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Abstract
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September 24th, 2014: Intro to Lie Algebras (Knapp Ch.1 §1)

1 Remark
Textbooks: the official text is “Representations of Compact Lie Groups” by Bröcker and tom Dieck;
another is “Compact Lie Groups” by Sepanski—available online through UW, can buy it cheap through
SpringerLink; we will begin with chapter one of “Lie Groups: Beyond an Introduction” by Knapp; also
“Intro to Lie Algebras” by Humphreys. These are on reserve in the math research library.

Sara Billy teaches a related course in the Spring.

We’ll have a set-aside Q&A session for the first few minutes of Friday lectures, so please come with
questions.

2 Notation
Throughout, our base field will be F := R or C. More general statements are frequently possible.

Definition 3. A Lie algebra is an F-vector space g with a map g × g → g called the Lie bracket (or

sometimes commutator ) and notated [−,−] which is F-bilinear, skew symmetric (so [X,Y ] =

−[Y,X]), and it satisfies the Jacobi identity ,

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

A Lie algebra homomorphism g→ h is an F-linear transformation which preserves brackets,

φ([X,Y ]g) = [φ(X), φ(Y )]h.
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A Lie algebra isomorphism is additionally an isomorphism of vector spaces. (It follows that its

inverse also preserves brackets.)

A Lie subalgebra h ⊂ g is a subspace closed under brackets.

4 Example
1. Let M be a smooth manifold, X(M) the set of smooth vector fields on M , and [−,−] as usual;

X(M) is a Lie algebra.

2. Let a be any associative F-algebra. Define Lie(a) as the associated Lie algebra: as a set, it is just

a; use commutator as bracket, [α, β] := αβ − βα. This satisfies the suggested axioms.

An important special case is the following. Let V be a vector space and set a = End(V ) with

algebra operation given by composition. Denote gl(V ) := Lie(End(V )).

For instance, letting V = Rn, gl(n,R) is just Mn(R) with commutator of matrices as the Lie bracket.
Likewise with gl(n,C).

3. Let g be a C-Lie algebra. We can view this as an R-vector space; denote gR as the induced R-Lie

algebra. The commutator is unaffected. Note that

dimR gR = 2 dimC g.

4. Let G be a Lie group. Let g be the Lie algebra of G. The associated Lie algebra can be viewed in
two ways. We can let g be the set of left-invariant vector fields on G under Lie bracket. This is a
subalgebra of X(G) from above. As a vector space, g is TeG, the tangent space at the identity (so
for instance dim g = dimG).

Since Lie groups are real manifolds, g is a real Lie algebra. There is a theory of complex Lie groups
we mostly will not develop. They’re roughly complex manifolds with a smooth (i.e. analytic) group
structure.

5. Let V be a finite dimensional F-vector space. Then Aut(V ) = GL(V ) is the vector space of invertible
linear transformations V → V , and indeed we can consider GL(V ) as a Lie group. Its Lie algebra is
gl(V ).

Note from a previous example that the Lie agebra of End(V ) is gl(V ), but we have just seen that the
Lie algebra of Aut(V ) is also gl(V ). This makes sense since End(V ) is an algebra (with addition and
multiplication) so the bracket operation does not generate elements outside of End(V ). However,
Aut(V ) is a group (under matrix multiplication) so roughly the Lie bracket operation generates
elements outside of Aut(V ) and indeed generates all matrices in Mn(F), hence we have the same
Lie algebra.

6. A linear Lie algebra is a (Lie) subalgebra of gl(V ) where V is a finite-dimensional F-vector space.

(More concretely though equivalently, we could say they are Lie subalgebras of gl(n,F) if a we
choose a basis.)

Some special cases:

(a) sl(n,F) is the zero trace matrices in gl(n,F). (Note that TrXY = TrY X, so they are closed

under brackets.) This is the Lie algebra of SL(n,F), i.e. the matrices of determinant 1.

(b) so(n,F) is the skew symmetric matrices in gl(n,F), namely we require X +XT = 0. This is

closed under brackets since

[X,Y ]T = (XY − Y X)T = Y TXT −XTY T

= Y X −XY = −[X,Y ].

This is the Lie algebra of the Lie group O(n,F) (orthogonal matrices, i.e. XTX = I).
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(c) u(n) as an R-Lie subalgebra of gl(n,C)R, namely we require X + X
T

= 0 (skew-Hermitian
matrices). It’s basically the same computation. This is the Lie algebra of the Lie group

U(n) (unitary matrices, i.e. X
T
X = I). This is not a C-algebra since it isn’t closed under

multiplication by i, for instance (diagonal elements are pure imaginary).

(d) su(n) := u(n) ∩ sl(n,C). This is the Lie algebra of the Lie group SU(n) (complex matrices of
determinant 1).

7. (R3,×): here × is the vector cross product. Claim: this is a R-Lie algebra. You can hammer
through the Jacobi identity: remember the identity

u× (v × w) = (w · u)v − (u · v)w.

The Jacobi identity then cancels in pairs. The commutator relations on the standard basis i, j,k are

[i, j] = k, [k, i] = j, [j,k] = i.

Preview of next time: (R3,×) ∼= so(3,R) ∼= su(2).

September 26th, 2014: Draft

5 Aside
Is there some nice relationship between Lie algebras (and whatever else we’ll discuss) and the represen-
tation theory of finite groups, or finite groups in general? Yes; for instance, solvability, nilpotence, etc.
exist in both contexts, and the representation theory of compact Lie groups is semisimple in analogy
with semisimplicity for finite groups (Maschke’s theorem).

What’s the connection between representation theory and harmonic analysis? Well, one can
consider Fourier series on a circle as giving a decomposition of L1(S1) as a direct sum of irreducible
one-dimensional representations.

6 Example
Recall our example from last time, (R3,×), R3 viewed as a Lie algebra with bracket given by the cross
product. Recall the relations

[i, j] = k, [k, i] = j, [j,k] = i.

7 Proposition
(R3,×) ∼= so(3,R) ∼= su(2) as Lie algebras.

Proof
[
(R3,×) ∼= so(3,R)

]
We really just need to find basis vectors for so(3,R) and su(2) satisfying

the above “cyclic” relations. For v ∈ R3, set

Av :=

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 ∈ so(3,R).

One can check by hand that Au×v = [Au, Av] = AuAv −AvAu. Hence v 7→ Av is a Lie algebra
homomorphism and the dimensions work out, so it’s an isomorphism. This is the same as:

i 7→

0 0 0
0 0 −1
0 1 0

 , j 7→

 0 0 1
0 0 0
−1 0 0

 , k 7→

0 −1 0
1 0 0
0 0 0


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[
(R3,×) ∼= su(2)

]
Recall so(2) consists of trace zero skew-Hermitian matrices. To construct

the isomorphism, set

σ1 :=

(
0 1
1 0

)
σ2 :=

(
0 −i
i 0

)
σ3 :=

(
1 0
0 −1

)
.

These are the Pauli spin matrices . They are a basis for the trace zero Hermitian matrices. We

want skew-Hermitian, so just multiply each by i. Fact:

[σ1, σ2] = 2iσ3, [σ2, σ3] = 2iσ1, [σ3, σ1] = 2iσ2.

It follows very quickly that the desired isomorphism of Lie algebras (R3,×)→ 2) is given by

i 7→ σ1
2i
, j 7→ σ2

2i
, k 7→ σ3

2i

8 Remark
Our next goal is to understand different types of Lie algebras, based on “how degenerate” the bracket
is:

abelian ⊂ nilpotent ⊂ solvable.

We will also consider “how non-degenerate” the bracket is:

simple ⊂ semisimple ⊂ reductive.

Definition 9. An abelian Lie algebra g is one for which [X,Y ] = 0 for all X,Y ∈ g. These are essentially

just vector spaces.

A nilpotent Lie algebra g is one for which there is some k ∈ N where if we iterate bracketing k

times, we always get zero. More formally,

[X1, [X2, [. . . [Xk, Xk+1] . . .]]] = 0

for all X1, . . . , Xk+1 ∈ g. If k is minimal with this property, we call g k-step nilpotent . For instance,

g is abelian if and only if it is 1-step nilpotent.

10 Example
Let g = SpanF(X,Y, Z). Define [X,Z] = 0, [Y,Z] = 0, [X,Y ] = Z. Extend this by skew-symmetry
and F-linearity. Check the Jacobi identity holds. (The “abstract approach” in terms of “structure
constants” generalizes this procedure; see the first homework.)

Note that any commutator gives a scalar multiple of Z. Applying any second commutator then

gives 0 since Z commutes with everything. Thus this example, the Heisenberg algebra (over R or C)

is 2-step nilpotent.

Definition 11. Let g be a Lie algebra. If X ∈ g, define

adX : g→ g

by
(adX)(Y ) := [X,Y ].

Notice that ad: g→ End(g) given by X 7→ adX is a linear transformation. Moreover, recall End(g) is
a Lie algebra under the commutator. In fact,

12 Proposition
ad is a homomorphism of Lie algebras.
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Proof Expanding the definitions, this is equivalent to the Jacobi identity:

ad([X,Y ])(Z) = [[X,Y ], Z]

[adX, adY ](Z) = (adX adY − adY adX)(Z) = [X, [Y, Z]]− [Y, [X,Z]]

= −[[Y,Z], X]− [[Z,X], Y ].

Definition 13. Let g be a finite dimensional Lie algebra. The Killing form of g is defined as the map

B : g× g→ F

given by
B(X,Y ) := Tr(adX ◦ adY ).

B is clearly bilinear. It is symmetric since trace commutes with matrix multiplication. (Computationally,
this is messy to do. See the homework.)

Definition 14. Suppose g is a Lie algebra. A subspace h ⊂ g is an ideal if it is strongly closed under
commutators, namely

[X,Y ] ∈ h

for all X ∈ g and Y ∈ h.

15 Remark
Note that an ideal is in particular a subalgebra, but the reverse does not hold. Ideals are also
called “invariant subalgebras”, since adY for all Y ∈ h maps into h.

Ideals are conceptually equivalent to normal subgroups in group theory. For instance, the
kernel of any Lie algebra homomorphism is an ideal. Likewise, quotients exist: if a is an ideal,
then g/a has a natural Lie algebra structure. (Subalgebra, like non-normal subgroup, is not
enough.) In particular,

[X + a, Y + a] := [X,Y ] + a

is well-defined. The projection map
g→ g/a

is surjective with kernel a, so ideals are precisely kernels of some Lie algebra homomorphism.

Definition 16. If a, b ⊂ g are sets in a Lie algebra g, define

[a, b] := Span{[X,Y ] : X ∈ a, Y ∈ b} ⊂ g.

This is a subspace of g, though not necessarily more.

17 Proposition
If a, b ⊂ g are ideals, so are a + b, a ∩ b, and [a, b].

Proof They’re all subspaces. a + b is closed under commutators by linearity; a ∩ b trivially.
For [a, b], we’ll use the Jacobi identity: informally,

[g, [a, b]] ⊂ [a, [b, g]] + [b, [g, a]]

= [a, b] + [b, a] ⊂ [a, b].

18 Example
Let g be a Lie algebra. Some examples of ideals:

1. {0}.

2. g.
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3. z (or zg ), the center of g, namely {X ∈ g : [X,Y ] = 0,∀Y ∈ g} = ker ad.

4. [g, g], sometimes called the commutator ideal or derived algebra .

19 Remark
We can now reformulate what it means for g to be nilpotent. Define a sequence

g0 := g

g1 := [g, g]

. . .

gk+1 := [g, gk].

Since the bracket of two ideals is again an ideal, we have that each gk is an ideal inductively. Further,

g0 ⊃ g1 ⊃ g2 ⊃ · · · .

This is called the lower descending series of g. Hence g is nilpotent if the lower decending series for g

terminates at 0 at some finite point.

Definition 20. We likewise define the derived series of g as

g0 := g

g1 := [g, g]

...

gk+1 := [gk, gk].

These again are ideals, and again
g0 ⊃ g1 ⊃ g2 ⊃ · · · .

We say that g is solvable if gk = 0 for some k ∈ P. It is clear that gk ⊂ gk, so g nilpotent implies g
solvable.

21 Example
Let n ⊂ gl(n,F) consist of all strictly upper triangular matrices. The product of two upper strictly
triangular matrices is strictly upper triangular, so n is at least a Lie subalgebra. Indeed, we add an
extra diagonal of zeros above the main diagonal. Iterating such products, we continue adding diagonals
of zeros. Hence the derived series terminates in 0, so n is solvable, while we can check it’s not nilpotent.

September 29th, 2014: Draft

22 Proposition
Here are some general linear algebra considerations.

1. If φ : g → h is a homomorphism of Lie algebras, then kerφ ⊂ g is an ideal and imφ ⊂ h is a
subalgebra. If a ⊂ g is an ideal, we saw that g/a inherits a natural Lie algebra structure. If
a ⊂ kerφ, there is an induced map (on the level of linear algebra) φ : g/a→ h, which in fact is a
homomorphism of Lie algebras.

2. If a = kerφ, then φ is injective.

3. If in addition φ is surjective, then φ is an isomorphism (of either vector spaces or Lie algebras).
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4. If a ⊂ g is an ideal, then there is a one-to-one correspondence between ideals in g containing a and
ideals in g/a. More precisely, a ⊂ b ⊂ g corresponds to b/a ⊂ g/a.

5. If a, b ⊂ g are ideals, then
a + b

a
∼=

b

a ∩ b

as Lie algebras. Explicitly, the map is x+ y + a 7→ y + (a ∩ b) for x ∈ a, y ∈ b.

6. If g1 and g2 are Lie algebras, their (vector space) direct sum g1 ⊕ g2 has a natural Lie algebra
structure,

[(X1, Y1), (X2, Y2)] := ([X1, X2], [Y1, Y2]).

Notice that g1 and g2 are ideals in g1 ⊕ g2.

7. If g is a Lie algebra and a, b ⊂ g are ideals such that g = a ⊕ b using the internal direct sum of
vector spaces, then g ∼= a⊕ b using the external direct sum of Lie algebras.

Warning: a and b must both be ideals; they cannot simply be subspaces. For instance, if a is an
ideal and b is just a subalgebra so that g = a⊕ b as vector spaces, then g = a⊕ b as Lie algebras if
and only if b is also an ideal.

Summary Last time we were talking about nilpotent and solvable ideals. We constructed two decreasing series
of ideals by taking successive commutators in different ways. Recall g0 = g0 = g and g1 = g1 = [g, g].
The lower central series is defined inductively by gk+1 = [g, gk]. The derived series is defined inductively
by gk+1 = [gk, gk]. In general gk ⊂ gk.

Recall g nilpotent means gk = 0 for some k, while g solvable means gk = 0 for some k.

Definition 23. If a ⊂ g is an ideal, we say that a is a solvable ideal if it is a solvable Lie algebra.

Our goal today is to show that if g is a finite-dimensional Lie algebra, the g contains a unique

solvable ideal that contains all solvable ideals. This ideal is called the radical of g, denoted rad g .

24 Proposition
A subalgebra of a solvable Lie algebra is solvable. A homomorphic image of a solvable Lie algebra is
solvable.

Proof If h ⊂ g, then hk ⊂ gk, which gives the first statement. For the second, if φ : g → h is a
surjective Lie algebra homomorphism, then φ(gk) = hk. (In general, we only have φ(gk) ⊂ hk,
whereas we get the other inclusion since φ is surjective.)

25 Proposition
Let g a Lie algebra, a ⊂ g a solvable ideal. g/a is solvable if and only if g is solvable.

Proof Consider the projection map g→ g/a. If g is solvable, then so is g/a. On the other hand, if
g/a is solvable, we see that π(gk) = (g/a)k = 0 for k large enough. Hence gk ⊂ a. Now choose l
lage enough that al = 0. It follows that gk+l = (gk)l = 0.

26 Proposition
If a and b are solvable ideals in a Lie algebra, then so is a + b.

Proof a is an ideal in a + b and is solvable. The quotient is a+b
a
∼= b

a∩b . b is solvable, so the quotient
on the right is; apply the preceding proposition.

27 Theorem
If g is a finite dimensional Lie algebra (over any field), then g contains a unique solvable ideal that
contains all solvable ideals.

8



Proof Uniqueness is clear by maximality. For existence, let a be a solvable ideal. If b is a solvable
ideal not contained in a, then a + b is a larger solvable ideal containing both, and the dimension
as vector spaces strictly increases. Induct.

Alternatively, let a be a solvable ideal of maximal dimension (possibly zero). Then if b is
any other solvable ideal, a + b is a solvable ideal of larger dimension unless b ⊂ a.

28 Remark
We’ll next attack the inclusions

simple ⊂ semisimple ⊂ reductive.

Until we say otherwise, from now on g will be finite dimensional.

Definition 29. g is simple if g is not abelian and there are no nontrivial proper ideals. Equivalently,

dim g > 1 and g has no nontrivial proper ideals.

For instance, g = 0 is not simple.

Definition 30. g is semisimple if rad g = 0, or equivalently if there are no nontrivial solvable ideals, or

equivalently if there are no nonzero abelian ideals. (Take gk+1 = 0 for k minimal; then gk is an abelian
ideal since gk+1 := [gk, gk].)

For instance, g = 0 is semisimple but not simple.

31 Proposition
Let g be a simple Lie algebra.

1. g = [g, g]. (This motivates the “non-abelian” requirement in the definition of “simple”.)

2. g is semisimple. (rad g = 0 or g; if rad g = g, then g is solvable, but then g 6= [g, g], contradiction.)

Let g be a semisimple Lie algebra.

1. zg = 0. (zg is abelian, so it must be 0.)

October 1st, 2014: Draft

Summary Last time, we defined the radical of a finite dimensional Lie algebra. Namely, it is the largest
solvable ideal and contains all other solvable ideals. We defined simple and semisimple Lie algebras.
Recall that g is simple if g is not abelian and it has no nonzero proper ideals. Likewise, g is semisimple
if rad g = 0, or equivalently if g has no nontrivial solvable or abelian ideals. We ended with the
proposition above, which says that for a simple Lie algebra g, the derived ideal is g itself; that g is
semisimple; and that the center zg of g is 0.

32 Proposition
For any g, g/ rad g is semisimple.

Proof If a ⊂ g/ rad g is solvable, we’ll show a = 0. Let π : g→ g/ rad g. Note that π−1(a) is an ideal
in g and we must show π−1(a) is solvable (since then π−1(a) ⊂ rad g, so a = 0). The restriction

π|π−1(a) : π−1(a)→ a

is a surjective homomorphism of Lie algebras. Hence a ∼= π−1(a)/ ker. Now ker = π−1(a)∩ rad g
is solvable, so since a is solvable, π−1(a) is solvable.
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33 Remark
Hence, to any (finite dimensional) g, we associate the pair (rad g, g/ rad g) with rad g solvable
and g/ rad g semisimple.

34 Fact
Roughly, there exists a subalgebra gSS ⊂ g so that

g = rad(g)⊕ gSS

as vector spaces. (A homework problem shows that every Lie algebra is a semidirect product of rad g

and g/ rad g.) This is called a Levi decomposition . Abstractly, gSS is always isomorphic to g/ rad g,

though it is not strictly speaking unique.

Proof Appendix of Fulton and Harris; also in Varadarajan. Be careful of possible extra assumptions
required in general.

35 Example
Low dimensional Lie algebras up to isomorphism:

1. dim g = 1: abelian; 1 of them.

2. dim g = 2: exactly two; one solvable, one avelian.

3. dim g = 3: claim: g is either solvable or simple. If g is not simple, it has a proper non-zero ideal a
with dim a = 1, 2. By the previous points, a is solvable, and g/a has dimension 2, 1, so the quotient
is also solvable. Hence g is solvable. Further, one can check that g is simple if and only if [g, g] = g,
and g is solvable if and only if [g, g] 6= g. Hence we have:

36 Proposition
(R3,×) ∼= 3,R) ∼= su(2) is simple. Further 3, C) is simple and sl(2,F) is simple.

Proof The proof above of these isomorphisms actually computes the commutator ideal as
the whole Lie algebra. The same reasoning generalizes from 3,R) to 3,C).

The “standard basis” for sl(2,F) is given by

h =

(
1 0
0 −1

)
x =

(
0 1
0 0

)
y =

(
0 0
1 0

)
with commutation relations

[x, y] = h [h, x] = 2x [h, y] = −2y.

37 Theorem
Up to isomorphism,

a) . . . there are exactly 2 simple R-Lie algebras of dimension 3,

3,R) ∼= sl(2,R).

b) . . . there is exactly 1 simple C-Lie algebra of dimension 3,

sl(2,C) ∼= 3,C).

c) . . . There are uncountably many distinct 3-dimensional solvable Lie algebras.

38 Remark
We’ll next describe an alternate characterization of semisimple Lie algebras which avoids direct
discussion of solvable Lie algebras. It will say g is semisimple if and only if g is a (finite) direct sum of
simple Lie algebras. (Zero is the special case with no summands, say.)
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We’ll begin with a characterization of solvable and semisimple Lie algebras in terms of the Killing
form. Recall that if g is a finite dimensional Lie algebra, the Killing form is a symmetric bilinear form
B : g× g→ F given by

B(X,Y ) := Tr(adX ◦ adY ).

Recall the following basic linear algebra. Let V be a finite dimensional vector space, B : V ×V → V
a symmetric bilinear form. Then kerB := {v ∈ V : B(v, w) = 0 for all w ∈ V }. (This is sometimes
written B⊥.) B is called nondegenerate if and only if kerB = 0. If v1, . . . , vn is a basis for V , then the
matrix

(B(vi, vj))i,j

is the dimV ×dimV matrix with entries in F of B. Over C, there exists a basis for V so that the matrix
is just some number ≤ n of 1’s along the main diagonal with zeros elsewhere, where nondegeneracy
says the whole main diagonal consists of 1’s. Over R, there exists a basis consisting of some number of
1’s followed by some number of −1’s followed by some number of 0’s along the main diagonal. If there
are p one’s and q negative one’s, then one says B has “signature” (p, q).

39 Theorem ( Cartan’s Criterion )
Let g be a (finite dimensional) Lie algebra with Killing form B (over R or C only? check Humphreys).
Then

(1) g is solvable if and only if [g, g] ⊂ kerB.

(2) g is semisimple if and only if B is nondegenerate.

Proof (1) is deferred to Sara’s course in the Spring. It’s also in the references mentioned above. We’ll
derive (2) from (1). We’ll also use some facts:

40 Fact
If g is nilpotent, then B ≡ 0. If B ≡ 0, then g is solvable (by Cartan (1)). There exists g
solvable but not nilpotent with B ≡ 0. Hence B ≡ 0 does not characterize nilpotence.

We’ll first argue that g semisimple implies B nondegenerate. The main step is showing
that for any Lie algebra g, kerB ⊂ rad g. Assuming this, if g is semisimple, then rad g = 0, so
kerB ⊂ 0, so B is nondegenerate.

41 Lemma
Let g be a Lie algebra, a ⊂ g an ideal. Let Ba denote the Killing form of a and Bg the
Killing form of g. Then

Ba = Bg|a×a.
More explicitly, if X,Y ∈ a, then

Tr(ada(X) ◦ ada(Y )) = Tr(adg(X) ◦ adg(Y )).

Proof Next time.

October 3rd, 2014: Draft

42 Remark
Friday question session discussion:

• We can go from Lie groups to Lie algebras. Can we always go the other way? That is, can we go
from a Lie algebra over R to a Lie group over R? Jack Lee’s Smooth Manifolds book gives a
one-to-one correspondence between connected simply-connected Lie groups and Lie algebras over
R. (Pretty sure it also works with C-manifolds and C-Lie algebras.)
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• Is compactness of the underlying Lie group reflected in the Lie algebra? We’ll get to an intrinsic
criterion for determining if the Lie algebra comes from a compact Lie group. Recall over R that
we have sl(2,R) and 2), which by the homework are non-isomorphic. One comes from a compact
Lie group while the other does not.

• Let g = Rn (an abelian Lie algebra). This is the Lie algebra of the Lie group (S1)n, the n-torus,
which is compact but not simply-connected. We can also use Rn as Lie group which is connected
and simply-connected but not compact. We’ll show that if you have a semisimple real Lie algebra,
then the corresponding connected simply-connected Lie group is compact.

Summary Recall the main results from last time: if g is a (finite dimensional) Lie algebra, B(X,Y ) :=
Tr(adX ◦ adY ) is the Killing form, then Cartan’s criterion says (1) g is solvable if and only if
[g, g] ⊂ kerB and (2) g is semisimple if and only if B is nondegenerate. A corollary to Cartan (1) is
that B ≡ 0 implies g is solvable.

43 Proposition
For all X,Y, Z in a Lie algebra g,

B([X,Y ], Z) = B(X, [Y, Z]).

(This is sometimes called “associativity.)

Proof

B([X,Y ], Z) = ad[X,Y ] ◦ adZ

= adX adY adZ − adY adX adZ

and

B(X, [Y, Z]) = adX ad[Y,Z]

= adX adY adZ − adX adZ adY.

Letting A = adX,B = adY,C = adZ, the result follows if Tr(BAC) = Tr(ACB). Indeed it’s a
standard result (which we’ve already used) that the order of a product does not affect the trace.

44 Remark
We next prove the lemma from the very end of last time, roughly that the Killing form of an ideal in a
Lie algebra is the restriction of the Killing form of the Lie algebra.

Proof We’ll use the following linear algebra fact:

45 Fact
Suppose L : V → V is a linear transformation, V is a vector space. Let W ⊂ V be a
subspace and L(V ) ⊂ L(W ). Then

TrW (L|W ) = TrV (L).

Proof Decompose V = W ⊕ U for some subspace U . Pick a basis for W and a basis for
U and imagine writing L as a matrix in this basis. The result is of the form(

L|W ∗
0 0

)
,

so the trace is as described.

In our situation, if X,Y ∈ a, we let L = adX ◦ adY in the above lemma. The conclusion is
then Trg L = Tra L|a×a, which by definition says Ba(X,Y ) = Bg(X,Y ).

12



46 Proposition
kerB is a solvable ideal, i.e. kerB ⊂ rad g.

Proof Suppose X ∈ kerB, Y ∈ g. One can check [X,Y ] ⊂ kerB using associativity of the Killing
form. Hence kerB is indeed an idea. But from the lemma at the end of last time,

BkerB = Bg|kerB×kerB ≡ 0,

so by Cartan’s criterion, kerB is solvable.

47 Remark
We next continue the proof of Cartan’s criterion started last lecture. We were proving that g is
semisimple if and only if B is nondegenerate. We have g semisimple if and only if rad g = 0 which
implies by the preceding proposition that kerB = 0 which occurs if and only if B is nondegenerate;
this is the ⇒ direction.

For ⇐, suppose g is not semisimple. There is then a nonzero abelian ideal, say a. We’ll show that
any abelian ideal is contained in kerB, so kerB 6= 0, so B is degenerate.

Let x ∈ a, y ∈ g. We just need to show B(X,Y ) = 0, i.e. Tr(adX ◦ adY ) = 0. Let U be a vector
space complement to a in g, so g = a⊕U . Using this decomposition, the matrix of adX is of the form

adX =

(
0 ∗
0 0

)
.

Likewise adY is of the form

adY =

(
∗ ∗
0 ∗

)
.

We then compute

B(X,Y ) = Tr

([
0 ∗
0 0

] [
∗ ∗
0 ∗

])
= Tr

([
0 ∗
0 0

])
= 0.

48 Theorem
g is semisimple if and only if there are ideals g1, . . . , gm which are simple Lie algebras so that

g = g1 ⊕ · · · ⊕ gm.

In this case, the only ideals of g are indexed by subsets I ⊂ [m], namely they are aI := ⊕i∈Igi.
49 Remark

The gi must be simple for the ideal parameterization to work out. Since the gi are ideals, there
is no actual ambiguity in whether ⊕ refers to a Lie algebra direct sum or to a vector space direct
sum: the one implies the other.

The statement at the end is horribly false for abelian Lie algebras: for instance, if g = R2,
then g = R ⊕ R, but each line through the origin is an ideal in g which is not one of the
summands.

Proof We’ll first show the statement at the end. It is clear that aI is an ideal for each I. Let
πi : g→ gi be the projection map; it is a Lie algebra homomorphism (either directly, or because
it is isomorphic to the natural projection map associated to quotienting g by ⊕j 6=igj). πi is
surjective. If a is an ideal in g, then πia ⊂ gi is an ideal, so either πia = 0 or πia = gi.

We claim that gi ⊂ a. (This fails horribly in the abelian example above.) Since gi is simple,
gi = [gi, gi], which is [gi, πia]. This is [gi, a] since [gi, gj ] = 0 for j 6= i. Since a is an ideal, this
is a subset of a.
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Hence we conclude that for each i, either πia = 0 or gi ⊂ a; let I be the set of indexes of the
latter type. Thus a ⊂ ⊕i∈Igi = aI ⊂ a. This proves the statement at the end. In this situation,
suppose a is an ideal. Then a = aI for some I ⊂ [m]. In particular, [a, a] = a (since this is true
for each gi), so a cannot be solvable (unless it’s 0). This finishes the ⇐ direction.

More next time.

October 6th, 2014: Draft

50 Remark
Today we continue the proof of the theorem from the end of last lecture.

Proof We had shown ⇐, that a decomposition into a sum of simple ideals gives a classification of all
ideals of g and shows that g is semisimple.

Some remarks before ⇒: the only simple ideals of g are the gi’s, so the decomposition is
unique up to reordering; it can happen that gi ∼= gj for i 6= j. For instance, consider g = g1⊕ g1.
Then ∆ = {(x, x) : x ∈ g1} is a subalgebra of g, but it is not an ideal.

For ⇒, suppose g is semisimple. By Cartan’s criterion, we must show the Killing form Bg is
nondegenerate. Recall the following definition from linear algebra:

Definition 51. Let V be a finite dimensional vector space, B a non-degenerate symmetric
bilinear form on V . If W ⊂ V is a subspace, we define

W⊥ := {v ∈ V : B(v, w) = 0 for all w ∈W}.

One may check that
dimW + dimW⊥ = dimV,

though it is entirely possible that W ∩W⊥ = 0 (this happens frequently over finite fields,
for instance).

52 Proposition
In the notation of the previous definition, the following are equivalent:

(1) W ∩W⊥ = 0

(2) V = W ⊕W⊥

(3) kerB|W×W = 0

(4) B|W×W is nondegenerate.

We now induct on dim g, so we suppose that any semisimple Lie algebra of lower dimension
than g is a direct sum of simple ideals. Choose a minimal nonzero ideal a in g (which exists
since g is finite dimensional). Note that a is simple. If a = g, we’re done. If a 6= g, consider
a⊥ relative to the Killing form. We claim that a⊥ is an ideal of g: if X ∈ a⊥ and Y ∈ g, then
[X,Y ] ∈ a⊥ since for all Z ∈ a,

B([X,Y ], Z) = B(X, [Y,Z]) = 0.

Consider a ∩ a⊥ ⊂ a. By minimality, this is either 0 or a. If it is a, then everything in a is
orthogonal to everything in a, i.e. B|a×a = 0, so by our lemma from last time, Ba = 0. That is,
a is solvable, contradicting the fact that a was assumed semisimple. Hence g = a⊕ a⊥. We may
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decompose a⊥ inductively, though there are two minor verifications left: first, a⊥ is semisimple;
second, any simple ideal b ⊂ a is a simple ideal of g. The second is straightforward—ideals
0 ⊂ b ⊂ a correspond precisely to ideals between 0 and a in g. The second is also easy: a
solvable ideal in b is solvable in g, hence is 0.

53 Corollary
The preceding characterization of semisimplicity and in particular the ideal structure of semisimple
(finite dimensional) Lie algebras g implies the following. Let a ⊂ g be an ideal.

1. [a, a] = a. In particular, [g, g] = g.

2. a⊥ is an ideal and g = a⊕ a⊥.

Proof (1): this is true on the simple ideals gi, so it is true of their direct sums. (2): this was actually
proven in the theorem, namely when we showed a ∩ a⊥ = 0.

Definition 54. A Lie algebra g is reductive if for any ideal a ⊂ g, there is an ideal g ⊂ g such that
g = a⊕ b.

It is clear from the above corollary that g semisimple implies g reductive. Note that g abelian also
implies g reductive (using the linear algebraic complement). Note that b is unique for g semisimple
though not for g abelian.

55 Theorem
A Lie algebra g is reductive if and only if there is a semisimple ideal gss and an abelian ideal gab such
that

g = gss ⊕ gab.

Proof We begin with ⇐. Suppose a ⊂ g is an ideal. We claim that a = a1 ⊕ a2 where a1 is an
ideal in gss and a2 is an ideal in gab. Let a1 be the projection of a onto gss and let a2 be the
projection of a onto gab. a1 is an ideal in a, and since a is semisimple, a1 = [a1, a1]. However,
[a1, a1] = [a, a] since for all X1, X2 ∈ gss and Y1, Y2 ∈ gab,

[(X1, Y1), (X2, Y2)] = ([X1, X2], 0).

Hence a1 ⊂ a. Since for all X ∈ a, X is the sum of its projections onto a1 and a2, it follows that
a2 ⊂ a + a1 ⊂ a. Since gss and gab are reductive, we can write gss = a1 ⊕ b1 and gab = a2 ⊕ b2.
Hence g = (a1 ⊕ a2)⊕ (b1 ⊕ b2) gives the required decomposition, so g is reductive.

For ⇒, suppose g 6= 0 is reductive. Let I1 be the set of all minimal nonzero ideals in g; it is
non-empty since g is finite dimensional. Let I2 be the set of all finite sums of ideals in I1. I2 is
a subset of the set of ideals in g. (I2 includes 0 as the empty sum.) Choose an ideal a ∈ I2 of
maximal dimension. We claim a = g. If not, then since g is reductive, we can write g = a⊕ b
for a non-zero ideal b. b contains a minimal non-zero b′ ∈ I1, so a⊕ b′ is a larger ideal in I2, a
contradiction. Hence write g = a1 ⊕ · · · an for minimal non-zero ideals ai. Since we’ve written g
as a sum of ai, each ai is either simple or of dimension 1 (that is, each ai has no non-zero proper
ideals, either in ai or in g). Collect the simples together to get a semisimple ideal; collect the
dimension 1’s together to get an abelian ideal; done.

October 8th, 2014: Draft

56 Remark
In the homework due today, the last problem defined the externial semidirect product slightly incorrectly:
it should use [X,Y ] = − ad(Y )X.

Also, notes are available online (but you already knew that).
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Summary Last time, we showed that a Lie algebra g is semisimple if and only if the Killing form Bg is
nondegenerate, if and only if g is a direct sum of simple ideals (with all ideals being sums of some
subcollection of the simple ideals). We defined g to be reductive if each ideal a ⊂ g has a “complement”
ideal b such that g = a⊕ b; semisimple Lie algebras have this property. Finally we showed that g is
reductive if and only if there is a semisimple ideal gss and an abelian ideal gab such that g = gss ⊕ gab.

Indeed, the proof showed more:

57 Proposition
If g = gss⊕gab is reductive and a ⊂ g is any ideal, then a = a1⊕a2 where a1 ⊂ gss and a2 ⊂ gab
are the ideals obtained by projecting a.

Note that if g is reductive, from the above decomposition,

gss = [g, g] gab = zg.

In particular the decomposition is unique.

58 Remark
Recall that if g is a C-Lie algebra, we defined gR as the Lie algebra given by restricting scalars.

Definition 59. Suppose V is a C-vector space. An R-subspace V0 ⊂ V is totally real if V0 ∩ iV0 = 0. This

is equivalent to saying V0 contains no non-zero C-subspaces.

60 Example
Rn ⊂ Cn is a totally real subspace.

Note that dimR V0 ≤ dimC V since V0 ∩ iV0 = 0.

We say that V0 is a real form of V if V = V0 ⊕ iV0. This is equivalent to saying V0 is totally real
and dimR V0 = dimC V . Roughly, a real form is a maximal totally real subspace.

61 Proposition
Suppose V0 is a real form of V .Define a map σ : V → V as follows. Given z ∈ V , we have
unique x, y ∈ V0 such that z = x+ iy. Define σ(z) := x− iy. Then σ is conjugate linear and an
involution, i.e. σ2 = id. Further, V0 = {σ(z) = z}.

Proof Since V0 is a real subspace, for a ∈ R, σ(az) = aσ(z) and if z = x+ y then iz = −y+ ix
so that σ(iz) = −y − ix = −iσ(z) = −i(x− iy), giving conjugate linearity. That σ2 = id
and V0 = {σ(z) = z} are immediate.

62 Exercise
If V is a C-vector space and σ : V → V is a conjugate linear involution, then {z ∈ V : σ(z) = z}
is a real form.

Definition 63. Let g be a complex Lie algebra. A real subalgebra g0 ⊂ g is a real form if g is a vector
space real form. That is, g0 is a real subalgebra of the complex Lie algebra g and g = g0 ⊕ ig0 as
vector spaces.

(Almost always ig0 is not even a subalgebra.)

64 Example
We have

1. g = gl(n,C), g0 = gl(n,R) is a real form immediately.

2. g = gl(n,C), g0 = u(n). Recall that u(n) = {X ∈ gl(n,C) : X = −X∗} where X∗ := X
T

.
Then i u(n) = {X : X = X∗}. Any X ∈ gl(n,C) can be written as

X =
X −X∗

2
+ i

(
X +X∗

2i

)
.
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3. g = (n,C), g0 = (n,R) or g0 = su(n,R).

4. g = so(n,C), g = so(n,R).

65 Remark

1. It’s not true that every C-Lie algebra has a real form; see homework.

2. If g is a complex semisimple Lie algebra, then g has at least two nonisomorphic real forms.
We’ll get to “compact” and “simple” real forms. For instance, (2,C), there are two real forms
(2,R) (split) and su(2) (compact).

66 Proposition
Let g0 ⊂ g be a real form. Then g0 is semisimple if and only if g is semisimple.

Proof Choose a(n R-)basis X1, . . . , Xn for g0. The matrix for adXj relative to this basis has real
entries. Hence Bg0(X,Y ) = Tr(adX ◦ adY ) can be calculated over the reals. Since g0 is a real
form, X1, . . . , Xn is also a (C-)basis for g. We conclude that the matrix of Bg is the same as
the matrix of Bg0

, i.e.
Bg0

= Bg|g0×g0
.

Hence Bg0
is nondegenerate if and only if Bg is.

67 Remark
We’ll see shortly that if g0 ⊂ g is a real form, then g simple implies g0 simple, while g0 simple does not
imply that g is simple.

68 Proposition
If g0 ⊂ g is a real form, let σ : g → g be the associated conjugate-linear involution. Then σ is a
conjugate-linear isomorphism of (C-)Lie algebras.

Definition 69. (A conjugate-linear homomorphism of Lie algebras is just a conjugate-linear map
which preserves brackets.)

Proof We must show that σ preserves brackets. Suppose Z = X + iY , W = U + iV . Then

[Z,W ] = [X + iY, U + iV ]

= ([X,U ]− [Y, V ]) + i([X,V ] + [Y,U ]).

If we computed [σ(Z), σ(W )] instead, the real parts are the same but the imaginary parts pick
up a negative sign, which is the desired conclusion.

70 Homework
If σ is a conjugate linear involutive isomorphism of g, then {z ∈ g : σ(z) = z} is a real form of
g. Together with the preceding proposition, this produces an alternate characterization of real
forms.

71 Example

1. g = gl(n,C), g0 = gl(n,R); then σ(Z) is given by conjugating each entry of the matrix Z, i.e.
σ(Z) = Z.

2. g0 = u(n) implies σ(Z) = −Z∗. Note that σ(Z) = Z∗ does not preserve brackets:

[Z∗,W ∗] = Z∗W ∗ −W ∗Z∗ = ZW −WZ 6= [Z,W ]∗.

72 Remark
Given a R-Lie algebra g0, we will construct a C-Lie algebra g such that g0 is a real form in g. This is
called “complexification”; it’s convenient to describe in terms of tensor products.
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Definition 73. If V,W are R-vector spaces, we can form the tensor product of V and W , V ⊗R W , as

the vector space with basis vi ⊗ wj where {vi} and {wj} are bases of V and W .

If V is a real vector space, take W = C as a real vector space and defined

V C := V ⊗R C.

Now V C becomes a C-vector space using

α(v ⊗ z) := v ⊗ (αz).

If {vi} is a basis over R for V , then {vj ⊗ 1} is a basis over C for V C. Similarly {vj ⊗ 1} ∪ {vj ⊗ i} is a
basis over R for V C. V is a real form for V C, where we identify V with its image under V ↪→ V ⊗R C
given by v 7→ v ⊗ 1.

If g0 is a real Lie algebra, then gC0 := g0 ⊗R C has a natural Lie algebra structure,

[X ⊗ z, Y ⊗ w] := [X,Y ]⊗ (zw).

Indeed, g0 ↪→ g = g0 ⊗R C shows that g0 is a real form for g.

October 10th, 2014: Draft

Summary Last time, we defined real forms and discussed their basic properties. If g is a C-Lie algebra,
a real subalgebra g0 ⊂ g is a real form of g if g0 ⊕ ig0 = g. We also defined the “complexification”
of a real Lie algebra g0, namely g0 ⊗R C. The corresponding decomposition is (g0 ⊗ 1)⊕ (g0 ⊗ i), so
g0 = g0 ⊗ 1 is a real form of g0 ⊗R C.

74 Proposition
Suppose g is a C-Lie algebra with a real subalgebra g0. There is a natural map g0 ⊗R C→ g given by
x⊗ z 7→ zx. g0 is a real form of g if and only if g0 ⊗R C→ g is an isomorphism.

Proof g0 maps into g0 and g0 ⊗ i maps into ig0. Hence the nautral map, which is injective, maps
onto g0 ⊕ ig0. Hence this map is an isomorphism if and only if g0 ⊕ ig0 = g.

Definition 75. (Alternate definition of “real form”.) Suppose g is a C-Lie algebra and g0 is a R-Lie algebra
(not necessarily a subalgebra of g). We say g0 is a real form of g if

g0 ⊗R C ∼= g

as C-Lie algebras.

76 Remark
Using the preceding proposition, one can show our previous definition is equivalent to this one
“up to isomorphism”. The only real difference between the two is that in this one we allow real
subalgebras isomorphic to subalgebras of g while with the previous one we did not.

77 Example
Let g = g1⊕g2 for C-Lie algebras g1, g2. Take g0 = (g1)R map g0⊗RC; ; X+Y ⊗i, X,Y ∈ (g1)R.

Another question: let g be a C-Lie algebra. What is gR ⊗R C?

Definition 78. Let V be a C vector space. We define a “conjugate” vector space V as follows. The abelian
group structure is the same, but scalar multiplication is “twisted” by complex conjugation: αv in V is
defined to be αv in V .

Likewise given a C-Lie algebra g, we can construct a new C-Lie algebra g using the twisted

C-vector space structure and the same bracket as before. If g has structure constants ckij with respect

to some basis, then the structure constants of g in the same basis are ckij .
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79 Remark
If g has a real form, then g ∼= g. We can see this in several ways; say σ is the conjuecation
associated to the real form g0; then σ : g→ g is a conjugate linear isomorphism, whence σ : g→ g
is a linear isomorphism of Lie algebras.

It can happen that g 6∼= g.

80 Proposition
Suppose g is a C-Lie algebra. Then

gR ⊗R C ∼= g⊕ g.

(Note that this had to be symmetric with respect to g, since gR = gR trivially.) In particular, if g has a
real form, then this is isomorphic to g⊕ g.

Proof Multiplication by i is a C-linear transformation g → g. Similarly let J : gR → gR where
J(x) = iX ∈ g ∼= gR. THe isomorphism is the following: X + Y ⊗ i for X,Y ∈ gR is mapped to
(X + JY,X − JY ). One may check the remaining properties: this is an isomorphism of R-vector
spaces; indeed, an isomorphism of C-vector spaces; preserves brackets.

81 Remark
Last time, we showed that if g0 is a real form on a C-Lie algebra g, then g0 is semisimple if and only if
g is semisimple. Equivalently, complexification preserves semisimplicity. The next proposition gives a
converse.

82 Proposition
If g is a C-Lie algebra and g is semisimple, then gR is semisimple (as a R-Lie algebra).

Proof We will again use Cartan’s criterion. We will show that Bg is nondegenerate if and only of
BgR is nondegenerate. This is a quick consequence of the next proposition:

83 Proposition
If g is a C-Lie algebra and X,Y ∈ gR, then

BgR(X,Y ) = 2<Bg(X,Y ).

Proof For X,Y ∈ g, Bg(X,Y ) = Tr(adX ◦ adY ). Choose a basis for g over C,
Z1, . . . , Zn. Hence Z1, . . . , Zn, iZ1, . . . , iZn form a R-basis for gR. Define an R-
linear transformation R2n → Cn given by sending (x1, x2, . . . , xn, y1, y2, . . . , yn) to
(x1 + iy1, . . . , xn + iyn). More generally, let Φ: gl(n,C)→ gl(2n,R) be given by

Φ(M) =

(
<M −=M
=M <M

)
.

One may check the following properties: (1) Φ(M,N) = Φ(M)Φ(N); (2) Φ(M∗) =
MT ; (3) Tr Φ(M) = 2<Tr(M); (4) det Φ(M) = |detM |2. The last is the least
obvious; it suffices to check the result on elementary matrices (those representing
elementary row operations) and apply (1). In any case, from (3), we have

BgR(adRX ◦ adR Y ) = Tr(Φ(adCX) ◦ Φ(adC Y ))

= 2<Tr(adCX ◦ adC Y )

= 2<Bg(X,Y ).

Suppose that BgR is nondegenerate. If X ∈ g and Bg(X,Y ) = 0 for all Y ∈ g, then
BgR(X,Y ) = 0 for all Y ∈ gR, so X = 0. On the other hand, if Bg is nondegenerate, X ∈ gbR,
and BgR(X,Y ) = 0 for all Y ∈ gR, then <Bg(X,Y ) = 0 for all Y ∈ g. But then <Bg(X, iY ) = 0
which implies =Bg(X,Y ) = 0, so X = 0 for all Y ∈ g.
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84 Example
Begin with R-Lie algebras of matrices gl(n,R), gl(n,C), gl(n,H) where H are the quaternions .

(Recall that H is the set of elements a + bi + cj + dk for a, b, c, d ∈ R subject to the multiplication
relations ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j, and i2 = j2 = k2 = −1.)

We will not use Lie algebras over H, though we will use “vector spaces” over H. (H is a division ring,

not a field; that’s alright.) Here gl(n,H) is defined as a set to consist of n× n matrices with entries

in H. We can multiply quaternions and define matrix multiplication in gl(n,H). We can also form the
commutator of such matrices, and the resulting bracket is bilinear only over R; the non-commutativity
of quaternion multiplication prevents us from using C or H. More precisely, gln(H) is a R-algebra but
not a C- or H-algebra.

October 13th, 2014: Draft

85 Remark
Today we’ll look at subalgebras of gl(n,R), gl(n,C), and gl(n,H). We first briefly review standard
properties of H, the ring of quaternions. The multiplication structure in terms of the usual “i, j, k”
basis were defined last time. For z = a+ bi+ cj + dk, we let <z := a and =z := bi+ cj + dk. Likewise,
z = a− bi− cj − dk and |z|2 = zz = zz = a2 + b2 + c2 + d2. If z 6= 0, then z−1 = z/|z|2. Hence H is
formally a “division algebra”, which is a field except multiplication need not be commutative (and here
isn’t). One may verify zw = wz. We consider C ⊂ H as the elements of the form a+ bi. We identify
R ⊂ H as the elements of the form a; indeed, R is the center of H, namely the set of elements of H
with commute all other elements.

H is an R-associative algebra, but it is not a C-associative algebra: bilinearity requires commuting
scalars, but C is not central in H. That is, left and right multiplying a quaternion by a complex number
in general gives different results. Hence H is a C-vector space in at least two ways: through left or
right multiplication, and neither way gives C-bilinear multiplication.

As before, gl(n,H) is the set of all n× n matrices with entries in H. It is a R-associative algebra
and hence an R-Lie algebra through the usual commutator bracket. (It is not a C-Lie algebra; the
n = 1 case just gives H.)

For X ∈ gl(n,H), we define X∗ := X
T

, so X∗∗ = X. One must check that (XY )∗ = Y ∗X∗:

(XY )∗ik =
∑
j

XkjYji =
∑
j

Yji ·Xkj = (Y ∗X∗)ik.

It is not true that TrXY = TrY X for X,Y ∈ gl(n,H). It is true that

<Tr(XY ) = <Tr(Y X),

roughly since <z1z2 = <z2z1 for quaternions z1, z2.

86 Theorem
Let g be a R-Lie subalgebra of gl(n,R), gl(n,C), or gl(n,H). If g is closed under X 7→ X∗, then g is
reductive.

Proof Roughly, we will build a replacement for the Killing form argument above which produced a
complement to a given ideal. Define

〈X,Y 〉 := <Tr(XY ∗).
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This is a R-bilinear form. (It is called the Hilbert-Schmidt inner product in the complex case.)
We claim it is a real inner product.

(XY ∗)ik =
∑
j

xijykj ,

so
Tr(XY ∗) =

∑
ij

xijyij .

It follows that <Tr(XY ∗) is the Euclidean inner product on gl(n,H) viewed as R4n2

. Hence it
is a positive-definite real quadratic form.

Let a ⊂ g be an ideal. Let a⊥ be the orthogonal complement with respect to this inner
product. Then g = a⊕ a⊥ as vector spaces from standard Euclidean geometry. It suffices to
show a⊥ is an ideal.

Let X ∈ a⊥, Y ∈ g. We must show [X,Y ] ∈ a⊥. Take some Z ∈ a; we must show
〈[X,Y ], Z〉 = 0. This is

〈[X,Y ], Z〉 = <Tr[X,Y ]Z∗

= <Tr(XY Z∗ − Y XZ∗)
= <Tr(XY Z∗ −XZ∗Y )

= <TrX(ZY ∗ − Y ∗Z)∗

= <TrX[Z, Y ∗]∗

= 〈X, [Z, Y ∗]〉.

Y ∗ ∈ g by the main assumption above and Z ∈ a, so [Z, Y ∗] ∈ a, and since X ∈ a⊥, we get zero,
as required.

87 Example
We will apply the preceding theorem to some of our previous examples. Recall that if g is reductive,
then g = gss ⊕ gab where gss is semisimple and gab = zg is the center of g. If g is as in the theorem
and zg = 0, then g is semisimple.

Note: there are many examples of matrices which are not closed under conjugation. For instance,
upper triangular or strictly upper triangular matrices are examples. They are not reductive; they are
instead solvable or nilpotent, respectively.

1. gl(n,R), gl(n,C), and gl(n,H) are reductive R-Lie algebras. Recall the center of gl(n,R) = RIn,
gl(n,C) = CIn, and gl(n,R) = RIn. In particular, these examples are not semisimple.

2. sl(n,R) and sl(n,C) have trivial centers and are semisimple.

3. What is sl(n,H)? It is

sl(n,H) := {X ∈ gl(n,H) : <TrX = 0}.

This is a R-Lie subalgebra of gl(n,H).

88 Remark
We showed last week that if g is a C-Lie algebra, then g is semisimple if and only if gR is semisimple.
Likewise we showed that if g is a R-Lie algebra, then g⊗RC is semisimple if and only if g is semisimple.

For instance, this allows us to use the preceding theorem to deduce that sl(n,C), the complexification
of sl(n,R), is semisimple as a C-Lie algebra.

Definition 89. A R-Lie algebra g is compact (or of “compact type”) if it is the Lie algebra of a compact

Lie group.

We will discuss Lie groups more systematically starting Friday.
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90 Example
Here are some examples of compact Lie algebras. Notation note: if we don’t write the field, it is
assumed to be R.

1. so(n) = {X ∈ gl(n,R) : X +X∗ = 0}.

2. u(n) = {X ∈ gl(n,C) : X +X∗ = 0}.

3. sp(n) := {X ∈ gl(n,H) : X +X∗ = 0}.

The theorem above shows these are reductive R-algebras. A homework problem is to show the
center of so(n) is 0 for n ≥ 3 large. What is the center of u(n)? It certainly contains iRIn. Hence
su(n) = {X ∈ su(n) : TrX = 0}; one may check this is center-less, and u(n) = iRIn ⊕ su(n). Hence
u(n) is reduced but not semisimple.

so(1) = 0; so(2) has dimension 1, so is abelian. so(3) is simple, so it certainly has trivial center.
so(4) is semisimple, but is not simple: from homework, it is 3)⊕ 3). Fact: n) for n ≥ 5 is simple.

su(1) = 0, su(2) is simple, and indeed su(n) for n ≥ 2 is simple.

For sp(n), the defining condition forces TrX + TrX = 0, so <TrX = 0. Hence sp(n) ⊂ (n,H).

dim
(
R 1) = 3; it happens that for all n ≥ 1, sp(n) is simple. On the homework, sp(1) ∼= su(2).

October 15th, 2014: Draft

Summary Today, we will discuss groups and Lie algebras preserving a bilinear form. We will briefly review
elementary Lie group theory starting Monday.

We first discuss vector spaces over F = R,C. We will discuss quaternionic analogues at the end.

Definition 91. Let V be a finite dimensional vector space over F. Take Aut(V ) := GL(V ) to be the group of
invertible linear transformations V → V . Let q : V × V → F be a bilinear, non-degenerate, symmetric
or skew-symmetric form. Consider the subset of GL(V ) which preserve the form q,

{L ∈ GL(V ) : q(Lv, Lw) = q(v, w), v, w ∈ V }

=

{
O(V, q) orthogonal group of q if q is symmetric
Sp(V, q) symplectic group of q if q is skew-symmetric

Let Lt be a one-parameter family in O(V, q) with L0 = id. Since q(Ltv, Ltw) = q(v, w), apply the
Leibniz rule to see that X := d

dtLt
∣∣
t=0

satisfies

{X ∈ gl(V ) : q(Xv,w) = q(v,Xw) = 0}

:=

{
o(V, q) orthogonal algebra of q if q is symmetric
sp(V, q) symplectic algebra of q if q is skew-symmetric

One may check that this is a Lie subalgebra of gl(V ).

Given a basis v1, . . . , vn for V , set Qij : +q(vi, qj) and Q := (Qij) ∈ Fn×n. The non-degeneracy of q
says that Q is nonsignular. The symmetry (anti-symmetry) of q says Q = QT (Q = −QT ). We identify
V ∼= Fn by sending v ∈ V to the column vector of its coefficients x1, . . . , xn in the basis v1, . . . , vn. In
this way,

q(v, w) =
∑
i,j

xiQijyj = xTQy.
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If L ∈ gl(V ), then L has a corresponding matrix M ∈ Fn×n where if v 7→ x as above, Lv maps to
Mx. Hence q(Lv,Lw) = xTMTQMy, so L ∈ O(v, q) or Sp(v, q) if and only if MTQM = Q. By
differentiating, the corresponding condition for the corresponding Lie algebra is XTQ+QX = 0.

92 Proposition
In the notation of the preceding definition, we can choose a basis on V so that Q has a particular form:

• F = F, Q symmetric:

Q =

(
Ii 0
0 −Ij

)
where i+ j = n := dimR V . In this case (p, q) is called the signature of the form q. We write

O(i, j) for the orthogonal group corresponding to a bilinear form of signature (i, j); concretely,

we may use the above Q matrix. Likewise
p

(
,
q) is the Lie algebra associated to O(p, q).

• F = C, Q symmetric:
Q = (In)

where n = dimC V . This is called O(n,C), with corresponding Lie algebra
n

(
,
C).

• F = R,C, dimF V = 2m even:

Q =

(
0 −Im
Im 0

)
(or a sequence of 2× 2 blocks down the main diagonal of the form

(
0 −1
1 0

)
)). The notation

is non-standard here: the corresponding group is either Sp(m,F) or Sp(n,F). The algebra is
sp(n,F).

Warning: there are multiple normal forms in common use, so be sure you know which one is used
in any given context. Similarly Sp(m,R),Sp(m,C),Sp(n) are all different.

93 Example
Let X ∈ gl(p+ q,R) be partitioned into blocks according to the signature (p, q), namely

X =

(
A B
C D

)
,

where A is p× p, D is q × q. Then X ∈ o(p, q) if and only if AT = −A,DT = −D,BT = C.

If X ∈ gl(m+m,R) is partitioned in the same way, then X ∈ sp(m,F) if and only if AT = −D,
BT = B, CT = C.

94 Remark
Claim: if L ∈ O(V, q), then detL = ±1.

Proof Let M be the matrix of L, Q the matrix of q. Then MTQM = Q implies upon taking det

(detM)2 detQ = detQ.

We set SO(V, q) := O(V, q) ∩ {det 1}. Claim: X ∈ o(V, q) implies TrX = 0:

Proof XTQ+QX = 0 implies X = −Q−1XTQ, whence TrX = −TrX.
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Hence so(V, q) =
V

(
,
q). Homework: L ∈ Sp(V, q) implies detL = 1. Use the “Pfaffian”.

All of the algebras defined today have trivial center and are semisimple.

Definition 95. Let V be a finite-dimensional C-vector space. A function q : V × V → C is sesquilinear if

it is R-linear and
q(λv, µw) = λµq(v, w).

(Note: mathematicians typically put the conjugate on the second argument, though physicists tpyically
put it on the first argument; we’ll use the physicist version.)

q is Hermitian-symmetric (or just “Hermitian”) if additionally

q(v, w) = q(w, v)

and is skew-Hermitian if

q(v, w) = −q(w, v).

Since q is Hermitian if and only if iq is skew-Hermitian, we focus on the Hermitian case.

Definition 96. Suppose q is a Hermitian form on V . We set

U(V, q) := {L ∈ GL(V ) : q(Lv,Lw) = q(v, w)},

u(V, q) := {X ∈ gl(V ) : q(Xv,w) + q(v,Xw) = 0}.

If we choose a basis v1, . . . , vn for V , set Qij := q(vi, vj), so Qij = Qji. Fixing an isomorphism V ∼= Cn
as before, sending v 7→ x where x is the column vector of coefficients of v in the v1 . . . , vn basis,

q(v, w) = xTQy = x∗Qy.

97 Proposition
Under the notation of the previous definition, we again have normal forms: if p+ q = dimC V , then

Q =

(
Ip 0
0 −Iq

)
.

We define U(p, q) as the unitary group associated to Q of signature (p, q). The corresponding Lie

algebra is u(p, q).

98 Remark
If M ∈ U(p, q), then |detM |2 = 1. M ∈ u(p, q) implies TrM ∈ iR. su(p, q) has the additional
condition that the trace is zero. u(p, q) is reductive while su(p, q) is semisimple.

October 17th, 2014: Draft

99 Remark
Today we’ll discuss quaternionic matrix groups and algebras. We will turn towards Lie groups in
subsequent lectures. This is essentially the analogue of the previous lecture for the quaternions.
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Definition 100. What is a quaternionic vector space? Quaternions are not abelian, so it requires a little
finesse.

We can use scalar multiplication on the left or right. If V is a set and λ, µ ∈ H, then we can use
either

µ(λv) = (µλ)v

(this is a “left quaternionic vector space”) or

(λµ)v = µ(λv)

which can also be written as
(vµ)λ = v(µλ)

(this is a “right quaternionic vector space). By conjugating scalars, we can translate between left and
right quaternionic vector spaces.

We will use right quaternionic vector spaces. If M ∈ Hn×n, then the map Hn → Hn given by
X 7→MX where X is a column vector and MX is matrix multiplication as usual is linear with respect
to right quaternion multiplication. (Conversely, every such linear map comes from some unique matrix
M .)

101 Remark
If x, y ∈ Hn, is the map q : Hn ×Hn → H given by q(x, y) =

∑
i xiyi “bilinear”, where we use either

left multiplication or right multiplication? Nope; we would need to commute arbitrary quaternions in
either case.

Definition 102. Let V be a (finite dimensional) right quaternionic vector space. A sesquilinear form on

V is a map q : V × V → H such that

q(vλ,wµ) = λq(v, w)µ

(and it distributes over addition as usual).

We’ll say a sesquilinear form q is Hermitian if q(v, w) = q(w, v). We’ll say it is skew-Hermitian

if q(v, w) = −q(w, v).

For instance, q(x, y) =
∑
` x`iy` is skew-Hermitian.

Definition 103. Let (V, q) be a quaternionic vector space with q either Hermitian or skew-Hermitian, and
also non-degenerate. We set

GL(V ) := {quaternionic linear transformations V → V }.

We set

{L ∈ GL(V ) : q(Lv, Lw) = q(v, w), v, w ∈ V }

=

{
UH(V, q) if q is Hermitian
Sk(V, q) if q is skew-Hermitian

The corresponding algebra is

uH(V, q) := {X ∈ gl(V ) : q(Xv,w) + q(v,Xw) = 0}.

Choose a basis v1, . . . , vn for V . Set Qij := q(vi, vj), Q := (Qij) ∈ Hn×n. One sees quickly that q is
Hermitian if and only if Q = Q∗, and q is skew-Hermitian if and only if Q = −Q∗. If v =

∑
i vixi and

w =
∑
j vjyj , we find

q(v, w) = q(
∑

vixi,
∑

vjyj) =
∑
i,j

xiq(vi, vj)yj ,
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so that
q(x, y) = x∗Qy.

One checks that a matrix M preserves q if and only if M∗QM = Q, X∗Q+QX = 0.

104 Proposition
If (V, q) is a quaternionic vector space with q either Hermitian or skew-Hermitian and non-degenerate,
there is a basis for V such that the matrix Q of q is:

• Hermitian case: Q =

(
Ip 0
0 −Iq

)
; the corresponding group is UH(p, q), and (p, q) is the analogue

of the signature.

• Skew-Hermitian case: Q = iI; this is written Sk(n,H).

105 Remark
The notation for these objects is unfortunately not terribly standard, there are a lot of variants, and
some of them conflict abstractly.

106 Remark
There are embeddings

gl(n,H) ↪→ gl(2n,C) ↪→ gl(4n,R).

As setup, we first define a complex-linear map H ↪→ C2 given by sending z = a + bi + cj + dk to
(α, β) := (a+ ib, c− id). Here z = α+ jβ. This induces a complex-linear map Hn → C2n. Note that if
β ∈ C, then jβ = βj.

Now, given U ∈ Hn×n, we can write M = jB for A,B ∈ Cn×n. Letting z = α+ jβ as above, we
compute

Mz = (A+ jB)(α+ jβ)

= (Aα+ jBjβ) + (Ajβ + jBα)

= (Aα−Bβ) + j(Aβ +Bα)

=

(
A −B
B A

)(
α
β

)
.

Hence the map Hn ↪→ C2n is given by

M 7→
(
A −B
B A

)
.

107 Proposition
The map C : Hn ↪→ C2n above has the following properties:

(1) C(MN) = C(M)C(N).

(2) C(M∗) = C(M)∗.

(3) C(M) = 2<Tr(A) = 2<TrM .

Proof Assemble the pieces yourself as an exercise; use the fact shown above that (XY )∗ = Y ∗X∗ for
quaternionic matrices X,Y .

October 20th, 2014: Draft
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108 Remark
The following is helpful for problem # 5 on the homework due next Monday. We have a map
R : gl(n,C)→ gl(2n,R) given by sending M = A+ iB to

R(A+ iB) :=

(
A −B
B A

)
.

We wish to characterize the range more conceptually. Identify Cn ∼= R2n by sending z = x + iy to
(x, y). Then: if N ∈ gl(2n,R), N is in the range of R if and only if N commutes with multiplication
by i.

Proof If z = x+ iy, then iz = i(x+ iy) = −y + ix corresponds to (−y, x), which is given by(
−y
x

)
=

(
0 −I
I 0

)(
x
y

)
.

Write J for the matrix on the right-hand side. N is in the rance of R if and only if NJ = JN .

109 Example
Examples of semisimple Lie algebras:

• Over C: sl(n,C) for n ≥ 2; so(n,C) for n ≥ 3; sp(n,C) for n ≥ 1.

110 Fact
All of these are simple, except for 4,C).

111 Theorem (Classification of Simple C-Lie Algebras)
With 5 exceptions, every simple C-Lie algebra is isomorphic to one of the above.

In light of the theorem, the above are called the classical C-Lie algebras, and the remaining 5
are called exceptional C-Lie algebras. They are called g2, f4, e6, e7, e8. The following is a list in
which each C-simple Lie algebra occurs exactly once up to isomorphism:

– A`; sl(`+ 1,C); ` ≥ 1

– B`; so(2`+ 1,C); ` ≥ 2

– C`; sp(`,C); ` ≥ 3

– D`; so(2`,C); ` ≥ 4

(We have sp(1,C) ∼= sl(2,C), sp(2,C) ∼= so(5,C), and so(6,C) ∼= sl(4,C).)

Here ` is the “rank” of the Lie algebra, which is the dimension of a maximal abelian subalgebra.

• Over R: recall that if g is a C-Lie algebra, then g is simple if and only if gR is simple (as a
R-Lie algebra). (We had shown this with “semisimple” replacing “simple”; this version was on
homework.) Hence many examples come from simple C-Lie algebras g.

On the other hand, if g0 is a R-Lie algebra, complexifying it via g0 ⊗ C does not in general
preserve simplicity. Recall that if g0 = gR where g is a C-Lie algebra, then g0 ⊗ C ∼= g⊗ g. If
g0 = gR and g is simple, then gR ⊗ C = g⊕ g is not C-simple.

112 Fact
If g0 is R-simple, then either (a) g0 ⊗ C is C-simple or (b) g0 ∼= gR where g is C-simple.

Hence to get all simple R-Lie algebras, take gR for g C-simple together with g0 where g0 is a real
form of g C-simple.

113 Theorem (Classification of Simple R-Lie Algebras)
Every simple R-Lie algebra is isomorphic to one of the following (with complexification in
parens):

27



– gR for g C-simple;

– so(p, q); (g0 ⊗ C ∼= so(p+ q,C))

– su(p, q); (sl(p+ q,C))

– uH(p, q), sometimes written sp(p, q); (sp(p+ q,C))

– sl(n,R); (sl(n,C))

– sl(n,H); (sl(2n,C))

– sp(n,R); (sp(n,C))

– sk(n,H); (so(2n,C))

(Maybe there’s multiplicity; maybe some of these aren’t even simple.)

The number of real forms of g2 is 2, of f4 is 3, of e6 is 5, of e7 is 4, and of e8 is 3.

114 Fact
There is a one-to-one correspondence between simple C-Lie algebras and compact simple R-Lie algebras.
Every semisimple C-Lie algebra C-Lie algebra has a unique compact real form (up to isomorphism).

115 Example
The simple C-Lie algebras and corresponding compact R-Lie algebras are:

• sl(n,C) (compact Lie algebra: su(n); compact Lie group: SU(n))

• so(n,C) (so(n), SO(n))

• sp(n,C) (sp(n), Sp(n))

The Lie algebras are all very similar: they are X ∈ sl(n,K) for K = R,C,H with X∗ +X = 0.
The Lie groups SU(n),SO(n),Sp(n) (and frequently U(n)) are called the classical compact Lie
groups.

116 Remark
The classification of C-simple Lie algebras or compact simple R-Lie algebras reduces to the classificatino
of “root systems”. We will discuss these eventually, though they will mostly be relegated to Sara’s
course in the Spring.

117 Remark
We may consider the representation theory of (compact) C-Lie algebras or compact Lie groups. It
turns out we get roughly the same thing either way, though each approach has its own advantages.
“Weyl’s unitary trick” allows us to go from (Cartan’s) classification of the representation theory of
compact C-Lie groups to the representation theory of the compact C-Lie algebras.

118 Remark
We next switch gears away from Lie algebras towards Lie groups. Hence we switch from Knapp to
Sepanski.

Definition 119. Let G be a Lie group (that is, a manifold with smooth group operation and smooth inverse

map). A Lie subgroup is a subgroup which is the image of an injective immersion. The topology on

the immersed manifold might not agree with the relative topology as a subset of the Lie group G.

The main example illustrating this is an “irrational line” on a torus. Precisely, let G := T2 = S1×S1
be a torus. We view S1 as R/Z. Let L be a line in R2 given by {y = mx} where m is some fixed
irrational constant. im(L) ⊂ T2 is a Lie subgroup, but the topology of im(L) is that of L, whereas
im(L) is dense in T, so the subspace topology on im(L) ⊂ T2 is very different from that of L.
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120 Theorem (Closed Subgroup Theorem)
Let G be a Lie group, H ⊂ G a closed subgroup. Then there is a unique smooth structure on H with
respect to which it is an embedded Lie subgroup. Here the manifold topology is the relative topology;
H is a Lie group with this manifold structure.

121 Example
Consider GL(n,F) for F = R,C. This is an open subset of Fn2

topologically. The conditions
M∗M = I or detM = 1 are continuous conditions. All of our examples are closed subgroups of
GL(n,F); we can even do the quaternionic ones by sticking them in GL(2n,C). Hence all are
Lie groups.

October 22nd, 2014: Draft

Summary Today we will discuss Lie groups and their Lie algebras. It will mostly be review.

Definition 122. Let G be a Lie group. That is, G is a smooth manifold with smooth group multiplication
and inversion. For fixed g ∈ G, we multiplication on the right or left by g gives diffeomorphisms of G:
rg : G→ G is defined by rg(g

′) := g′g and likewise lg(g
′) := gg′.

A vector field X on G is a smooth section of the tangent bundle to G. It is left-invariant if
(lg)∗X = X for all g ∈ G. It follows that the vector space of left-invariant vector fields corresponds
isomorphically to the tangent space of G at the identity, TeG. The Lie bracket of vector fields is defined
as usual; one must check the set of left-invariant vector fields is closed under the Lie bracket operation.
One may then transport the Lie bracket to a Lie bracket of TeG, which yields the Lie algebra g of the
Lie group G.

If X ∈ g, let γ : R → G be a maximal integral curve of X starting at γ(0) = e. (Roughly, γ is a
one-parameter curve whose derivatives agree X at all points.) Define expX := γ(1). Indeed, γ(1) ∈ G0,
the identity component of G. Hence we have a map exp: g→ G0.

If G = GL(n,F), then g ∼= gl(n,F) and expX = eX using matrix exponentiation. (In this latter
equation we implicitly use the identification of left-invariant smooth vector fields X and elements of
TeG.) We sometimes give g the structure of a smooth manifold as a finite-dimensional real vector
space.

123 Fact

1. exp is a local diffeomorphism at 0 ∈ g.

2. Any neighborhood of e ∈ G generates G0 (in the group-theoretic sense), so exp g generates
G0.

Warning: exp need not be onto G0. Homework: if G = SL(2,R) then exp: sl(2,R)→ SL(2,R)

is not surjective. However, we will show that if G is compact, then exp surjects onto G0.

124 Remark
Sending a Lie group to its Lie algebra is functorial. More precisely, fi φ : H → G is a homomorphism
of Lie groups, then dφ0 : h→ g is a homomorphism of Lie algebras. Here

dφ0(X) =
d

dt
φ(exp tX)

∣∣∣∣
t=0

.

As a special case, if H is a Lie subgroup of G, then dφe is injective, so we can regard h ⊂ g as a
subalgebra. Indeed, exph = expg |h.
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125 Proposition
Given a Lie subgroup H with Lie algebra h of a Lie group G with Lie algebra g,

h = {X ∈ g : exp(tX) ∈ H,∀t ∈ R}.

Proof This follows quickly from the properties listed above.

Warning: We cannot simply take t = 1 in the above; the ∀t ∈ R is necessary. As a simple example,
take G = GL(n,F) and H = SL(n,F). Take X = 2πiI. Now expX = I ∈ H, but X 6∈ sl(n,F) since
TrX 6= 0 (for n > 1).

126 Example
With the preceding proposition, we can verify many of the Lie subalgebras claims above. For instance,
with SL(n,F) ⊂ GL(n,F), the defining condition for A ∈ SL(n,F) is that detA = 1. If we have a
one-parameter family of elements in SL(n,F), say At, we have detAt = 1. If d

dtAt
∣∣
t=0

=: X, then a

standard fact is that d
dt detAt

∣∣
t=0

= TrX. Hence an extra condition for Y to belong to sl(n,F) and

not just gl(n,F) is that TrY = 0. On the other hand, if TrY = 0, then det etX = 1, giving the other
inclusion.

More generally, given a non-degenerate symmetric or skew-symmetric bilinear form Q on Fn, let
H = O(Fn, Q) or Sp(Fn, Q). Then the defining condition to belong to GL(n,F) is ATQA = Q. We
essentially differentiate this condition to get XTQ+QX = 0 as being a necessary condition to belong
to h, the Lie algebra of H. It is sufficient: given it, then XT = −QXQ−1, and the question is whether
or not (etX)TQetX = Q. The left side is e−QtXQ

−1

QetX , which is Qe−tXetX = Q.

127 Fact
If G is a Lie group with Lie algebra g and h ⊂ g is a subalgebra, then there is a unique connected Lie
subgroup H ⊂ G whose Lie algebra is h.

Warning: H need not be a closed subgroup; for instance, H could be the irrational line on the torus

from last lecture. The torus G = T2 has abelian Lie algebra, so any one-dimensional subspace is a Lie
subalgebra. These correspond bijectively to the lines on the torus, many of which are irrational.

Definition 128. Let G be a connected Lie group. We say G is reductive, semisimple, or simple if and only
if g is. (Sometimes we abuse notation and apply this to non-connected Lie groups like O(n).)

129 Remark
Lie algebras have no (interesting) topology, but Lie groups definitely do. Our next goal is to consider
the connectedness and fundamental group of a Lie group and see if they have any corresponding
information in the Lie algebra.

130 Fact
Let G be a Lie group, H ⊂ G a closed subgroup. We can form the quotient G/H. There is a natural
smooth manifold structure on G/H such that the natural projection map G → G/H is a smooth
submersion. G acts on G/H on the left via g(g′H) := (gg′)H. This action is transitive (any point can
be moved to any other point) and the isotropy group (stabilizer subgroup) of the identity coset of eH

is H. A quotient G/H is called a homogeneous space .

Note that G/H need not be a group–we would have to require H normal for that.

131 Fact
If G is a Lie group and S is a set on which G acts (on the left) transitively. Suppose for some (hence,
all) s ∈ S that the isotropy group of s is a closed subgroup of G. (That is, {g ∈ G : g · s = s} is a
closed subgroup of G.) Then S has a topology and a smooth structure so that the action of G on S is
smooth and equivariantly diffeomorphic to G/H.
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132 Proposition
Suppose G is a Lie group, H ⊂ G a closed subgroup. If H is connected and G/H is connected, then G
is connected.

Proof Let G0 be the identity component of G, so H ⊂ G0. From manifold theory, the identity
component is both open and closed, and G0 is generated by a neighborhood of the identity, so
G0 is a closed subgroup. We get a smooth map

G/H → G/G0

(using the analogue of the universal property of quotient groups for Lie groups). This map is
surjective and G/G0 has the discrete topology. Since G/H is connected, its image is connected,
so G/G0, being discrete, must have a single point, i.e. G = G0, so G is connected.

133 Proposition
SO(n) is connected for n ≥ 1.

Proof By induction on n. SO(1) has a single point. SO(2) is just a circle, so is connected. In general,
SO(n) acts on Sn−1 transitively with isotropy group of e1 ∈ Sn−1 being matrices in SO(n)
with two block diagonal matrices, the first being the 1 × 1 matrix (1), and the second being
an element of SO(n− 1). Hence Sn−1 ∼= SO(n)/SO(n− 1), which is connected. We may now
apply the proposition directly.

October 24th, 2014: Draft

134 Remark
Last time we briefly reviewed basic Lie group theory and ended the class with a discussion of
connectedness in this setting. We begin today’s lecture by discussing compactness. The following are
all compact Lie groups: O(n),SO(n),U(n),SU(n),Sp(n); roughly, the reason is the same in each case:
the columns are orthonormal in some sense, so the entries are each bounded, so matrices are a closed
and bounded subset of Euclidean space, topologically. An example of a non-compact Lie group:(

cosh t sinh t
− sinh t cosh t

)
.

Minor point: SO(p, q) = SO(q, p), since a linear transformation preserves a quadratic form if and
only if it preserves the negative of that quadratic form.

Recall we had shown that SO(1) and SO(2) are connected; that if G is a Lie group with closed
subgroup H, then if H and G/H are connected, then G is connected. For the higher SO(n)’s, we
showed SO(n)/ SO(n− 1) ∼= Sn−1 and inducted to show they are each connected.

135 Proposition
SU(n), U(n),Sp(n) are connected for n ≥ 1.

Proof Same idea as for SO(n). U(1) = S1 which is connected. U(n) acts transitively on S2n−1 by z ∈
Cn and A ∈ U(n) yields A · z := Az (and to pass to S2n−1, take unit-length elements). Isotropy
group of e1 is block diagonal with 1 in row 1, column 1, and an element of U(n− 1) in the lower
right, allowing us to induct. SU(n) also acts transitively on S2n−1 and SU(n)/ SU(n−1) ∼= S2n−1

again. Sp(n)/ Sp(n− 1) ∼= S4n−1 by acting on Hn rather than Cn; base case is Sp(1) = S3 (unit
quaternions).

136 Example
O(n) is not connected. Recall A ∈ O(n) iff ATA = I, so detA = ±1. Hence O(n) = SO(n)∪{det = −1}.
Same for O(n,C) = SO(n,C) ∪ {det = −1}.
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137 Remark
Recall our map R : Cn×n → R2n×2n. Now U(1) ∼= SO(2) ∼= S1, and in fact R(U(1)) = SO(2).

When we say “simply connected”, we will mean both connected and simply connected.

Definition 138. Let G be a connected Lie group. Then there exists a simply connected Lie group G̃ called

the universal covering group of G. It comes with a map π : G̃ → G where π is a smooth covering

map and a group homomorphism.

Moreover, G̃ is unique up to a Lie group isomorphism which intertwines the covering maps in the
following sense:

G̃1 G̃2

G

π1

∃

π2

139 Theorem
There is a one-to-one correspondence between isomorphism classes of simply connected Lie groups
and isomorphism classes of real Lie algebras. Precisely, given a simply connected Lie group, the
corresponding Lie algebra is just the Lie group’s Lie algebra. The main content is that this is
“invertible”: for each such Lie algebra, there is a simply connected Lie group giving it birth.

140 Proposition
Suppose G,H are Lie groups with Lie algebras g, h, G is simply connected and φ : g → h is a Lie
algebra homomorphism. Then there is a unique Lie group homomorphism Φ: G→ H with Φ∗ = φ.

Proof One important point is to apply the exponential map.

141 Example
U(1) ∼= SO(2) ∼= S1 have fundamental groups Z, so are not simply connected. Since su(2) ∼=
so(3) ∼= sp(1), there is a unique simply connected Lie group with this Lie algebra. They come from
SU(2),SO(3),Sp(1), respectively; are they all the same?

Explicitly,

SU(2) :=

(
α −β
β −α

)
where |α|2 + |β|2 = 1

Hence SU(2) is diffeomorphic to S3, so is simply connected. Sp(1) ∼= S3 likewise, so is simply connected.
Abstractly, SU(2) ∼= Sp(1) must then be isomorphic as Lie groups. Indeed, C : Hn×n → C2n×2n above
sends Sp(1) to SU(2) and is our isomorphism. What about SO(3)?

142 Proposition
π1(SO(3)) ∼= Z/2Z = {±1}.

Proof We will construct a two-to-one covering homomorphism Sp(1) → SO(3), whence the
fundamental group has order two by general covering space theory.

Let z ∈ Sp(1) be a unit quaternion. Consider the map Az : H → H given by q 7→
zqz = zqz−1. This is a R-linear transformation R4 → R4. R4 = H has a real inner
product 〈z, w〉 = <zw (which is just the standard Euclidean inner product when we view
H as R4). In fact, Az preserves this inner product, since it preserves lengths:

|Az(q)| = |zqz| = |z||q||z| = |q|.

Hence we may consider Az ∈ O(R4). Also, Az(1) = 1. Write =H := {ai+ bj + ck}; this
is the orthogonal complement of R · 1, so Az sends =H to =H. In this sense, Az ∈ O(R3),
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so we have a map A : Sp(1) → O(3). Since Sp(1) is connected, the image has to be
connected, so it must land in the identity component, i.e. A : Sp(1)→ SO(3). This is a
Lie group homomorphism since

(Az1 ◦Az2)(q) = z2z1qz1z2 = (Az1z2)(q).

If z ∈ kerA, then Az|=H = id, so Az = I on H, so zqz = q for all q ∈ H, i.e. z commutes
with all quaternions, so z ∈ R. Since |z| = 1, z = ±1, so the kernel is of size two. It
follows group-theoretically that every non-empty fiber has size two, so we just need to
show surjectivity. The induced map on Lie algebras (1)→ so(3) is injective since (1) is
simple and the map is not identically zero. Since they have the same dimension, it is an
isomorphsim. Now exp: (1)→ Sp(1) and exp: so(3)→ SO(3) is a local diffeomorphism,
from which it follows that the image of A contains a neighborhood of the identity, so is
all of SO(3) since any neighborhood of the identity generates the identity component.

(One can also simply construct the inverse map, which is just the standard way of
realizing a spatial rotation as quaternion multiplication; ah well.)

143 Corollary
(of proof). SO(3) is diffeomorphic to RP 3: SO(3) = S3/{±1} = RP 3.

October 27th, 2014: Draft

144 Remark
Last time, we constructed a 2-to-1 covering map SU(2) ∼= Sp(1)→ SO(3). We realized R3 as =H and
we defined for z ∈ Sp(1) a map Az : R3 → R3 given by Az(q) = zqz. We showed that Az ∈ SO(=H).
Let’s interpret this map geometrically.

Consider z = eiθ ∈ Sp(1) ∩ C. Then Az(i) = i. If q ∈ Span{j, k}, first note that zq = qz since
i anti-commutes with j and k. Hence Az(q) = zqz = z2q = e2iθq. This “2” is why it’s 2-to-1. In
particular, Az(j) = cos(2θ)j + sin(2θ)k and Az(k) = − sin(2θ)j + cos(2θ)k. In the i, j, k basis, Az has
matrix 1 0 0

0 cos(2θ) − sin(2θ)
0 sin(2θ) cos(2θ)

 .

In particular, A−1 = id since −1 = eiπ. In particular, the curve γ(t) given by Aeiθ = γ(2θ) for
0 ≤ t ≤ π generates π1(SO(3)).

More generally, if z ∈ Sp(1), we can write z = cos θ + sin θv for v ∈ =H with |v| = 1. Then
Az(v) = v, and in fact Az is a rotation about the line v of angle 2θ with orientation determined by the
right-hand rule. (There will be a basis in which the matrix is as written above.)

145 Proposition
Let A ∈ SO(n), n ≥ 3 odd. Then A has +1 as an eigenvalue.

Proof Eigenvalues are either real or appear in complex conjugate pairs since the characteristic
polynomial is real. Since n is odd, there must be at least one real eigenvalue. The only
real eigenvalues are ±1 since orthogonal matrices preserve length. Since the determinant,
namely 1, is the product of the eigenvalues, it follows quickly by cases that at least one
real eigenvalue is 1.

By the proposition, if A ∈ SO(3), then A fixes a line, and the complementary subspace is mutated
by an element of SO(2), which is just a rotation. Hence all elements of SO(3) are rotation about some
axis in R3 by some angle θ. This is an explicit way to get surjectivity in the proposition at the end of
class.
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146 Proposition
π1(SO(n)) ∼= Z2 if n ≥ 3; SU(n) is simply connected if n ≥ 2; and Sp(n) is simply connected if n ≥ 1.

Proof (Sketch; advertisement for algebraic topology.) Use the homotopy exact sequence of a fibration.
Consider G/H = M for a Lie group G and a closed subgroup H; this is a special case of a fiber
bundle. In our case, G→ G/H has fibers (homeomorphic to) H (and there is a local triviality
condition, so fibers “fit together” in some sense). There is an exact sequence of homotopy groups

· · · → π2(G/H)→ π1(H)→ π1(G)→ π1(G/H)→ π0(H)→ π0(G)→ π0(G/H)→ 0.

The π0 terms are sets and the πn for n ≥ 1 terms are groups. Exactness means the kernel of
one map is the image of the map to its left. (Formally, the π0 terms are pointed sets, and
the kernel of one map is the set of elements mapping to the fixed point; these points come
from fixed base points chosen beforehand.) The maps πn(H)→ πn(G) and πn(G)→ πn(G/H)
come from the inclusion H → G and the projection map G → G/H; the “connecting” maps
πn+1(G/H)→ πn(H) are much less obvious.

147 Fact
π1(Sn) = 0 if n > 0; πk(Sn) = 0 if n > k; πn(Sn) = Z.

Computing πk(Sn) for k > n is a huge motivating problem in algebraic topology. In any
case, using G/H = Sm for m ≥ 3, the π0(G/H), π1(G/H), and π2(G/H) terms are each zero,
so by exactness πi(H) ∼= πi(G) for i = 0, 1. We showed SO(n)/ SO(n− 1) ∼= Sn−1 previously,
and for n ≥ 4 we get πi(SO(n− 1)) ∼= πi(SO(n)) for i = 0, 1. Inductively, π1(SO(n)) = Z2 for
n ≥ 3 (using SO(3) as base case), and π0(SO(n)) = 0.

Definition 148. Since π1(SO(n)) = Z/2 for n ≥ 3, we define the spin group spin(n) as the universal

covering group of SO(n) for n ≥ 3. Alternatively, spin(n) can be characterized as the unique simply
connected Lie group with Lie algebra so(n).

149 Example
By uniqueness, spin(3) ∼= SU(2) ∼= Sp(1). What is spin(4)? We’ve seen so(4,C) ∼= so(3,C) ⊕
so(3,C) so so(4) ∼= su(2) ⊕ su(2). Hence spin(4) ∼= SU(2) × SU(2). Likewise, one may show
spin(5) ∼= Sp(2) (since (2) ∼= so(5)) and spin(6) ∼= SU(4) (since so(6,C) ∼= sl(4,C), and sl(n,C)
has compact real form su(n), so(6) ∼= su(4)).

There is a general construction of spin(n) using Clifford algebras. We won’t take the time to
do so at the moment.

150 Remark
We next consider the topology of non-compact groups. By the Cartan decomposition, we can reduce
the topology of non-compact groups to the topology of compact groups. This will roughly use the
“polar form” of a complex matrix.

Recall that if A ∈ GL(n,C), then A can be uniquely written as A = UP where U ∈ U(n) and P is
positive-definite Hermitian. (Sometimes this is called the PU -decomposition, with the order of the
factors reversed.) This is similar to writing z = reiθ. From the spectral theorem, any positive-definite
Hermitian matrix P can be written as P = eX for X Hermitian: roughly, diagonalize the matrix and
take the logarithm of the eigenvectors.

Write H for the vector space of n×n Hermitian matrices. (It is not a subalgebra of n×n matrices.)
There is a map U(n)×H → GL(n,C) given by (U,X) 7→ UeX . Fact: this map is a diffeomorphism.
Since H can be contracted to a point, U(n) is a strong deformation retract of GL(n,C).

151 Theorem
Let G ⊂ GL(n,C) be a closed subgroup such that (1) G is closed under conjugate transpose A 7→ A∗;
(2) G is the common zero locus of a set of real polynomials whose variables are the real and imaginary
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parts of the matrix entries. Let K := G ∩ U(n) and let p := g ∩ {H} where g is the Lie algebra of G
and H is the set C-vector space of Hermitian matrices.

Then the map R×p→ G given by (U,X) 7→ UeX is a diffeomorphism. In particular, G is homotopy
equivalent to K. (Next time: K is a “maximal compact subgroup”.)

Proof Sketch next time.
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152 Remark
Robin will be out of town Monday and Wednesday. Monty McGovern will give the first couple of
lectures on representation theory.

153 Remark
Recall the polar decomposition for GL(n,C), which we now review:

154 Theorem
If A ∈ GL(n,C), then there exists a unique unitary matrix U and a hermitian matrix X such that

A = UeX . (This is sometimes written A = UP where P = eX is positive-definite Hermitian.)

Proof If it exists, then A∗A = eXU∗UeX = e2X , which we’ll call P 2. For any A, A∗A is
positive-definite Hermitian, and from the spectral theorem, every such matrix has a unique
positive definite square root (since every positive real number has a unique positive square
root). This determines P in terms of A, and since such P is invertible, it also determines
U ; this gives uniqueness.

As for existence, define P as the above unique positive-definite square root of A∗A
and set U := AP−1. Then U is unitary:

U∗U = P−1A∗AP−1 = P−1P 2P−1 = I.

(To get X, take the logarithm; use real logarithms of positive reals.)

155 Proposition
Let H be the vector space of Hermitian matrices (of size n × n for some fixed n). The map

U(n)×H → GL(n,C) given by (U,X) 7→ UeX is a diffeomorphism.

Proof Invertibility is the proposition above; smoothness is clear. Showing the inverse is smooth
can’t be done naively using the spectral theorem roughly since the eigenvectors of a
smooth family of matrices do not vary smoothly. One can use the “resolvent” to finish
the proof; we will not take the time.

Definition 156. A linear (Lie) group is a Lie subgroup of GL(n,C).

157 Theorem
(Restatement from last time.) Let G ⊂ GL(n,C) be a closed linear group such that:

1) G is closed under A→ A∗ (so G0 is reductive)

2) G is the common zero locus of a set of real polynomials in the real and imaginary parts of the
matrix entries.
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Set K := G∩U(n), p := g∩H where g := Lie(G) ⊂ gl(n,C). Then K is a maximal compact subgroup
of G, i.e. it is not contained in any strictly larger compact subgroup, and the map

K × p→ G (U,X) 7→ UeX

is a diffeomorphism. (Writing G = UeX is called the Cartan decomposition of G.)

Proof Claim: the polar decomposition in GL(n,C), i.e. A = UeX , already has U ∈ G and X ∈ g.
Given the claim, the diffeomorphism reduces to the previous diffeomorphism U(n) × H →
GL(n,C). For the claim, let A ∈ G and consider A∗A = e2X for A ∈ G, with X obtained as
above. X Hermitian implies there exists a unitary B so that B−1XB = D is diagonal. Claim:
I can assume X is diagonal by letting G′ := B−1GB. Since B is unitary, G′ also preserves
A 7→ A∗ and G′ remains a common zero locus as above since conjugation will just correspond to
a linear transformation on the variables. If we can show D ∈ g′, it will then follow that X ∈ g.

Hence we may as well assume X is diagonal. Say 2X = diag(a1, . . . , an), and since this is
Hermitian, each aj ∈ R. We know e2X ∈ G (since A and A∗ are), and we want to show X ∈ g.
Recall our criterion for showing a matrix is in a linear subgroup; we must show etX ∈ G for all
t ∈ R. We know (e2X)k ∈ G for all k ∈ Z.

158 Lemma
Let p be a polynomial Rn → R. If a1, . . . , an ∈ R and p(eka1 , . . . , ekan) = 0 for all k ∈ N,
then p(eta1 , . . . , etan) = 0 for all t ∈ R.

Proof Let p(x1, . . . , xn) =
∑
m≥`1,...,`n≥0 c`1,...,`nx

`1
1 · · ·x`nn . Substituting in xi = etai ,

this gives
∑
c`e

t
∑
aj`j , which we can collect as

∑N
i=1 die

tbi for b1 < · · · < bN . If
this is 0 for t = k ∈ N, this is 0 for all t ∈ R. A simple argument for that uses
asymptotics and induction; details left to reader.

From the lemma, etX = diag(eta1 , . . . , etan) satisfies the defining polynomials of G, so is in
G, completing the proof of the diffeomorphism claim. Now suppose K ′ ⊃ K is compact and
K ′ ⊂ G. Pick A ∈ K ′ −K, so A = UP for U ∈ K and P positive definite Hermitian. Then
P = U−1A ∈ K ′, and P 6∈ K since otherwise A ∈ K. The eigenvalues of P are positive real
numbers, not all 1, since otherwise P is the identity, which is in K. Let λ be an eigenvalue of
P , where λ > 0 is 6= 1. Then P k ∈ K ′ has eigenvalue λk; taking k →∞ or k → −∞, λk →∞.
But this contradicts the fact that K ′ is compact, since {P k} ⊂ K ′.

159 Corollary
In the notation of the theorem, the isomorphism K × p→ G yields a homotopy equivalence between
K and G since p is just a real vector space, hence is contractible.

160 Theorem (Lie Algebra version of Cartan decomposition)
Suppose G is a linear Lie algebra closed under X 7→ X∗. Let k := g∩ u(n), p := g∩H. Then g = k⊕ p
as vector spaces.

Proof A = A−A∗
2 + A+A∗

2 .

161 Remark
Let Θ: g→ g be given by Θ(X) := −X∗. Θ is an automorphism of g. g = {X : Θ(X) = X},
p = {X : Θ(X) = −X}. Θ is called the Cartan involution .

On a linear Lie group G, Θ(A) := (A∗)−1. Then K = {A ∈ G : Θ(A) = A}. For not-
necessarily-linear Lie groups, one tries to construct Θ out of the structure of g. Fact: any real
semisimple Lie algebra is isomorphic to a linear Lie algebra closed under X 7→ X∗.
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162 Remark
Last time in our Cartan decomposition, G was a closed linear group, i.e. a closed subgroup of
GL(n,C), G was closed under A 7→ A∗, and G was defined by polynomial equations. We observed that
K := G ∩ U(n) is a maximal compact subgroup of G. This is it unique, unlike the case of maximal
solvable ideals in our Lie algebra theory. For instance, if g ∈ G, conjugating K, i.e. forming gKg−1, is
another maximal compact subgroup, which in general is distinct from K. It happens that any two
maximal compact subgroups of a Lie group are conjugate, so in particular they are isomorphic.

Recall U(n) = {A ∈ GL(n,C) : q(Ax,Ay) = q(x, y)} where q(x, y) = x∗y, though we could choose
another positive-definite Hermitian form q instead, which will give another unitary group which is just
as good as U(n). They would give equally good K’s, and they would be conjugates of the above K.

163 Remark
About the topology of non-compact groups: recall the theorem from last time gave a homotopy
equivalence between G and K, so their topologies are largely the same. Some consequences:

• If G := GL(n,C), K := U(n), so both are connected.

• G := GL(n,R), K := O(n), so both have two connected components.

• G := SL(n,C), K := SU(n), so both are connected and simply connected if n ≥ 2.

• G := SL(n,R), K := SO(n), so both are connected. When n = 2, both have fundamental group
Z; when n > 2, both have fundamental group Z/2.

• G := SO(n,C), K := SO(n), so see previous case.

Definition 164. In light of this example, we let spin(n,C) be the simply connected covering

space of SO(n,C). In fact, this is a complex Lie group.

A homework problem is to show spin(3,C) ∼= SL(2,C).

• G := O(p, q) for p ≥ q > 0, K := O(p)×O(q). Indeed, the defining condition is AT Ip,qA = Ip,q
and A∗A = I, so ATA = I, so A−1 = AT , so Ip,qA = AIp,q. Writing this out in block form gives
A ∈ O(p) × O(q). Since O(p) and O(q) have two connected components, both G and K have
four connected components.

• G := SO(p, q) for p ≥ q > 0, K := S(O(p)×O(q)), i.e. the determinant 1 matrices in O(p)×O(q).
There are two connected components.

• G := SO0(p, q) or SOe(p, q) for p ≥ q > 0, meaning the identity component of SO(p, q);
K := SO(p)× SO(q); both are connected. If p = q = 1, the fundamental group is Z. If p > q = 1,
the fundamental group is Z× Z/2. If p ≥ q > 1, the fundamental group is Z/2× Z/2.

165 Remark
We next discuss integration on Lie groups. This turns out to be powerful in the representation theory
of Lie groups. The ability to integrate is probably the biggest single difference between Lie group and
Lie algebra representation theory. We next review some basic integration theory.

166 Remark
Let G be a Lie group. A measure for us formally means a Borel measure which is finite on compact
sets. On nice spaces, like a manifold, this is equivalent to a Radon measure. In particular, we will use
the Riesz representation theorem to realize our measures.
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Suppose f : G→ R satisfies f ≥ 0 and f ∈ Cc(G), i.e. f has compact suport, i.e. f = 0 outside of
some compact set. Integrating with respect to a measure dg,

0 ≤
∫
G

f dg <∞.

Hence we can view dg as a linear functional on Cc(G). Indeed, the Riesz representation theorem says
that every positive linear functional on Cc(G) (say, for Lie groups G) is given by integration against a
unique measure.

Definition 167. A measure dg on a Lie group G is a left-invariant measure if for all f : G→ R smooth,∫
G

(`∗hf)(g) dg =

∫
G

f(g) dg

where `h : G→ G is the left multiplication by h ∈ G map and h∗f is the pullback of f by h. Another
way to write this is ∫

G

f(hg) dg =

∫
G

f(g) dg.

A right-invariant measure is defined analogously. A non-zero left invariant measure is called a (left)

Haar measure . If G is compact, a Haar measure is called a normalized Haar measure if
∫
G

1 dg = 1,
i.e. dg(G) = 1. Given a Haar measure on a compact group, one can always normalize it, so we will
frequently tacitly assume Haar measures have been normalized.

168 Theorem
Every Lie group G has a left (also, a right) invariant Haar measure.

Definition 169. Let ΩkG denote the space of all smooth k-forms on G. φ ∈ ΩkG is called

left-invariant if `∗gφ = φ for all g ∈ G. We write Ωk`G for the space of all smooth left-

invariant k-forms on G.

170 Proposition
The map Ω∗`G→ ΛkT ∗eG given by φ : φ(e) is an isomorphism of vector spaces.

Proof This is exactly analogous to the usual isomorphism between left-invariant vector fields
and the tangent space at the identity.

Proof As a consequence of the proposition, if k = n, we have dimR(ΛnT ∗eG) = 1. Any non-zero
left-invariant n-form ω on G spans this space under the above isomorphism. In particular, any
Lie group G is orientable. Hence

∫
G
f ω makes sense, using the orientation ω gives on G.

In particular, if f ∈ Cc(G), the functional f 7→
∫
G
f ω is positive, so by the Riesz representa-

tion theorem, there exists a measure dg such that
∫
G
f ω =

∫
G
f dg. dg is a left invariant Haar

measure. It has been determined up to multiplication by a positive real number.

171 Theorem
Let G be a compact Lie group. There is a unique normalized left Haar measure and a unique normalized
right Haar measure, and in fact they are the same.

Proof By the previous theorem, left and right (normalized) Haar measures exist, call them δg and

38



dg, respectively. Consider ∫
G

f(g) δg =

∫
G

(∫
G

f(g) δg

)
dh

=

∫
G

(∫
G

f(gh) δg

)
dh

=

∫
G

(∫
G

f(gh) dh

)
δg

=

∫
G

(∫
G

f(h) dh

)
δg

=

∫
G

f(h) dh =

∫
G

f(g) dg.

The result follows. We used Fubini’s theorem to interchange the order of integration.

172 Remark
Given a compact Lie group G, we have∫

G

f(gh) dg =

∫
G

f(hg) dg =

∫
G

f(g) dg =

∫
G

f(g−1) dg.

The first two equalities come from the previous theorem. For the third equality, if the assignment
f 7→

∫
G
f(g−1)dg gives a left-invariant Haar measure, equality must hold by uniqueness. We see∫
G

(`∗hf)(g−1) dg =

∫
G

f(hg−1) dg =

∫
G

(f ◦ i)(gh−1) dg =

∫
G

(f ◦ i)(g) dg =

∫
G

f(g−1) dg,

where i : G→ G is given by g 7→ g−1.

173 Remark
If G is non-compact, then left invariant Haar measures are unique up to multiplication by a positive
real number. However, left and right invariant Haar measures don’t necessarily differ by multiplication
by a positive real number.

174 Example
U(1) = SO(2) = S1, viewed as {eiθ} ⊂ C has Haar measure dθ

2π . Likewise the n-torus S1 × · · ·S1 is
dθ1···dθn
(2π)n . For Rn, the result is just the Lebesgue measure. Sp(1) ∼= SU(2) ∼= S3 has the usual induced

measure coming from Euclidean space, dσ
2π2 .

November 3rd, 2014: Draft

175 Remark
Monty McGovern is lecturing today.

Definition 176. Given a Lie group G (real or complex), a representation (π, V ) of G is a group homomor-

phism π : G→ GL(n,R) or GL(n,C) where V = Rn or Cn is the underlying vector space on which the
matrix groups act. We use “representation” interchangeably in this context for either π or V .

We say π or V is irreducible if V has no G-stable subspace. That is, the only subspaces W of V
for which each g ∈ G sends W into W are 0 and V . Note that this is automatic if dimV = 1.

177 Example
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(1) We’ve already seen many matrix groups which are Lie groups, e.g. GL(n,R), GL(n,C), U(n,C),
U(p, q), Sp(2n,R), Sp(2n,C), O(n,R), O(n,C), . . . . All of these act irreducibly on Rn or Cn,

i.e. are irreducible representations. These are frequently called the defining representations ,

where π is just the inclusion map.

(2) There are standard ways of forming new representations from old ones. We will describe these
using V instead of π; a good exercise is to reformulate these in terms of π. First suppose V,W are
representations (both real or both complex) of G. Then V ⊗W (the tensor being over R or C) is
also a representation given by

g · v ⊗ w := g · v ⊗ g · w.

(The more general construction underlying this is that we can tensor product Hopf algebras and
get another Hopf algebra.) In particular, V ⊗ V and V ⊗n are representations of G.

(3) If V is a representation on G, then SnV the nth symmetric power of V , namely the quotient

of V ⊗n by the submodule generated by permutations of the factors of simple tensors. That is,

we identify vi1 ⊗ · · · ⊗ vin and vπ(i1) ⊗ · · · ⊗ vπ(in) for all permutations π. Likewise ΛnV , the

nth exterior power of V , is the quotient where we enforce antisymmetry rather than symmetry:

we identify things exactly as before except the right-hand side picks up a factor of sgn(π).

(4) If V is a representation on G, the dual space V ∗ is also a representation, where V ∗ as a vector
space is the space of linear functions from V to the base field, and given such a function f , g · f is
defined via (g · f)(v) := f(g−1 · v) for all v ∈ V . Likewise we can give a representation structure to
Hom(V,W ) ∼= V ∗ ⊗W .

Definition 178. Given two representations V and W of G and a map α : V → W , we say that α is an

intertwining map or an intertwiner if

αg(v) = g(αv)

for all g ∈ G, v ∈ V . (That is, intertwining maps are linear maps commuting with the G-action.)

179 Lemma (Schur’s Lemma)
If V,W are irreducible representations and α is an intertwining map, then α is an isomorphism or 0. If
V = W is a complex representation, then α is a scalar. If V = W is a real representation, the space of
all intertwining maps as an algebra is R, C, or H.

Proof (Sketch.) That α is 0 or an isomorphism follows quickly since the kernel and image are G-stable
subspaces. In the V = W complex case, an eigenspace is G-invariant and non-trivial, so is the
whole space. The V = W real case is more involved.

180 Example
Here is our first example of a non-irreducible representation of a matrix group. Let B be the group
of all invertible upper triangular matrices in GL(n,R) or GL(n,C). Here it is clear that the real or
complex span of the first basis vector e1 of V in which we’re writing these matrices is stable under the
G-action. Hence G does not act irreducibly on Rn or Cn for n > 1.

This group is not compact (despite being closed, it is not bounded). For compact groups, it

turns out that every representation is “close” to irreducible. That is, it is either semisimple or

completely reducible : it is a finite direct sum of irreducible representations.

Proof Let G be a compact group, V a representation over R or C. Let 〈−,−〉 be an arbitrary
positive-definite form on V . Over R, this is a symmetric, positive-definite, bilinear form. Over C,
this is a sesquilinear (i.e. linear in the first coordinate, conjugate-linear in the second) Hermitian
(i.e. 〈v, w〉 = 〈w, v〉) positive-definite (in either case, 〈v, v〉 ≥ 0 with equality if and only if v = 0).
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We will now transform 〈−,−〉 to a G-invariant positive definite form on V by simply
integrating over G with respect to Haar measure, which exists and is unique as in the last lecture,
since G is compact. Specifically, define (−,−) by

(v, w) :=

∫
G

〈gv, gw〉 dg

where dg is Haar measure. One may check (−,−) is still positive definite, but now is also
G-invariant: (gv, gw) = (v, w) for all v, w ∈ V, g ∈ G.

Now given any G-invariant subspace W , form orthogonal subspace W⊥, namely {v ∈ V :
(v, w) = 0 for all w ∈W}. W⊥ is G-invariant and complementary to G in the sense that
V ∼= W ⊕W⊥. If W and W⊥ are irreducible, we’re done; otherwise, we can use the same process
to break W or W⊥ into further direct sums of representations. This process strictly decreases
the dimension of the pieces, so it eventually terminates.

In all, we can indeed decompose V as the (orthogonal) direct sum of irreducible G-submodules
Vi, V = ⊕ni=1Vi where G acts irreducibly on each Vi.

By contrast, the upper triangular matrices B are not completely reducible for n > 1: any invariant
subspace happens to contain the G-invariant subspace we identified earlier, Re1 or Ce1, so this invariant
subspace contains no G-invariant complementary subspaces. This is essentially a jazzed up version of
Maschke’s theorem.

181 Remark
We will next develop an especially beautiful irreducible representation called the spin representation of
an especially beautiful group, the spin group, over R or C. To do this, we start with what Monty (but

nobody else) calls the Clifford Group . In terms of generators and relations, it has presentation

Gn := 〈a1, . . . , an : a2i = ε, ε2 = 1, aiaj = εajai if i 6= j〉.

For instance, G2 is the quaternion group. What is |Gn|? The elemnts of Gn are εx0ax1
1 · · · axnn where

each xi is 0 or 1, and these are distinct, so |Gn| = 2n. What about the center Z(Gn)?

Z(Gn) =

{
{1, ε} n even
{1, ε, a1 · · · an, εa1 · · · an} n odd

What about the conjugacy classes? They are {x, εx} if x is not central and {x} if x is central. Hence
there are 2n + 1 conjugacy claases if n is even and 2n + 2 if n is odd.

What about the irreducible representations of Gn (in the group-theoretic sense)? If ε acts by
1, then each of a1, . . . , an acts by ±1, so there are 2n such representations. If n is even, only one
irreducible representation is left, which must then have dimension 2n/2. If n is odd, there are two such
representations left, namely of dimensions 2(n−1)/2, 2(n−1)/2.

Definition 182. The Clifford algebra is the quotient of the group algebra CGn by the ideal (1 + ε).

Decomposing CGn into irreducible representations, the quotient cuts out all representations on which
ε acts by 1, leaving just the degree 2n/2 or 2(n−1)/2 irreducible representation mentioned above. More
precisely, CGn/(1 + ε) ∼= M2n/2C, i.e. all 2n/2 × 2n/2 matrices over C in the even case, and likewise in
the odd case with M2(n−1)/2C⊕M2(n−1)/2C. This has order 2 periodicity.

The definition for the real case is the same, RGn/(1 + ε), though there is order 8 periodicity, which

is very strongly related to Bott periodicity .
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183 Remark
Monty is lecturing again today. Last time we defined what we called the Clifford groups; this seems to
be in standard use, so we will rename it the Clifford unit group, namely

Gn := 〈a1, . . . , an : a2i = ε, ε2 = 1, aiaj = εajaiif i 6= j〉.

Again, the Clifford algebra is
Cn := kGn/〈1 + ε〉

where k = R or C. In terms of (algebraic now) generators and relations,

Cn = 〈a1, . . . , an : a2i = −1, aiaj = −ajai, i 6= j〉.

Note that
(
∑

xiai)
2 = −

∑
x2i

for xi ∈ k. Now let V be the k-vector space spanned by the ai; make this into an inner product space
by decreeing that the ai are an othonormal basis. Write (−,−) for this inner product.

Definition 184. Take Pin(n) to be the group generated by all “unit vectors”
∑
xiai ∈ V (using the above

notation) with
∑
x2i = 1. On Cn, we have an anti-automorphism τ fixing the generators ai given by

τ(ai1 · · · aim) = aim · · · ai1 . Define an action of Pin(n) on V by

g · v := gvτ(g)

for all g ∈ Pin(n), v ∈ V . Then we have

vwv =

{
−v w = v
v (v, w) = 0

Thus the generators of Pin(n) act by reflections on V . But the reflections generate O(n) (for K = R
or C), so we conclude that Pin(n) is a double cover of O(n,K), not O(n) itself because the square of
every reflection is −1 instead of 1 (though −1 acts trivially).

We see now that Pin(n) admits a faithful irreducible representation (over C) of dimension 2n/2 if n
is even or two such representations (over C) each of dimension 2(n−1)/2 if n is odd.

Then Spin(n,K) is the subgroup of Pin(n,K) consisting of products of evenly many unit vectors.
Over Spin(n), for n even, the representation of dimension 2n/2 splits into two pieces, each of dimension

2n/2−1, called half-spin or chiral spin representations, while the two representations of dimension

2(n−1)/2 for n odd are isomorphic. Why? If n is odd andK = R or C, we haveO(n,K) = SO(n,K)⊗Z/2
with Z/2 = {±1}. Similarly we have Pin(n,K) ∼= Spin(n,K) × Z/2 if n is odd, and the two
representations of dimension 2(n−1)/2 of Pin(n,K) for n odd are distinguished only by the action of
Z/2, which is either trivial or not, so they’re isomorphic over Spin(n,K). For n even, it turns out that
Spin(n,K) contains a copy of Pin(n− 1,K), and the action of the center of Pin(n− 1,K) distinguishes
the two half-spin representations.

Moreover, note that O(n,K) and SO(n,K) do not act on these larger representations, since

reflections act on them with square−1 rather than 1. (We then call these larger representations genuine

representations of Pin or Spin, i.e. they are representations which don’t descend to representations of
O(n,K) or SO(n,K).)
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185 Remark
How do you get double covers of SO(p, q) or O(p, q) from this? For this, we modify the definition of
the Clifford algebras Cn. For fixed p+ q = n, we use

Cn = Cp+q := 〈a1, . . . , ap, ap+1, . . . , ap+q : a2i = 1, 1 ≤ i ≤ p,
a2j = −1, p+ 1 ≤ j ≤ p+ q,

auav = −avau, 1 ≤ u 6= v ≤ p+ q〉.

Now our vector space V is indefinite, having a form of signature (p, q). We can now define Pin and
Spin as before.

186 Remark
For simplicity, take p = 0. Then

Cn(R) =


M2n/2R n ≡8 0, 6
M2(n−1)/2C n ≡8 1, 5
M2(n−2)/2H n ≡4 2, 4
M2(n−3)/2H⊕M2(n−3)/2H n ≡8 3
M2(n−1)/2R⊕M2(n−1)/2R n ≡8 7,

and so accordingly the spin representations are a bit more complicated.

187 Remark
On the other hand, the spin and half-spin representations do carry actions of so(n,K), the Lie algebra
of skew-symmetric matrices over K for K = C or R. (Must do something more complicated, as above,
to define so(p, q).) We first define representations of Lie algebras.

Definition 188. If g is a Lie algebra over K = R or C, we say that a pair (π, V ) is a representation (or

just π or V ) if π is a Lie algebra homomorphism from g to gl(V ), so that

π[X,Y ] = π(X)π(Y )− π(Y )π(X).

Irreducibility, submodules, Schur’s lemma, etc. all carry over as before. Now, however, to get a Lie
algebra action on V ⊗W given such actions on V and W separately, we define

X · (v ⊗ w) := (X · v)⊗ w + v ⊗ (X · w).

The Lie algebra also acts on the dual space V ∗ as follows: for f : V → K,

(X · f)(v) := −f(X · v).

As before, Hom(V,W ) ∼= V ∗ ⊗W also carries a Lie algebra action given actions on V and W . For
example, g acts trivially on a particular f ∈ Hom(V,W ) exactly when f is a g-module homomorphism
from V to W .

More recently than Weyl’s original proof that representations of a compact Lie group are completely
reducible, using integration and Haar measure, is a purely algebraic proof due to Brouwer (see
Humphreys’ 1972 book) for compact Lie algebras that representations are completely reducible. Is
there an intrinsic way to define compactness of a Lie algebra intrinsically? In fact, a Lie algebra is
compact if and only if its Killing form is negative-definite.

Note also that any continuous homomorphism of Lie groups (which was assumed for representations)
is automatically smooth.

189 Remark
Any representation of a compact Lie group comes equipped with a “road map”: there will be a list of
“weights” (living in a finite-dimensional vector space) and a multiplicity for each weight.

The weights of the spin representation are given by the set of vectors {(± 1
2 , . . . ,±

1
2 )}, each with

multiplicity one, and the ±’s are independent. The half-spin representations admit a very similar “weight
decomposition” except the number of + signs is always even for one of the half-spin representations
and is always odd for the other; the multiplicities remain 1.
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190 Remark
Robin back lecturing today. He’ll review some of what Monty discussed (perhaps at a gentler pace)
and change some of our notation.

191 Remark
Let X be a set and let SX denote the set of bijections S → S. Indeed, this is a group under composition

(the symmetric group ). Given a group G, an action of G on X is just a group homomorphism

G→ SX .

Analogously, given a manifold M , we replace SX with Diff(M), the group of diffeomorphisms from
M to M . For instance, if M is just a real vector space, this is GL(M).

Definition 192. If G is a Lie group and V is a vector space (usually over C) (dimV < ∞) , a Lie group

homomorphism ρ : G → GL(V ) is a representation of G on V . Formally, the representation is the

pair (V, ρ) (sometimes written (ρ, V )). Fact: if ρ is continuous, then ρ is smooth. We require dimV > 0.

If g ∈ G, write g · v := ρ(g)(v). We can say “G acts on V ” or “V is a G-module”.

Definition 193. Let g be a Lie algebra, V a vector space. A representation of g on V is a Lie algebra

homomorphism
τ : g→ gl(V ).

If X ∈ g, v ∈ V , we write X · v := τ(X)v ∈ V . Explicitly, we require

τ([X1, X2]) = τ(X1)τ(X2)− τ(X2)τ(X1).

Definition 194. If ρ : G → GL(V ) is a representation of G on V , then dρ : g → gl(V ) is the induced Lie
algebra representation of g on V . We alternatively write ρ∗ := dρ. Formally,

ρ∗(X) :=
d

dt

∣∣∣∣
t=0

ρ(exp tX).

195 Remark
Recall we had a general theorem: if G,H are Lie groups, G is simply connected, and τ : g → h is
a Lie algebra homomorphism, there is a unique ρ : G → H with ρ∗ = τ . Hence every Lie algebra
representation τ : g→ gl(V ) lifts to ρ : G→ GL(V ) with G simply connected, Lie(G) = g, and ρ∗ = τ .

More succinctly, there is a one-to-one correspondence between representations of a Lie algebra g
and Lie group representations of the correponding simply connected Lie group. This fails without the
“simply connected” assumption, as we will see shortly.

Definition 196. Suppose ρ : G→ GL(V ), ρ′ : G→ GL(V ′) are representations of a Lie group G on vector

spaces V, V ′. An intertwining operator is a linear transformation T : V → V ′ such that

ρ′(g) ◦ T = T ◦ ρ(g)

for all g ∈ G. We write Hom(V, V ′) to denote the vector space of linear transformations V → V ′,

and we write HomG(V, V ′) to denote the subspace of intertwining operators.

Definition 197. (V, ρ) is equivalent to (V ′, ρ′) if there exists an intertwining operator T : V → V ′ which

is an isomorphism of vector spaces.
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198 Remark
Choose a basis for V . Identify GL(V ) with GL(n,C) where n := dimC(V ). Hence given a representation
(V, ρ) of a Lie group G, ρ(g) corresponds to a matrix Mg ∈ GL(n,C). The homomorphism property says
Mg1Mg2 = Mg1g2 , so we are “representing” the group operation of G by using matrix multiplication.

Definition 199. (V, ρ) is faithful if ρ is injective, i.e. one-to-one.

Definition 200. Given a representation (V, ρ) of a Lie group G, a subspace W ⊂ V is invariant if

ρ(g)W ⊂ W for all g ∈ G. (V, ρ) is irreducible if the only invariant subspaces are {0} and V . It is

reducible otherwise.

201 Lemma (Criterion for Irreducibility)
(V, ρ) is irreducible if and only if for all 0 6= v ∈ V , V = SpanF{g · v : g ∈ G}.

Proof Suppose it’s irreducible. The suggested span is an invariant subspace, and is non-zero
since v 6= 0, so is the whole space. On the other hand, given any non-zero invariant
subspace, it contains some non-zero v, so all g · v are in the invariant subspace, hence the

invariant subspace is the whole space. {g · v : g ∈ G} is called the orbit of v .

202 Example
Some examples of representations follow. Let G be a Lie group, V a vector space.

(1) Let ρ(g) := id for all g ∈ G. This is called a trivial representation or one says V has trivial action .

The trivial representation occurs when dimV = 1.

(2) If dimV = 1, the representation is always irreducible.

(3) A Lie subgroup of GL(n,F) is essentially defined by an inclusion G ↪→ GL(n,F) of Lie groups. It’s

a representation for V := Fn. This is the defining representation or standard representation .

For all of our examples (being reductive), the standard representation is irreducible. For instance,
use the criterion on O(n) acting on Rn. We need to check that for all 0 6= v ∈ Rn, the orbit
{g · v : g ∈ O(n)} spans O(n). But the orbit is just the sphere of radius |v|, which evidently spans.

(4) Let G := R be the additive group of real numbers. Define

ρ(t) :=

(
1 t
0 1

)
∈ GL(2,R).

Since (
1 t1
0 1

)(
1 t2
0 1

)
=

(
1 t1 + t2
0 1

)
,

this is a representation. However, Span{e1} is a (non-trivial proper) invariant subspace, so this
is not irreducible. On the other hand, let c ∈ C. The map t 7→ ect ∈ GL(1,C) is a (family of)
irreducible representation(s) of R. These representations are inequivalent if c1 6= c2.

Let S1 := R/2πZ, the map t 7→ eikt for k ∈ Z fixed is an irreducible representation of S1. Thinking
of S1 instead as {eiθ}, this is simply the kth power map.

Note that if G is abelian, any irreducible representation is 1-dimensional. The above are in fact all
the irreducible representations R and S1.

(5) Let G := SU(2). The standard representation just means SU(2) acts on C2 by matrix multiplication.
Fix m ≥ 0. Define

Vm := {polynomials p : C2 → C homogeneous of degree m}.
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Note that p ∈ Vm satisfies p(λz1, λz2) = λmp(z1, z2) for all λ ∈ C. Note that a basis for Vm
is {zm1 , zm−11 z2, . . . , z

m
2 }, so dimC(Vm) = m + 1. For g ∈ SU(2), we define an a representation

SU(2)→ GL(Vm) by defining the action of g ∈ SU(2) on p ∈ Vm by

(g · p)(z) := ρ(g−1z).

More concretely, given an arbitrary element of SU(2)

g =

(
α −β
β α

)
with |α|2 + |β|2 = 1, we set

(g · p)(z) = p(αz1 + βz2,−βz1 + αz2).

Facts: (1) each Vm is irreducible; (2) every irreducible representation of SU(2) is equivalent to one
of the Vm.

November 10th, 2014: Draft

203 Proposition
Let Φ: G→ H be a homomorphism between Lie groups (i.e. a smooth group homomorphism). Let
Φ∗ or dΦ denote the induced homomorphism g → h of Lie algebras. If X ∈ g, then Φ(expGX) =
expH(Φ∗(X)).

Proof Recall that exp tX is the one-parameter subgroup (i.e. an injective immersion of R by a group
homomorphism) with d

dt

∣∣
t=0

exp tX = X. Since Φ is a homomorphism, t 7→ Φ(expG tX) is a

one-parameter subgroup in H, so Φ(expG tX) is expH( d
dt

∣∣
t=0

Φ(expG tX)) = expH(Φ∗X).

204 Corollary
If ρ : G→ GL(V ) is a representation of G, then ρ(expX) = eρ∗X for all X ∈ g, where the right-hand
side uses the matrix exponential.

Definition 205. If g is a Lie algebra, X ∈ g, we defined adX : g→ g given by (adX)(Y ) := [X,Y ]. Indeed,

this defines ad : g→ gl(g), which we long ago asserted was a Lie algebra homomorphism thanks to

the Jacobi identity. In our current language, this is the adjoint representation of the Lie algebra g

on V = g. Our next goal is to define and analyze the Lie group analogue of this representation.

Definition 206. If G is a Lie group, g ∈ G, define the conjugation-by-g map Cg(h) := ghg−1. For every
g ∈ G, Cg is in fact a Lie group automorphism. Hence we have a map C : G → Aut(G) given by
g 7→ Cg. C is smooth in the sense that G ×G → G given by (g, h) → ghg−1 is smooth. C is also a
group homomorphism since Cg2 ◦ Cg1 = Cg2g1 .

G acts on G by conjugation. Fix g ∈ G. Cg : G→ G is a diffeomorphism and a group automorphism,
so dCg : g→ g is a Lie algebra homomorphism. Being the image of an isomorphism under a functor,
dCg is in fact invertible, so dCg ∈ GL(g). Hence we may define Ad(g) := dCg, giving Ad: G→ GL(g).
By the chain rule (equivalently, functoriality) dCg2 ◦ dCg1 = dCg2g1 . Hence In all, we have the

adjoint representation Ad : G→ GL(g), which is a smooth Lie group homomorphism.

207 Remark
If G ⊂ GL(n,C) and X ∈ g ⊂ gl(n,C), then

Ad(g)X = (dCg)(X) =
d

dt

∣∣∣∣
t=0

Cg(exp tX)

=
d

dt

∣∣∣∣
t=0

g exp(tX)g−1 = gXg−1.
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Hence in this context the adjoint representation is literally conjugation of matrices. More generally, for
Cg : G → G, from the proposition above we have g exp(X)g−1 = Cg(expX) = exp(Ad(g)X). For a
matrix group, replace X by tX and take the derivative at t = 0 to get the statement above.

208 Theorem
Let G be a Lie group, g its Lie algebra, Ad the adjoint representation on G, ad the adjoint representation
on g. Then:

(1) Ad∗ = ad

(2) Ad(expX) = eadX

Proof (2) follows from (1) and the previous corollary by taking ρ := Ad: gG→ GL(g). For (1), we
compute

Ad∗(X)(Y ) =
d

dt

∣∣∣∣
t=0

Ad(exp tX)Y

Cg = Rg−1 ◦ Lg
Ad(g) = dCg = dRg−1)◦dLg ,

so that

Ad∗(X)Y =
d

dt

∣∣∣∣
t=0

(dRexp−tX ◦ dLexp tX)(Y ),

where Lg denotes left multiplication by g and Rg−1 denotes right multiplication by g−1. This
last expression only depends on Ye. X,Y are left invariant vector fields on G. Hence

d

dt

∣∣∣∣
t=0

(dRexp−tX ◦ dLexp tX)(Y ) =
d

dt

∣∣∣∣
t=0

dRexp−tX(Yexp tX).

Recall that the flow φt of X (see Jack Lee’s smooth manifolds book for definition and discussion)
satisfies φt(g) = g exp(tX) = Rexp tX(g). Hence

d

dt

∣∣∣∣
t=0

dRexp−tX(Yexp tX) =
d

dt

∣∣∣∣
t=0

(dΦ−t)(Yφt(e)) = LXY

= [X,Y ] = ad(X)Y.

In a matrix group, this computation is more straightforward:

(dAd)(X)(Y ) =
d

dt

∣∣∣∣
t=0

Ad(exp tX)Y

=
d

dt

∣∣∣∣
t=0

(exp tX)Y (exp−tX)

= XY − Y X = [X,Y ]

using the Leibniz rule in the second to last equality.

209 Remark
Recall our assertion from last time involving the representation theory of G := SU(2). Vm was the
space of homogeneous polynomials of degree m on C2 with basis {v0 = z01z

m
2 , . . . , vm = zm1 z

0
2}. SU(2)

acts on p ∈ Vm by ρm(g)(p) = (g · p)(z) := p(g−1z).

210 Theorem
For all m ≥ 0, (ρm, Vm) is irreducible.
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Proof Let S1 ∼= T := {tθ :=

(
eiθ 0
0 e−iθ

)
: 0 ≤ θ < 2π} ⊂ SU(2). Then

(ρm(tθ)vj)(z) = vj(t
−1
θ z) = e−ijθei(m−j)θzj1z

m
2 − j

= ei(m−2j)θ)vj ,

i.e. ρm(tθ)vj = ei(m−2j)θvj . Hence ρm(tθ) is a diagonal linear transformation of Vm. Choose
θ so that ei(m−2j)θ are distinct for 0 ≤ j ≤ m. A linear algebra fact is that if L ∈ End(V ) is
diagonalizable with distinct eigenvalues, then any invariant subspace for L must be a direct sum
of eigenspaces. If W ⊂ Vm is invariant, it must then be of the form Span{vσ1 , . . . , vσd}. To be
continued next time. We will show that no such non-trivial proper span can be invariant under
our action.
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211 Remark
New homework has been posted. It’s due next Wednesday.

212 Remark
Here we continue the proof from the end of last lecture.

Proof Recall G := SU(2), Vm was the space of homogeneous polynomials over C of degree m,
ρm : SU(2) → GL(Vm) is a representation of Vm defined by ρm(g)(p(z)) := p(g−1z). Let
{p0, . . . , pm} be the obvious basis for Vm, namely pj(z) := zj1z

m−j
2 . We were showing (ρm, Vm)

is irreducible for all m ≥ 0. We had let T be a circle (see above) and computed the action of tθ
on our basis {pj} explicitly as

ρm(tθ)pj = ei(m−2j)θpj .

Hence for each matrix ρm(tθ), pj is an eigenvector with eigenvalue ei(m−2j)θ.

We will find out later that T is a “maximal torus” in SU(2). The pj ’s are called “weight
vectors” for this maximal torus, meaning they’re simultaneous eigenvectors for all matrices
corresponding to that abelian subgroup. The functions from the torus to C giving the eigenvalues
are called called the “weight” of that eigenvector.

If W ⊂ Vm is an invariant subspace, we may choose θ such that the eigenvalues are distinct,
so by the linear algebra fact mentioned last time, W is a direct sum of the weight vectors,
i.e. W = Span{pσ1

, . . . , pσd}. Now consider

gT :=

(
cos t − sin t
sin t cos t

)
= exp tX

where

X =

(
0 −1
1 0

)
∈ su(2).

(Note X2 = −I.) A general element of SU(2) is of the form g = (α,−β;β, α) ∈ SU(2). Hence
g−1 = (α, β;−β, α). The action of g on pj is then

(g · pj)(z) = (αz1 + βz2)j(−βz1 + αz2)m−j .

The induced action of the Lie algebra is

Xpj =
d

dt

∣∣∣∣
t=0

gt · pj =
d

dt

∣∣∣∣
t=0

(cos tz1 + sin tz2)j(− sin tz1 + cos tz2)m−j

= (jzj−11 z2)zm−j2 − (m− j)zj1z
m−j−1
2 z1

= jpj−1 − (m− j)pj+1.
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If W contains any pj , we may apply X to it and get linear combinations of pj−1 and pj+1

(setting p−1 = pm+1 = 0) with non-zero coefficients, forcing pj−1 and pj+1 in W . Hence W
contains all pj , so W = Vm. Hence the representation is indeed irreducible.

213 Remark
We may consider a different element of the Lie algebra in the end of the preceding proof. Consider

ht =

(
cos t i sin t
i sin t cos t

)
= exp tY

where

Y =

(
0 i
i 0

)
∈ su(2).

The same computations yield

Y · pj = −i(jpj−1 + (m− j)pj+1).

Note that
1

2
(X + iY )pj = jpj−1,

1

2
(X − iY )pj = −(m− j)pj+1.

This offers a different proof which may avoid the “linear algebra” fact we quoted. 1
2 (X + iY ) ∈

su(2)⊗C ∼= sl(2,C) is called a lowering operator , and likewise 1
2 (X−iY ) is called a raising operator .

Explicitly, these operators are

1

2
(X + iY ) =

(
0 −1
0 0

)
,

1

2
(X − iY ) =

(
0 0
1 0

)
.

214 Remark
We can also consider the analogous representations of SU(n) on Vm (i.e. replacing 2 with n), where
Vm now consists of homogeneous polynomials over C of degree m in n variables. These turn out
also to be irreducible representations of SU(2), but for n > 0 there are other “irreps”, i.e. irreducible
representations.

215 Remark
Given a representation τ : g → gl(V ) of a Lie algebra, we can talk about invariant subspaces and
irreducible representations in exactly the same way as for representations of Lie groups.

216 Proposition
Let G be a connected Lie group. Suppose ρi : G → GL(V ) for i = 1, 2 are representations of G. If
(ρ1)∗ = (ρ2)∗, then ρ1 = ρ2.

Proof Recall that if X ∈ g, then ρ(expX) = eρ∗X . If (ρ1)∗ = (ρ2)∗, then ρ1 = ρ2 on im exp. But
this image generates the identity component, which is the whole group since G is connected.

217 Proposition
Let G be a connected Lie group, ρ : G → GL(V ) a representation with induced representation
ρ∗ : g→ gl(V ). If W ⊂ V is a subspace of V , then W is invariant for ρ if and only if it is invariant for
ρ∗. In particular, V is irreducible for ρ if and only if it is irreducible for ρ∗.

Proof If W is invariant for G and X ∈ g, then for each w ∈W we have

X · w =
d

dt

∣∣∣∣
t=0

(exptX)w ∈W.

On the other hand, if W is invariant for g, pick X ∈ g and w ∈W . Then ρ(expX)w = eρ∗Xw.
Since W is invariant for g, one may check the exponential takes elements of W to W . Hence
elements of the image of exp send W to itself, which amplifies to all elements of G as in the
preceding proposition.
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218 Remark
Suppose g is an R-Lie algebra. A real representation ρ : g→ gl(V ) is just what you’d expect: V is a

R-vector space, and ρ is R-linear. A complex representation uses a complex vector space V .

If ρ is a real representation on V , we can induce a representation of g on V ⊗R C. This is called

the complexification of (ρ, V ). Explicitly, if X ∈ g, we define ρ(X)(v + iw) := ρ(x)w + iρ(X)w.

If ρ : g → gl(V ) is a complex representation, we can complexify ρ to get a representation ρC of
gC := g⊗R C, namely

ρC(X + iY )v := ρ(X)v + iρ(Y )v.

Note that complexifying the representation in this way does not change the underlying vector space,
but rather changes the underlying Lie algebra.

219 Proposition
If ρ : g→ gl(V ) is a complex representation of a real Lie algebra g, then a subspace W ⊂ V is invariant
for ρ if and only if it is invariant for ρC. In particular, ρ is irreducible if and only if ρC is irreducible.

Proof Immediate.

220 Remark
Let G be a simply connected Lie group, g := Lie(G), gC the complexification of g. There exists a
one-to-one correspondence between complex representations for G, complex representations for g, and
complex representations for gC, which preserves irreducibility.

If we have a representation of G → GL(V ) and a homomorphism of Lie groups H → G, the
composite H → G → GL(V ) is a representation of H. The reverse fails. For instance, we have our
double cover Spin(n)→ SO(n). Any SO(n)-representation yields a Spin(n)-representation. However, in
SU(2) ∼= Spin(3)→ SO(3), ± id is sent to id. It turns out that any representation ρ : SU(2)→ GL(V )
passes to a representation SO(3)→ GL(V ) if and only if ρ(− id) = id. (Mod out by the kernel.) Which
Vm pass to representations of SO(3)? We need pm(−z) = pm(z), so this occurs if and only if m is even.
Hence the most basic failure occurs for SU(2) on V1, which we will see is equivalent to the standard

representation of SU(2). This is called the spin representation of SU(2) (or su(2) or so(3)).
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221 Remark
Henceforth, all representations will be assumed to be complex, unless we say otherwise. This in
particular is true of the current homework on problems 4 and 5. In the definition of irreducible
representations, we assume the representation is non-zero, i.e. not on the 0-dimensional vector space,
by convention.

Today’s main topic will be the construction of new representations from old ones.

Definition 222. Suppose V is a representation of a Lie group G, with ρ : G→ GL(V ). Let V ′ denote the

dual space of V , that is, the vector space of linear functionals V → C. The dual representation on

the dual space is defined via

ρ′ : G→ GL(V ′) ρ′(g)(`)v := `(ρ(g)−1v)

for all ` ∈ V ′, v ∈ V . That is, g · `)(v) = `(g−1 · v). The usual fact that the double dual is naturally
isomorphic to the original (finite dimensional) vector space generalizes to the corresponding double
dual representation.

50



We can conjugate scalar multiplication on a given C-vector space V to obtain the conjugate vector

space V . The action of G on V is literally the same on the level of sets. Of course, V = V .

We can combine these two operations to obtain four possible representations of G on V, V ′, V , V
′
.

(Note that ′ and commute.) It is easy to see that one of these is irreducible if and only if all of them
are.

223 Remark
If we choose a basis {v1, . . . , vn} for V and consider V ∼= Cn, then ρ(g) is represented by a matrix
Mg ∈ GL(n,C). V ′ has dual basis {v′1, . . . , v′n}. If v ∈ V has coordinates (x1, . . . , xn) ∈ Cn and
` ∈ V ′ has coordinates (ξ1, . . . , ξn) ∈ Cn, then `(v) =

∑n
i=1 ξixi = ξTx. Hence (g · `)(v) = `(g−1v) =

ξT (M−1g x) = ((M−1g )T ξ)Tx. Hence ρ′(g) is represented by the matrix (M−1g )T . When written explicitly

in terms of matrices like this, the dual representation is called the contragredient representation .

The matrix representing ρ(g) on V is similarly just Mg.

Definition 224. If V,W are representations of G, the direct sum of representations is a representation

V ⊕W of G given by g · (v, w) := (g · v, g · w). Likewise, the tensor product of representations is a

representation of V ⊗W given by g · (v ⊗ w) := (g · v)⊗ (g · w), extended by linearity. Likewise we
can define representations on ⊗kV , SkV , and ΛkV . Similarly we can define a representation of G on
Hom(V,W ) ∼= V ′ ⊗W by (g · T )(v) := g · (T (g−1 · v)).

225 Remark
Let T ∈ Hom(V,W ). Then T is an intertwining operator from V to W if and only if g · T = T for
all g ∈ G. For in this case T (g · v) = g · (Tv), so T (v) = g · (T (g−1 · v)) = (g · T )(v). Recall we had
written HomG(V,W ) for the space of intertwining operators, which now makes sense: the intertwining
operators are precisely the G-invariants of Hom(V,W ).

If q : V ×V → C is a non-degenerate bilinear form, then q induces an isomorphism V ∼= V ′ given by
v 7→ q(v,−). If we view q ∈ ⊗2V ′, then if q is fixed by the action of G on ⊗2V ′, then the isomorphism
V ∼= V ′ is an intertwining operator. One checks q is fixed by the action of G iff q is G-invariant iff
(g · q)(v, w) := q(g−1 · v, g−1 · w) = q(v, w).

226 Proposition
Let V be the standard representation of SU(2). Then V ∼= V ′ ∼= V ∼= V

′
, they’re all irreducible, and

they’re all the irreducible representation V1. The isomorphisms also hold for SL(2,R).

Proof For V = C2, define q(v, w) := det(vw) = v1w2 − w1v2. This is very particular to having two
dimensions. This is a skew-symmetric non-degenerate bilinear form on C2. If A ∈ SU(2), then

q(Av,Aw) = det(AvAw) = det(A(vw)) = detA det(vw) = q(v, w).

Hence q induces V ∼= V ′ as representations.

A Hermitian inner product induces a C-linear isomorphism V ∼= V ′. If the inner product is

G-invariant, i.e. (g−1 · v, g−1 · w) = (v, w), then the isomorphism V ∼= V
′

is a G-map, i.e. an
intertwining operator. This applies to the present case. Apply this reasoning to V ′ instead of V
to get V ′ ∼= V , finishing the result.

For SL(2,R), the standard representation (again, implicitly on C2) preserves the determinant
used in the preceding proof, so V ∼= V ′, i.e. the dual of the standard representation is equivalent
to the standard representation. Conjugation mapping Cn → Cn is an intertwining operator for
any subgroup of GL(n,R) using the standard representation. Hence V ∼= V in this case.

227 Fact
For SL(n,R), we have V ∼= V where V is the standard representation. However, V 6∼= V ′ if n ≥ 3. For

SU(n), we have V ∼= V ′ where V is the standard representation, but V 6∼= V ′ ∼= V if n ≥ 3. On the
next homework, we will show V 6∼= V in this latter case.
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228 Lemma (Schur’s Lemma)
Suppose V,W are complex finite dimensional irreducible representations of any Lie group G. Then
dimC HomG(V,W ) is 1 if V ∼= W and is 0 if V 6∼= W .

Proof Suppose V 6≡W . Let T : V →W be an intertwining operator. Then kerT ⊂ V is an invariant
subspace by the intertwining condition. Since V is irreducible, kerT = 0 or V . If kerT = V ,
then T = 0. If kerT = 0, then T is injective, an imT ⊂W is invariant and is non-zero, so T is
surjective, hence T is an isomorphism. This gives the second half of the assertion, and indeed it
works over any field.

For the first half, suppose V ∼= W and let T0 : V → W be an isomorphism which is also
an intertwining operator. If T ∈ HomG(V,W ), consider T ◦ T−10 : HomG(W,W ). Since C is
algebraically closed, this composite has an eigenvalue λ. The corresponding eigenspace is a
kernel, hence is an invariant subspace, so is all of W . It follows that T = λT0. The same
argument works over any algebraically closed field.

229 Remark
Schur’s lemma fails over R. For instance, let G = SO(2) with the standard representation V = R2. If
G ∈ SO(2), write

gθ :=

(
cos θ − sin θ
sin θ cos θ

)
.

Now gθ ◦ gφ = gφ ◦ gθ. It follows that gφ ∈ HomG(V, V ) for all φ. These are not all simply multiples of
the identity. In fact,

HomSO(2)(R2,R2) = SpanR

{
I,

(
0 −1
1 0

)}
.

Definition 230. Let V be a C-vector space with Hermitian inner product (V, (−,−)). Given a Lie group

G on (V, (−,−)), a unitary representation of G is a homomorphism G→ U(V, (−,−)). That is, we

require
(ρ(g) · v, ρ(g) · w) = (v, w).

We say a representation ρ : G → GL(V ) is unitarizable if there exists a G-invariant inner product
with respect to which ρ is unitary.
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231 Remark
Last time we were talking about Schur’s lemma. Given two irreducible complex representations of a
Lie group G, it said dim HomG(V,W ) is 1 if V and W are equivalent and 0 otherwise.

1. If V is an irreducible complex representation of G, then any intertwining operator T : V → V is a
multiple of the identity.

2. This result fails for real representations. For instance, SO(2) acting on R2 naturally is irreducble
but HomG(R2,R2) = 2. If we complexify this representation, Schur’s lemma will then apply, so
“something’s gonna change”. The complexification is just SO(2) acting on C2, and we still have
dim HomG(C2,C2) = 2. Hence we must have a failure of irreducibility. The rotations(

cos θ − sin θ
sin θ cos θ

)
have eigenvalues ±eiθ with eigenvectors (1;±i). It follows that C2 = C(1; i) ⊕ C(1;−i), so the
representation indeed splits up into two pieces.
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Recall there are one-to-one correspondences between complex representations of simply connected
Lie groups G, complex representations of g (a R-Lie algebra), and complex representations of gC.
These correspondences preserve irreducibility. On the other hand, a real representation of g on a
real vector space V can be turned into a complex representation of g on V ⊗R C, and this does not
preserve irreducibility.

232 Remark
Let V be a C-vector space, (V, (−,−)) an inner product. Recall that a unitary representation of G on
(V, (−,−)) is a Lie group homomorphism ρ : G → U(V, (−,−)). A representation ρ : G → GL(V ) is
unitarizable if there is an inner product (−,−) on V with respect to which ρ is unitary.

Note that there are many non-unitarizable representations if G is allowed to be non-compact. The
homework considers representations of R and considers the map x 7→ ecx for c ∈ C. If c is pure
imaginary, this is unitary relative to the usual norm-squared’s corresponding inner product. If c 6∈ iR,
it turns out this representation is not unitarizable.

233 Theorem
If G is a compact Lie group, then every (finite dimensional) representation of G is unitarizable. (The
result also holds for real representations if we replace “unitarizable” with “orthogonal” in the obvious
way.)

Proof Choose any inner product 〈−,−〉. Define a new inner product by “averaging”:

(v, w) :=

∫
G

〈g · v, g · w〉 dg

where dg refers to Haar measure. It’s easy to check this is indeed a positive sesquilinear
nondegenerate (degeneracy would imply g · v = 0 for almost all g, but each g is invertible, so
v = 0). It’s also G-invariant:

(h · v, h · w) =

∫
G

〈g · h · v, g · h · w〉 dg

=

∫
G

〈gh · v, gh · w〉 dg

=

∫
G

〈g · v, g · w〉 dg

= (v, w).

Definition 234. Let ρ : G→ GL(V ) be a representation of a Lie group G. ρ is called completely reducible

(or decomposable or semi-simple ) if there are irreducible invariant subspaces V1, . . . , VN ⊂ V such

that V = V1 ⊕ · · · ⊕ VN .

In order to check that a given representation (ρ, V ) is completely reducible, it suffices to show that
every invariant subspace has an invariant complement. That is, there exists an invariant subspace
W̃ ⊂ V with V = W ⊕ W̃ .

235 Example
Not all invariant subspaces have invariant complements. For instance, the upper triangular 2× 2
matrices over R with 1’s along the main diagonal acting on C2 have invariant subspace spanned
by (1; 0), but it has no invariant complement. Hence this representation is reducible but not
completely reducible.

236 Theorem
Any unitary representation of a Lie group is completely reducible.

Proof If W ⊂ V is an invariant subspace, then so is its orthogonal complement with respect to any
inner product by an easy calculation.
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237 Theorem
Any (finite dimensional) representation of a compact Lie group is completely reducible.

238 Theorem
If G is a compact Lie group, then g is reductive.

Proof Recall that g is reductive iff for all ideals a ⊂ g, there exists an ideal b ⊂ g with g = a ⊕ b.
Consider the adjoint representation of the Lie algebra, ad: g → gl(g). A subspace a ⊂ g is
invariant for the adjoint representation if and only if a is an ideal, directly from the definitions.

If ρ : G → U(V, (−,−)) is a unitary representation, then ρ∗ : g → u(V, (−,−)) is a unitary
representation of g. If X ∈ g, (X · v, w) = −(v,X · w), so ρ∗(X) is a skew-symmetric linear
transformation of (V, (−,−)).

To prove the theorem, there exists an invariant inner product for the adjoint representation
of G on g. Hence each X ∈ g acts by skew transformations of (−,−). Every invariant subspace,
i.e. ideal, a ⊂ g has an invariant complement exactly as in the proof of the preceding theorem.

239 Remark
The preceding discussion is one of the simplest examples of Weyl’s unitary trick. We had to work
significantly harder with the Killing form to produce similar results since it is not in general positive-
definite, unlike the inner product we get from the unitary trick. Also, recall associativity of the Killing
form, ([X,Y ], Z) = B(X, [Y, Z]), equivalently B((adX)Y,Z) = −B(Y, (adX)(Z)). This is essentially
invariance under the adjoint representation.

240 Remark
If V is a finite dimensional representation of a compact Lie group, then V ∼= ⊕ni=1niVi where the Vi
are irreducible and pairwise inequivalent and ni ≥ 1. We call the ni’s “multiplicities”. Indeed, this
decomposition is unique up to reordering. We’ll discuss this more next time.

241 Proposition
If V is a completely reducible representation of a Lie group G, then V is irreducible if and only if
dim HomG(V, V ) = 1.

Proof ⇒ is Schur’s lemma. ⇐: if V = V1 ⊕ V2 for non-trivial invariant subspaces V1, V2, the
projections πi : V → Vi for i = 1, 2 are intertwining operators.

242 Proposition
If (ρ, V ) is a unitary representation of a Lie group G, then V ∼= V

′
and V ∼= V ′. In particular this is

true of any representation of a compact Lie group.

Proof The second follows from the first by conjugating. For the first, an inner product gives a

complex-linear isomorphism V ∼= V
′
. If the inner product is invariant, this isomorphism is an

intertwining operator.

243 Proposition
Let V be an irreducible representation of a Lie group G. Any two invariant inner products differ by a
positive multiple, (−,−)1 = c(−,−)2 for some c > 0.

Proof As in the preceding proposition, each (−,−) induces an intertwining operator V ∼= V
′
. By

Schur’s lemma, they are the same up to a scalar. It must be positive from postive-definiteness.

244 Proposition
Let V be a unitary representation of a Lie group G. If V1, V2 ⊂ V are invariant subspaces and V1 6∼= V2,
then V1 is orthogonal to V2 (relative to the underlying inner product of the unitary representation).

Proof Again, the inner product gives an intertwining operator V ∼= V
′
. Restriction of a linear

functional to a subspace gives another intertwining operator V
′ → V ′2 . Similarly the inclusion of

V1 to V is an intertwining operator. The composite

T̃ : V1 → V → V ′ → V ′2 → V2
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is then an intertwining operator, so by Schur’s lemma, it is zero. Indeed, unwinding these maps,
T̃ (v1)(v2) = (v2, v1) = 0.
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245 Remark
We begin today by discussing the isotypic decomposition or canonical decomposition of a compact
Lie group. We will call a representation of G a G-module and will call an invariant subspace of a
representation of G a G-submodule.

Let G be a compact Lie group, V a finite dimensional (complex) representation. From last time, V

is completely reducible. Let Ĝ denote the set of equivalence classes of irreducible finite dimensional
(complex) representations of G, where we regard two such as the same if they are equivalent. Write

[−] to denote the equivalence class of −. For each equivalence class [ρ] ∈ Ĝ, we fix some representative
(ρ,Eρ).

246 Proposition (Isotypic or Canonical Decomposition)
Let V be a finite dimensional representation of a compact Lie group G. Choose [p] ∈ Ĝ. Then there is
a unique maximal subspace of V which is equivalent to nEρ for some n ∈ {0, 1, . . . , }.

Proof V is finite-dimensional, so maximal subspaces equivalent to some number of copies of Eρ
certainly exist. We must show there is precisely one maximal subspace. That is, it suffices to
show if W1,W2 are G-submodules with W1

∼= n1Eρ, W2
∼= n2Eρ, then W1 + W2

∼= NEρ. For
if this is true, Vρ will be the sum of all subspaces equivalent to some nEρ for some n; finitely
many summands suffice since V is finite dimensional.

247 Lemma
Let V be a completely reducible G-modul. If U1, U2 ⊂ V are submodules with U1

irreducible, then either U1 ⊂ U2 or U1 ∩ U2 = 0.

Proof Consider U1 ∩ U2 ⊂ U1. The intersection is invariant, so since U1 is irreducible,
the intersection is either 0 or U1, which gives the two stated cases.

For the claim, apply the lemma with U2 = W2 and U1 a subspace of W1 equivalent to Eρ.
Hence U1 ⊂W2 or U1∩W2 = 0. Repeat this process on W2 +U1, which is either W2 or W2⊕U1,
so is either n2Eρ or (n2 + 1)Eρ.

Definition 248. The maximal subspace from the preceding proposition is called the isotypic component

of V and will be denoted V[ρ] . We let nρ := dimV[ρ]/dimEρ, which is the number of copies of Eρ

appearing in V[ρ].

249 Remark
While V[ρ] is canonically determined, we cannot decomposte it into a sum of Eρ’s canonically, V[ρ] ∼=
Eρ ⊕ · · · ⊕ Eρ. As an example, consider the trivial action on R2. Any two lines give a decomposition
of this form, but they are not canonically determined. The number of copies of Eρ, however, is the
same in any decomposition, simply because the dimensions add to dimV[ρ].

250 Proposition
V = ⊕[ρ]∈ĜV[ρ].

Proof Since V is completely reducible, the internal sum of the V[ρ] is V . We must only show
the pairwise intersections are trivial. For that, last time we showed that if V is a unitary
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representation with V1, V2 ⊂ V invariant, irreducible, and inequivalent, then V1 and V2 are
orthogonal relative to the invariant inner product. In our case, each V[ρ] is then orthogonal
relative to an invariant inner product. But since inner products are positive-definite, it follows
that their intersection is trivial, as required.

251 Example (Spherical Harmonics)
Let Pm(Rn) denote the set of all complex polynomials on Rn homogeneous of degree m. O(n) acts on
Pm(Rn) by (g · p)(x) := p(g−1x) in analogy with our previous example. If m = 1, P1(R1) = V ′ where
V is the standard representation. Pm(Rn) in general is the mth symmetric power of V ′.

A basis for Pm(Rn) consists of monomials {xα1
1 · · ·xαnn } where 0 ≤ αi and α1 + · · ·+αn = m}. For

convenience, we use multiindex notation: if α = (α1, . . . , αn), then xα := xα1
1 · · ·xαnn .

If m,n ≥ 2, then Pm(Rn) is not irreducible. Indeed, let ∆ :=
∑n
i=1 ∂

2
xi be the Laplacian. Then

∆: ¶m(Rn)→ Pm−2(Rn). Indeed, ∆(g · f) = g · (∆f) for g ∈ O(n), so ∆ is G-invariant.

Let Hm(Rn) := {p ∈ Pm(Rn) : ∆p = 0}. These are the harmonic polynomials . This is an

invariant subspace, being the kernel of a G-invariant morphism.

Some base cases: P0(Rn) consists of constants, i.e. C. This is also H0(Rn). P1(Rn) is V ′, so is Cn
dualized, and this is again also H1(Rn).

252 Proposition
Pm(Rn) ∼= Hm(Rn)⊕Hm−2(Rn)⊕ · · · ⊕X where the last term X is H1(Rn) or H0(Rn) depending on
whether m is odd or even, respectively.

253 Theorem
If n ≥ 2, then Hm(Rn) is irreducible for O(n). If n ≥ 3, then Hm(Rn) is irreducible for SO(n).

254 Remark
From the homework, if n = 2,m ≥ 1, then Hm(Rn) is irreducible O(n) but not for SO(n).

For O(n) or SO(n), V the standard representation, V ∼= V ′ ∼= V ∼= V
′
. Indeed, V ∼= V essentially

trivially, and for any compact group G, V ∼= V
′
; combine these. Alternatively, V ∼= V ′ since V

preserves a bilinear form. This breaks down for SU(n), n ≥ 3, namely V 6≡ V and V 6≡ V ′, though

V ∼= V
′

and V ∼= V ′.

255 Remark
To prove the theorem, we will introduce an inner product on Pm(Rn) and run through our general
machinations explicitly. Let p ∈ Pm(Rn), p(x) =

∑
|α|=m cαx

α homogeneous of degree m, cα ∈ C,

where |α| = α1 + · · ·+ αn. We define partial derivative operators for each multiindex α as

∂α := ∂αx1
· · · ∂αnxn .

Likewise we set p(∂) :=
∑
|α|=m cα∂

α. For instance, if p(x) = |x|2 = x21 + · · · + x2n, then p(∂) =

∂21 + · · ·+ ∂2n = ∆.

Now if p, q ∈ Pm(Rn), define a bilinear operator

(p, q) := q(∂)(p).

Since p and q are both of degree m, the result is indeed in C, and is is evidently sesquilinear. Note
that (xα, xβ) = ∂βxα, which is 0 if α 6= β and is α! := α1! · · ·αn! for α = β. This shows that {xα} is
an orthogonal (though not orthonormal) basis, so (−,−) is an inner product.

Again, Hm(Rn) = ker ∆, ∆: Pm(Rn) → Pm−2(Rn). Recall that if V,W are Hilbert spaces with
corresponding forms (−,−)V and (−,−)W . If L : V →W is a linear transformation, there is an adjoint
L∗ : W → V defined by (v, L∗w)v = (Lv,w)w. Basic fact: kerL = (imL∗)⊥. In finite dimensions, this
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gives (kerL)⊥ = imL∗. Here, let L = ∆, so that Hm(Rn)⊥ = imL∗. So, what is L∗ = ∆∗? In the
preceding notation, we require

(p,∆∗q) = (∆p, q) = q(∂)(∆p) = (∆q(∂))(p) = (|x|2q)(∂(p) = (p, |x|2q).

Hence L∗q = |x|2q.

November 21st, 2014: Draft

256 Remark
Recall that Pm(Rn) was the polynomials over C on Rn homogeneous of degree m and that Hm(Rn)
was the subspace of Pm(Rn) consisting of harmonic polynomials, i.e. those annihilated by the Laplacian
∆. Hm(Rn) is an O(n)-invariant subspace.

257 Theorem
With notation as above,

1. Pm(Rn) ∼= Hm(Rn)⊕Hm−2(Rn)⊕ · · · ⊕X where X = H1(Rn) if m is odd and X = H0(Rn) if m
is even.

2. If n ≥ 2, Hm(Rn) is irreducible under O(n) and Hm(Rn) 6∼= Hm′(Rn) if m 6= m′. If n ≥ 3, Hm(Rn)
is irreducible under SO(n).

Proof One of the homework problems deals with the case n = 2 in (2). If n ≥ 3, the dimensions force
Hm(Rn) 6≡ Hm′(Rn) for m 6= m′. Last time we were in the midst of proving (1). For that, we
introduced an inner product on Pm(Rn) involving partial differential operators—see the remark
at the end of last lecture. We had considered ∆: Pm(Rn)→ Pm−2)(Rn) as a linear operator,
so by standard Hilbert space theory there is an adjoint ∆∗ : Pm−2(Rn) → Pm(Rn). We had
computed ∆∗p = |x|2p. To prove (1), we have Pm(Rn) = Hm(Rn)⊕Hm(R)n)⊥. We see

Hm(Rn)⊥ = (ker ∆)⊥ = im ∆∗ = |x|2Pm−2(Rn).

(Here we’ve used some general Hilbert space facts, namely kerL = (imL∗)⊥, so (kerL)⊥ =
(imL∗)⊥⊥ = imL∗, but since we have only finitely dimensions, the closure does nothing.) So,

Pm(Rn) = Hm(Rn)⊕ |x|2Pm−2(R2) = Hm(Rn)⊕ |x|2Hm−2(Rn)⊕ |x|4Pm−4(Rn)⊕ . . . .

Iteratively, this gives

Pm(Rn) = Hm(Rn)⊕ |x|2Hm−2(Rn)⊕ · · · ⊕ Y

where Y = |x|m−1H1(Rn) if m is odd and |x|mH0(Rn) if m is even. Since |x|2 is invariant under
SO(n), we can drop the |x|2k’s from each factor. This proves (1).

258 Lemma
Let G be a compact Lie group. Suppose U, V,W are finite dimensional representations.
Suppose U ⊕ V ∼= U ⊕W . Then V ∼= W .

Proof Write U ∼= ⊕[ρ]∈ĜmρEρ and likewise for V,W with coefficients m′ρ and m′′ρ ,

respectively. The decomposition for U ⊕ V has coefficients mρ + m′ρ and the
decomposition for U ⊕ W has coefficients mρ + m′′ρ . The isomorphism forces
mρ +m′ρ = mρ +m′′ρ , so m′ρ = m′′ρ , so V ∼= W .

This essentially says the representation ring of a compact Lie group is a domain,
while it fails in general for non-compact Lie groups.
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We now must show Hm(Rn) is irreducible under SO(n) for n ≥ 3. Our first claim is a
(seemingly very) weak version of this, namely:

259 Lemma
For n ≥ 2, there is a copy of a trivial representation in Hm(Rn) if and only if m = 0.

Proof Observation: if V is a representation of a compact Lie group G, then there is a
copy of the trivial representation in V if and only if there is a non-zero vector v ∈ V
invariant under G. So, suppose p ∈ Pm(Rn) is invariant for SO(n). Since SO(n)
acts transitively on the sphere, p|Sn−1 = c for some constant c. Hence p = c|x|m.
Now |x|m is not harmonic unless m = 0.

Suppose G is a Lie group, H ⊂ G is a Lie subgroup, ρ : G → GL(V ) is a representation.
ρ|H : H → GL(V ) is a representation of H. We usually denote this representation by V |H ,
though note the vector space itself is unchanged. If the original representation is irreducible,
it will often happen that the restricted representation is not irreducible. This leads to the

branching problem , namely given an irreducible over G, how does that irreducible decompose

into irreducibles over H? We’ll consider this in the case SO(n − 1) ⊂ SO(n). We consider
Hm(Rn)|SO(n−1).

260 Proposition
Hm(Rn)|SO(n−1) ∼= Hm(Rn−1)⊕Hm−1(Rn−1)⊕ · · · ⊕H0(Rn−1) (as SO(n− 1) represen-
tations).

Proof Indeed,

Pm(Rn)|SO(n−1) ∼= Pm(Rn−1)⊕ Pm−1(Rn−1)⊕ · · · ⊕ P0(Rn−1)

as follows. For A ∈ SO(n − 1), we embed A in SO(n) as

(
1 0
0 A

)
. Letting

x = (x1, x
′) for x′ ∈ Rn−1, we can write p = pm(x′) + x1pm−1(x′) + · · ·+ xm1 p0(x′).

Hence the suggested isomorphism is just p 7→ (pm, . . . , p0). We now use the
decomposition deduced above, Pm(Rn) ∼= Hm(Rn)⊕Pm−2(Rn). The left-hand side
is

Pm(Rn)|SO(n−1) ∼= Hm(Rn)|SO(n−1) ⊕ Pm−2(Rn)|SO(n−1)
∼= Hm(Rn)|SO(n−1) ⊕ [Pm−2(Rn−1)⊕ Pm−3(Rn−1)⊕ · · · ⊕ P0(Rn−1)].

The right-hand side is

Hm(Rn−1)⊕ · · · ⊕H0(Rn−1)⊕ [Pm−2(Rn−1)⊕ · · · ⊕ P0(Rn−1)].

By the lemma, we may cancel the parts in brackets.

How many copies of the trivial representation occur in Hm(Rn)|SO(n−1)? From the proposition
combined with the lemma, the answer is exactly 1, again for n ≥ 3. We’ve essentially just
computed one very simple case of the branching rules for (SO(n),SO(n− 1)). We’re finally able
to prove that Hm(Rn) is irreducible under SO(n) if n ≥ 3. If not, Hm(Rn) = V1 ⊕ V2 for V1, V2
non-trivial SO(n)-invariant subspaces. Then Hm(Rn)|SO(n−1) = V1|SO(n−1) ⊕ V2|SO(n−1).

261 Proposition
If V ⊂ Pm(Rn) is any SO(n)-invariant subspace, then V contains a non-zero vector fixed
under SO(n− 1).

Proof The map Pm(Rn)→ C(Sn−1) given by p 7→ p|Sn−1 , where C(Sn−1) denotes the
continuous functions from the sphere to C, is injective. It suffices to show that if
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W ⊂ C(Sn−1) is a finite dimensional non-zero SO(n)-invariant subsace, then W
contains a non-zero p invariant under SO(n− 1). Here we’re simply letting W be
the image of the suggested map, {p|Sn−1 : p ∈ V }. Since W 6= 0, pick 0 6= p ∈W ,
so p(x0) 6= 0 for some x0 ∈ Sn−1. Since SO(n) acts transitively, we can assume
x0 = (1, 0, . . . , 0). Now define

p̃(x) :=

∫
SO(n−1)

p(g · x) dg.

Now p̃(x) is SO(n− 1)-invariant and p̃(e1) 6= 0. Why is p̃ ∈W? We can express p̃
as a limit of sums in W , and since W is finite-dimensional, the limit also belongs
to W .

From the proposition, each V1 and V2 contains a distinct trivial representation, contradicting
the fact that Hm(Rn)|SO(n−1) has precisely 1 copy of the trivial representation. The proposition
above then gives the full branching rule for n ≥ 3 in this case.

November 24th, 2014: Draft

262 Remark
We briefly summarize the previous lecture. Pn(Rn) denotes the space of homogeneous C-polynomials
on Rn of degree m, Hm(Rn) is the subset of Pn(Rn) annihilated by the Laplacian ∆. If n ≥ 3, we
showed Hm(Rn) is irreducible for SO(n). One can check, using results on the homework, that Hm(R2)
is irreducible for O(2).

For n = 3, we have the double cover SU(2) → SO(3), which is a group homomorphism. Every
representation of SO(3) then “lifts” to a representation of SU(2) simply by precomposing ρ with this
covering map. Since this map is surjective, it follows that irreducible representations of SO(3) lift to
irreducible representations of SU(2), which is in particular true of Hm(R3). We know from earlier that
Vm(C2) is an irreducible representation of SU(2) of dimension m + 1, and this gives all irreducible
representations of SU(2) up to equivalence. From homework, dimHm(C3) = 2m+ 1. Hence it must be
that Hm(R3) ∼= V2m(C2) as SU(2)-representations. It is a very good exercise to write an intertwining
operator realizing this equivalence.

Minor note: all representations discussed in this note are complex representations, so the dimensions
are over C.

263 Proposition
The restriction to Sn−1 of any polynomial on Rn agrees with the restriction of a harmonic polynomial.

Proof Recall Pm(Rn) = ⊕bm/2cj=0 |x|2jHm−2j(Rn). Hence Pm(Rn)|Sn−1 = ⊕bm/2cj=0 Hm−2j(Rn)|Sn−1 .

Hence the restriction of any homogeneous polynomial to Sn−1 can be written as a sum of
restrictions of harmonic polynomials. We may apply this to each homogeneous component of a
given not necessarily homogeneous polynomial.

264 Proposition
The restriction to Sn−1 of harmonic polynomials is dense in C(Sn−1) and hence in L2(Sn−1).

Proof The Weierstrass approximation theorem says that on any compact subset K of Rn, the
restriction of polynomials to K is dense in C(Sn−1). It is a basic result that C(Sn−1) is dense
in L2(Sn−1) under the L2-norm. Here C(Sn−1) uses the supremum norm, ||u|| = sup |u(x)|.
The L2 inner product for Sn−1 is given by

∫
Sn−1 uv dσ where dσ refers to the surface measure

of the sphere Sn−1, which is O(n)-invariant.
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265 Proposition
Hm(Rn)|Sn−1 ⊥ Hm′(Rn)|Sn−1 if m 6= m′ using the L2 inner product on Sn−1. Indeed,

L2(Sn−1) = ⊕∞m=0Hm(Rn)|Sn−1

where the right-hand side uses the closure in the L2-direct sum and the summands are orthogonal.
When n = 2, this gives Fourier series.

Proof Observe that Pm(Rn)→ C∞(Sn−1) given by p 7→ p|Sn−1 is one-to-one. (This fails if p is not
assumed homogeneous, eg. 1− |x| 7→ 0.) Hence Hm(Rn)→ C∞(Sn−1) is one-to-one, so is an
isomorphism onto its image, Hm(Rm)|Sn−1 . O(n) acts on C∞(Sn−1) by (g · u)(s) := u(g−1s).
One checks Hm(Rn)|Sn−1 is O(n)-invariant.

Recall that if V is a finite dimensional O(n) representation and V1, V2 are irreducible with
V1 6≡ V2, then V1 ⊥ V2 relative to any invariant inner product. (This was also used last lecture.)
Recall that Hm(Rn) 6≡ Hm′(Rn) if m 6= m′. It follows that Hm(Rn)|Sn−1 is inequivalent to
Hm′(Rn)|Sn−1 . Combining these two facts, the first statement follows. The second follows from
the preceding density proposition.

266 Remark
Elements of Hm(Rn) are sometimes called solid spherical harmonics . Elements of Hm(Rn)|Sn−1 are

sometimes called surface spherical harmonics . Indeed, dimHm(Rn)|Sn−1 = 2m+1 and for n = 3 there

is a basis for this space in terms of Legendre functions which are roughly of the form e±ikθP (cosφ)

where φ is the polar angle and θ is the angle in the xy-plane.

Last time, we showed that for all m, Hm(Rn) contains a unique (up to scale) SO(n− 1)-invariant

polynomial. Such a polynomial is called a zonal harmonic . It is a function of cos(φ), something of
the form P (cosφ).

267 Proposition
Let ∆S denote the Laplacian on Sn−1. (When n = 2, this is simply ∂2/∂θ2.) If u ∈ Hm(Rn)|Sn−1 ,

then ∆Su = m(2 − m − n)u. Hence the preceding proposition more or less gives an orthogonal
eigendecomposition of L2(Sn−1) for ∆S .

Proof We first write ∆ on Rn in polar coordinates. This happens to give ∆ = ∂2r+(n−1)/r∂r+1/r2∂S .
One way to think of ∆S is then the angular part of ∆. Now let p ∈ Hm(Rn). Let x = rσ
for |σ| = 1. Now p(x) = |x|mp(x/|x|) = rmp(σ), so we can just let u = p|Sn−1 be given by
u(σ) := p(σ). Now ∂rp = mrm−1u, ∂2rp = m(m− 1)rm−2u. Then

0 = ∆p = [m(m− 1)u+m(n− 1)u+ ∆Su]
1

r2
= m(m+ n− 2)u+ ∆Su.

The result follows.

Definition 268. We next discuss functions on a compact Lie group G. Let (ρ, V ) be a finite dimensional
representation of G, i.e. ρ : G → GL(V ). As usual, if we fix a basis for V , say v1, . . . , vd where
d := dimV , we can write ρ(g) ∈ GL(V ) as a matrix with respect to this basis, say M(g) ∈ GL(d,C).
We may write dρ for the dimension of ρ, that is, the dimension of V .

Let MCρ := SpanC{M(g)ij : 1 ≤ i, j ≤ d} ⊂ C∞(G) denote the matrix coefficients of the

representation ρ.

269 Proposition
MCρ is basis independent. Indeed, if (ρ, V ) ∼= (ρ′, V ′), then MCρ =MCρ′ .

Proof If we have a new basis v′1, . . . , v
′
d, let S be the change of basis matrix so thatM ′(g) = S−1M(g)S,

that is,
M ′(g)ij = (S−1)ikM(g)klSlj = (S−1)ikSljM(g)kl,
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where we implicitly sum over k, l. But then the coefficients (S−1)ikSlj are just in C. Basis
independence follows. For the second statement, there is an intertwining operator T : V → V ′,
so that ρ′(g) ◦ T = T ◦ ρ(g), i.e. ρ′(g) = T ◦ ρ(g) ◦ T−1, or in basis form M ′(g) = SM(g)S−1 for
a change of basis matrix S.

Definition 270. Let MC ⊂ C∞(G) denote the internal sum of all finite dimensional representations ρ of G
of MCρ inside C∞(G). We will show next time this is simply ⊕[ρ]∈ĜMCρ. Here L2(G) is constructed

using the Haar measure.

271 Theorem (Peter-Weyl)
MC is dense in C(G) and L2(G).
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272 Remark
To be added.

December 1st, 2014: Draft

273 Remark
The goal of this week is to prove the Peter-Weyl theorem. It’s a cornerstone of representation theory of
compact Lie groups. We’ll spend the next couple of lectures building up some analytical results needed
in our proof. We’ll build up convolutions, left and right regular representations, and the spectral
theorem for compact self-adjoint operators on a Hilbert space.

274 Remark
Let G be a compact Lie group, ρ : G → GL(V ) a unitary representation. Recall MCρ is defined
to be the C-linear span of M(g)ij where 1 ≤ i, j ≤ dρ where M(g) is the matrix of ρ(g) in a fixed
orthonormal basis for V . Recall thatMCρ is independent of which basis we pick. Last time we showed
that MC = ⊕[ρ]∈ĜMCρ ⊂ C

∞(G). We also shows the Schur orthogonality relations, namely that

{
√
dρMρ(g)ij : [ρ] ∈ Ĝ, 1 ≤ i, j ≤ dρ}

is an orthonormal set in L2(G).

Recall the statement of the Peter-Weyl theorem. It has two parts, (1) MC is dense in C(G), or
equivalently every element of C(G) can be uniformly approximated by elements in MC; (2) MC is
dense in L2(G). We’ll see shortly that C(G) is dense in L2(G). Recall that, on a compact group,
C(G) ⊂ L1(G) ⊂ L1(G) and ||u||1 ≤ ||u||2 ≤ ||u||∞. Hence (2) will follow immediately from (1).

A corollary of the following characterization of when an orthonormal set is actually an orthonormal
basis is that the set appearing in the Schur orthogonality relations is an orthonormal basis for L2(G).

275 Proposition
Let S = {uα}α∈I be an orthonormal set in a Hilbert space H. The following are equivalent:

(1) S is an orthonormal basis.

(2) S is a maximal orthonormal set, meaning u ∈ H and 〈u, uα〉 = 0 for all α implies u = 0.

(3) For all u ∈ H, ||u||2 =
∑
α∈I |〈u, uα〉|2.
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(4) SpanC{uα : α ∈ I} is dense in H.

276 Remark
The Peter-Weyl theorem (part (1)) is a consequence of the Stone-Weierstrass theorem if G ⊂ GL(n,C).
That theorem says:

277 Theorem (Stone-Weierstrass)
Let X be a compact Hausdorff space. Let A ⊂ C(X) be a subalgebra of C(X) which contains constants,
is closed under complex conjugation, and which separates points. Then A is dense in C(X).

278 Remark
The classical Weierstrass approximation theorem is the special case whereA consists of polynomial
functions and X = R, say. Recall that a subset A of C(X) “separates points” if for all x 6= y ∈ X,
there is some f ∈ A such that f(x) 6= f(y).

If X = G is a compact Lie group and A is MC, every hypothesis is satisfied immediately
except that it is not clear whether or not MC separates points. If G ⊂ GL(n,C) then MC
clearly separates points of G. Indeed, if g ∈ GL(n,C), each entry of g is in MCρ where ρ is the
standard representation. One of the first consequences of the Peter-Weyl theorem will be that
every compact Lie group is isomorphic to a subgroup of a general linear group, from which it
follows that they separate points. This fails for non-compact groups.

Definition 279. Let G be a topological group. Suppose u : G→ C. We call u uniformly continuous if for

all ε > 0 there exists a neighborhood U of e ∈ G so that |u(gh)− u(g)| ≤ ε for all g ∈ G and h ∈ U .

280 Remark
We’re right-multiplying by h, so this is really “right” uniform continuity. If G is compact, right
and left uniform continuity are equivalent, which is also equivalent to uniform continuity with
respect to any metric defining the topology. In particular, a continuous function on a compact
Lie group is uniformly continuous. Another way to state the key requirement for uniform
continuity above is to say that g−12 g1 ∈ U implies |u(g1)− u(g2)| < ε.

Definition 281. Let f,K be functions on a compact Lie group G. We’ll define their convolution f ? K
as

(f ? K)(g) :=

∫
G

f(gh−1)K(h) dh.

By the translation invariance of Haar measure, replacing h with h−1g this is∫
G

f(h)K(h−1g) dh.

282 Remark
If g is commutative, convolution is too, though in general this need not be the case. Here we
are assuming f,K ∈ L1(G). (It happens that the convolution of L1 functions is L1, though we
won’t need that.) For us, f will be in L1(G) (actually L2(G)) and K will be in C(G) (actually
in C∞(G)).

Convolutions are used classically to construct approximate identities. On Rn, suppose
φ ∈ Cc(Rn),

∫
φ = 1, φ ≥ 0, and Suppφ ⊂ B. Then φε(x) = ε−nφ(x/ε) has Suppφe ⊂ Bε. For

the group version of this, let 0 < ε < 1, choose Kε ∈ C(G), suppose Uε is a neighborhood of
e ∈ G with SuppKε ⊂ Uε, Kε ≥ 0,

∫
G
Kε(g) dg = 1. Choose these so that Uε1 ⊂ Uε2 if ε1 < ε2

and ∩ε>0Uε = {e}. Then if f ∈ C(G), f ?Kε → f uniformly as ε→ 0. The proof is the same as
in Rn.

283 Proposition
Here we collect some analytic facts.

1. C(G) is dense in L2(G).
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2. If f ∈ L1(G) and K ∈ C(G), then f ? K ∈ C(G). Indeed, ||f ? K||∞ ≤ ||f ||1||K||∞.

3. f ? Kε → f uniformly as ε→ 0 where Kε is as in the preceding remark.

Proof (1) One proof uses uniqueness in the Riesz representation theorem. In particular, suppose
not. Then C(G) is a proper closed subspace, so there exists 0 6= f ∈ L2(G) such that f ⊥ C(G),
i.e.
∫
G
f(g)u(g) dg = 0 for all u ∈ C(G). Now f(g) dg is a complex Borel measure and the linear

functional u 7→
∫
G
u ·f dg is a continuous linear functional on C(G). But the Riesz representation

theorem says that every continouous linear fucntional on C(G) has a unique representation as
integration agains a measure, so that f dg is the zero measure, so f = 0 almost everywhere, so
f = 0 ∈ L2(G), a contradiction.

(2) We compute

|(f ? K)(g)| = |
∫
G

f(gh−1)K(h) dh|

≤ sup |K|
∫
G

|f(gh−1)| dh

= ||K||∞||f ||1.

For continuity, we compute

|(f ? K)(g1)− (f ? K)(g2)| = |
∫
G

f(h)(K(h−1g1)−K(h−1g2))dh|

≤
∑
h∈G

|K(h−1g1)−K(h−1g2)|||f ||1.

Since K is continuous, by the above remark it is uniformly continuous, from which it now follows
that f ? K is (uniformly) continuous.

284 Remark
Proof idea of Peter-Weyl theorem (part 1): to prove MC is dense in C(G), we’ll choose Kε ∈ C∞(G)
satisfying the suggested properties, so that f ? Kε is “close” to f . We’ll then show f ? Kε can be
approximated uniformly by MC. For that, we’ll use the fact that f 7→ f ? Kε for each ε is compact
on L2. We’ll then use the spectral theorem to decompose this operator via eigenfunctions of this
convolution operator and the eigenfunctions will be matrix coefficients.

December 3rd, 2014: Draft

285 Remark
There are two more ingredients before we can discuss the proof of the Peter-Weyl theorem. First up:
left and right regular representations. We’ll let the group act by translation on functions on the group;
we’ll pick L2 functions since that’s a nice Hilbert space equipped with an inner product.

Definition 286. Let G be a compact Lie group. For g ∈ G, define Lg, Rg : L2(G)→ L2(G) by (Lgf)(h) :=
f(g−1h) and (Rgf)(h) := f(hg). By the invariance of Haar measure, ||Lgf ||L2 = ||Rgf ||L2 = ||f ||L2 .
Now define ρL, ρR : G→ U(L2(G)) by ρL(g)f := Lgf , ρR(g)f := Rgf . One may quickly check ρL, ρR

are group homomorphisms. They are representations of G on V := L2(G). Note that V is typically
infinite-dimensional here, in stark contrast to all of our previous representations.

287 Remark
Convolution operators commute with translations. For fixed K, consider the operator TKf := f ? K.
It’s a fact that if f ∈ L2(G), K ∈ L1(G), then f ? K ∈ L2(G) and TK is a bounded operator. Claim:
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TK ◦ Lg1 = Lg1 ◦ TK . This just follows from the integral definition,

(f ? K)(g) =

∫
G

f(gh−1)K(h) dh

=

∫
G

f(h)K(h−1g) dh

Tk(Lg1f)(g) =

∫
G

f(g−11 gh−1)K(h) dh

= Lg1(TKf)(g).

Note that TK does not commute with right translations. There is still symmetry since we chose to
convolve by K on the right when forming TK . In summary, for all K ∈ L1(G), TK is an intertwining
operator for ρL.

288 Remark
The Peter-Weyl theorem again says MC is dense in C(G), which again is our goal. Last time we said
that if f ∈ C(G) and ε > 0, we can find K ∈ C∞(G) such that ||f − f ? K||∞ < ε. This time, we’ll fix
K ∈ C∞(G) and approximate f ?K = TKf uniformly byMC. Stringing these two operations together
will give density of MC in C(G).

We’ll use the fact that TK is a compact operator on L2(G) and some basic related facts, which we
review now. Let H be a Hilbert space, B the closed unit ball. A linear transformation T : H → H is

bounded if T (B) is bounded and is compact if T (B) is a compact set. We write T ∗ for the Hilbert

space adjoint and we call T self-adjoint if T = T ∗.

289 Theorem (Spectral Theorem for Compact Self-Adjoint Operators)
Let T be a compact self-adjoint operator on a Hilbert space H. If λ ∈ R, let Eλ := {f ∈ H :
Tf = λf} be the eigenspace associated to λ. Then:

(1) {λ ∈ R : Eλ 6= 0} is finite or countable and λ = 0 is the only possible accumulation point.

(2) If λ 6= 0, then dimEλ <∞.

(3) H has an orthonormal basis consisting of eigenvectors for T .

290 Example
If H = L2(X, dµ) and if k ∈ L2(X × X), then (Tf)(x) =

∫
X
k(x, y)f(y) dµ(y) is a compact

operator. This is called a Hilbert-Schmidt operator . The adjoint T ∗ uses k(y, x) as its kernel

of integration. Hence T is self-adjoint if and only if k(x, y) = k(y, x) almost everywhere with
respect to x, y.

For us, we’ll use X := G, dµ := dg, TK with integral kernel k(g, h) := K(h−1g). We’ll have
K ∈ C∞(G), though even if K ∈ L2(G) then this k ∈ L2(G × G). TK is self-adjoint if K(h−1g) =
K(g−1h) (almost everywhere, though since K is smooth, everywhere). This is equivalent to saying

K(g) = K(g−1). We’ll call K symmetric in this case. On Rn, for instance, this is just saying the

function is even. We can always arrange for this by replacing K with 1
2 (K(g) +K(g−1)) and none of

the important properties of K will be affected.

291 Proposition
Let K ∈ C∞(G) be symmetric in the preceding sense. If λ 6= 0, then Eλ ⊂ MC where Eλ is the
λ-eigenspace of the convolution operator TK .

Proof First observe Eλ ⊂ C∞(G), since convolving with a smooth function yields a smooth function,
and K is smooth, i.e. f = 1

λTKf ∈ C
∞. Claim: for all g ∈ G, ρL(g) : Eλ → Eλ. This is simply

because TK is an intertwining operator for ρL, i.e.

λρL(g)f = ρL(g)TKf = TKρL(g)f.
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Hence by the spectral theorem ρL|Eλ is a finite dimensional representation of G, and indeed
is unitary since ρL is unitary on all of L2(G). Now choose a basis f1, . . . , fd for Eλ. Hence we
have some expansion coefficients (matrix coefficients!) Mji(g) given by

ρL(g)fi =:

d∑
j=1

Mji(g)fj .

If we evaluate this at h we get fi(g
−1h) =

∑d
j=1Mji(g)fj(h). Let h = e and replace g by g−1

to get fi(g) =
∑d
j=1 fj(e)Mji(g

−1). Each fj(e) ∈ C, so we’ve expressed any fi(g) as a C-linear

combination of Mji(g
−1). To deal with the inverses, we have

fi(g) =

d∑
j=1

fj(e)(M
−1)ji(g) =

d∑
j=1

fj(e)M
′
ij(g).

292 Theorem
MC is dense in C(G).

Proof Given f ∈ C(G) and ε > 0, we can choose K ∈ C∞(G) symmetric such that ||f −f ?K||∞ ≤ ε.
We now want to find some ψ ∈MC so that ||TKf − ψ||∞ ≤ ε. Recall that TK : L2(G)→ C(G)
continuously and indeed that ||f ? K||∞ ≤ c||f ||L2(G) (where c = ||K||∞), which will allow
us to switch from the L∞ norm to the L2 norm. As before, TK is a compact self adjoint
operator on L2(G). let φ1, φ2, . . . be an orthonormal basis of eigenfunctions for TK with non-zero
eigenvalues λ1, λ2, . . . such that L2(G) = Spanφi ⊕ kerTK . We can write f =

∑∞
j=1 ajφj + φ

where φ ∈ kerTK and
∑∞
j=1 |aj |2 = ||f ||2 < ∞. Choose N such that

∑
j>N |aj |2 ≤ (ε/c)2

(where c = ||K||∞ as before). Now

TKf = TK(

N∑
j=1

ajφj) + TK(
∑
j>N

ajφj)

=

N∑
j=1

ajλjφj + TK(
∑
j>N

ajφj).

Call ψ :=
∑N
j=1 ajλjφj . From the proposition, ψ ∈MC. Hence

||TKf − ψ||∞ = ||TK(
∑
j>N

ajφj)||∞ ≤ c||
∑
j>N

ajφj ||L2(G)

= c

√ ∑
j>N |aj |2

≤ ε.

December 5th, 2014: Draft

293 Remark
Today we’ll get to see a couple of applications to the Peter-Weyl theorem. Recall (again) it says MC
is dense in C(G) and in L2(G). This is the last lecture of the quarter.

Definition 294. A representation (ρ, V ) of a Lie group is faithful if ρ is injective, i.e. ker ρ = 0. Hence ρ is
isomorphic onto its image, meaning G is isomorphic to a Lie subgroup of some GL(n,C). Conversely,
if G ⊂ GL(n,C) is a subgroup, then the standard representation of G acting on Cn is faithful. A

linear group is by definition a subgroup of a general linear group GL(n,C). Hence G is isomorphic

to a linear group if and only if G has a faithful representation.
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295 Theorem
Every compact Lie group has a faithful finite-dimensional representation. In particular, it is isomorphic
to a linear group.

296 Remark
This fails for general Lie groups. A simple example (more details in the first homework set next

quarter) involves ˜SL(2,R), the universal cover of SL(2,R). The maximal compact subgroup
is SL(2,R) ∩ U(2) = SO(2) ∼= S1, so the fundamental group of SL(2,R) agrees with the

fundamental group of S1, namely is Z, so ˜SL(2,R)
π→ SL(2,R) is a Z-fold covering. Fact : every

finite dimensional representation of ˜SL(2,R) factors through π. So, ˜SL(2,R) has no faithful
finite dimensional representation.

On the other hand, every real or complex Lie algebra has a faithful (i.e. injective) finite
dimensional representation (Ado’s Theorem). Hence it is isomorphic to a subalgebra of some
gl(n,C).

Proof The Peter-Weyl theorem implies that MC separates points of G, i.e. if g1 6= g2 ∈ G, there
exists ψ ∈MC such that ψ(g1) 6= ψ(g2). This implies there exists a representation (ρ, V ) of G
with ρ(g1) 6= ρ(g2), since otherwise every matrix coefficient would send g1 and g2 to the same
thing.

To construct our faithful representation ρ, we’ll run an iterative process. Choose e 6= g1 ∈ G
and a representation (ρ1, V1) with ρ1(g1) 6= ρ1(e) = idV1 . If ρ1 is injective, great, we’re done.
Otherwise, consider ker ρ1, which is a closed (normal) proper subgroup of G.

297 Fact
If G is a compact Lie group and H ⊂ G is a closed proper subgroup, then either
dimH < dimG or H has fewer connected components than G.

Proof dimH ≤ dimG is clear. If equality holds, H contains a neighborhood of the
identity, so H contains the identity component. G is the union of copies of the
identity component, so H is a union of some subset of the components of G, which
by assumption is proper.

From the fact, ker ρ1 either has smaller dimension or fewer components than G, so at each
step of our iteration, at least one of these (finite) numbers will decrease. For the next step, we
choose e 6= g2 ∈ ker ρ1 and we choose a representation (ρ2, V2) such that ρ2(g2) 6= ρ2(e) = IV2

.
Now replace ker ρ1 with ker ρ2 ∩ ker ρ1, which again is a closed proper subgroup, and iterate.
This process eventually terminates since the dimension will eventually decrease to zero (which
requires a small argument, since the number of connected components may increase when the
dimension drops). That is, ker ρ1 ∩ · · · ∩ ker ρk = 0. Hence V1 ⊕ · · ·Vk with ρ1 ⊕ · · · ⊕ ρk is
faithful.

298 Remark
Recall that MC is dense in L2(G), so ⊕[ρ]∈ĜMC[ρ] is dense in L2(G). By the Schur orthogonality

relations, MC[ρ1] ⊥MC[ρ2] for [ρ1] 6= [ρ2] with respect to the L2-norm. Hence

L2(G) = ⊕̂[ρ]∈ĜMC[ρ],

where ⊕̂ indicates we’re using a Hilbert space direct sum, meaning the closure of the “algebraic”
direct sum. That is, every element in L2(G) can be written as a convergent infinite sum using matrix
coefficients. In our earlier notation, dimMC[ρ] = dρ2, where dρ = dimEρ.

Since L2(G) is a separable Hilbert space, L2(G) is countable, and each summand in the preceding
decomposition is finite dimensional, there must be (at most) countably many summands appearing

in the preceding decomposition. That is, Ĝ is (at most) countable. On the other hand, G = R has
uncountably many irreducible representations (even unitary ones), namely x 7→ eitx for all t ∈ R.
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299 Theorem
Recall ρL, ρR : G→ U(L2(V )) were the left and right regular representations of the compact Lie group

G. Let [ρ] ∈ Ĝ.

(1) MC[ρ] is invariant under ρL and ρR.

(2) ρL|MC[ρ] ∼= dρE′ρ where E′ρ is the dual representation of Eρ.

(3) ρR|MC[ρ] ∼= dρEρ.

In particular, every Eρ arises in ρR.

Proof (1) Choose a basis v1, . . . , vdρ for Eρ. Let M(g) be the matrix of ρ(g), so since ρ is a

homomorphism, M(gh) = M(g)M(h). Hence Mij(g
−1h) =

∑dρ
k=1Mik(g−1)Mkj(h). But

Mij(g
−1h) = (LgMij)(h), so ρL(g)Mij =

∑dρ
k=1Mik(g−1)Mkj ∈ MC[ρ], giving invariance.

Indeed, this argument shows that we may fix j and divide upMC[ρ] into dρ invariant subspaces—
see below.

Similarly, for ρR we have (RgMij)(h) = Mij(hg) =
∑dρ
k=1Mik(h)Mkj(g), so ρR(g)Mij =∑dρ

k=1Mkj(g)Mik.

The idea for (2) and (3), the idea is to view all d× d matrices as a representation space for
GL(d) by left multiplication. This gives d copies of the corresponding columns. Representing
GL(d) by right multiplication gives d copies of the rows, which are dual to the columns.

More precisely, using our basis above, by definition of matrix multiplication, ρ(g)vj =∑dρ
k=1Mkj(g)vk. Compare this to the formula we obtained for ρR, namely

ρR(g)Mij =

dρ∑
k=1

Mkj(g)Mik.

Fix 1 ≤ i ≤ dρ. We now see {Mij : 1 ≤ j ≤ d} ⊂ MC[ρ] is an invariant subspace of dimension
d. Indeed, Mik(g) 7→ vk is an intertwining operator which yields (3). For (2), fix 1 ≤ j ≤ dρ
and consider {Mij : 1 ≤ i ≤ d}. We have

ρL(g)Mij =

dρ∑
k=1

Mik(g−1)Mkj =

dρ∑
k=1

(M−1)ik(g)Mkj

=

dρ∑
k=1

(M ′)ki(g)Mij .

Hence the map Mkj 7→ vk is an intertwining operator involving the dual representation.

300 Remark
One can consider L2(G) as a representation of G×G by σ(g1, g2)f := ρL(g1)ρR(g2)f . Evaluated at h,

this is just f(g−11 hg2). Doing so, the MCρ’s are irreducible, so L2(G) = ⊕̂MC[ρ] is a decomposition
into irreducibles of multiplicity 1. Indeed, MC[ρ] ∼= E′ρ ⊗ Eρ. It’s all very cute.
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