚Φ 

 ∴ Φ =
𝑁𝐼

𝑅𝑚
  (16) 

For Fig. 3 circuit,  

 𝑅𝑚 =
𝑙𝑦

𝜇𝑟𝜇0𝑆𝑦
+

2𝑔

𝜇0𝑆𝑔
  (17) 
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where 𝑙𝑦 and 𝑆𝑦 are the length of magnetic circuit in the yoke, cross sectional area of the yoke, 𝑔 is the 

gap distance, 𝑆𝑔 is the cross sectional area of the gap.  

For a rotor rotating with angle 𝜃, Fig. 4, 

 𝑅𝑚 =
𝑙𝑦

𝜇𝑟𝜇0𝑆𝑦
+

2𝑔

𝜇0𝑆𝑔(
𝑟𝜃

𝐿
)
 (18) 

 

Fig. 3: Simple magnetic device; 𝑔-width of air gap, 𝑖-current and Φ-magnetic flux 

 

Fig. 4: Simple magnetic torque device; 𝑔-width of air gap, 𝑖-current, Φ-magnetic flux, 𝐿-length of the 

face of the poles, 𝑄𝑒-electrical torque, 𝑟-radius and 𝜃-rotation angle. 


