Chapter 3: The structure of crystalline solids

Outline

- Fundamental concepts
- Unit cells
- Metallic crystal structure
- Density
- Crystal systems

Fundamental concepts

 Crystalline materials: atoms are situated in a repeating or periodic array over large atomic distances-

Long Range Order

- Crystalline structure: how atoms, ions, or molecules are spatially arranged
- Lattice: a three-dimensional array of points coinciding with atom position

Crystal Systems

Unit cell: smallest repetitive volume which contains the complete lattice pattern of a crystal.

Fig 3.1 (a) a hard sphere unit cell (b) a reduced-sphere unit cell, (c) an aggregate of many atoms

Metallic crystal structures

- Features of metallic crystal structures
 - non-directional in nature
 - no restriction on the number and position of nearest-neighbor atoms
 - close-packed: low energy
 - common type:
 - face-centered cubic (FCC)
 - body-centered cubic (BCC)
 - hexagonal closed-packed (HCP)

Face Centered Cubic Structure (FCC)

- Atoms touch each other along face diagonals.
 - --Note: All atoms are identical; the face-centered atoms are shaded differently only for ease of viewing.

ex: Al, Cu, Au, Pb, Ni, Pt, Ag

• Coordination # = 12

The FCC crystal structure

- Total atoms per unit cell=
- The relation between cubic edge a and the radius R=

Atomic Packing Factor (APF)

• APF for FCC=

Body Centered Cubic Structure (BCC)

- Atoms touch each other along cube diagonals.
 - --Note: All atoms are identical; the center atom is shaded differently only for ease of viewing.

ex: Cr, W, Fe (α), Tantalum, Molybdenum

• Coordination # = 8

Chapter 3 - 8

(Courtesy P.M. Anderson)

The BCC crystal structure

- Total atoms per unit cell:
- Coordination number:
- The relation between cubic edge a and the radius

$$a = \frac{4R}{\sqrt{3}}$$

• Atomic packing factor (APF)=0.68

Hexagonal Close-Packed Structure (HCP)

- ABAB... Stacking Sequence
- 3D Projection

2D Projection
 Top layer
 Middle layer
 Bottom layer

- Coordination # = 12
- APF = 0.74
- *c*/*a* = 1.633

6 atoms/unit cell

ex: Cd, Mg, Ti, Zn

Theoretical Density, ρ

Density =
$$\rho$$
 = $\frac{\text{Mass of Atoms in Unit Cell}}{\text{Total Volume of Unit Cell}}$

$$\rho = \frac{nA}{V_C N_A}$$

Where
$$n =$$
 number of atoms/unit cell
 $A =$ atomic weight
 $V_C =$ Volume of unit cell = a^3 for cubic
 $N_A =$ Avogadro's number
= 6.023 x 10²³ atoms/mol

Crystal systems

Table 3.2 Lattice Parameter Relationships and Figures Showing Unit Cell Geometries for the Seven Crystal Systems

Chapter 3 -

Crystal systems

Chapter 3 -

Crystal Systems

Cubic: Lead ore

Hexagonal: Emerald

Tetragonal: idocrase

Chapter 3 -

Triclinic: Axinite

