Chapter 8: Mechanical Failure

Topics

- How do flaws in a material initiate failure?
- How is fracture resistance quantified; how do different material classes compare?
- How do we estimate the stress to fracture?

Fracture mechanisms

- Ductile fracture
 - Occurs with plastic deformation
- Brittle fracture
 - Little or no plastic deformation
 - Catastrophic

Ductile vs Brittle Failure

Classification:

Fracture behavior:

Adapted from Fig. 8.1, *Callister 7e.*

%AR or %EL

 Ductile fracture is usually desirable! Very Ductile Ductile Ductile

Large Moderate

Moderately Ductile

Brittle

Ductile: warning before fracture

Brittle: No warning

Example: Failure of a Pipe

Ductile failure:

- --one piece
- --large deformation

Brittle failure:

- --many pieces
- --small deformation

Figures from V.J. Colangelo and F.A. Heiser, *Analysis of Metallurgical Failures* (2nd ed.), Fig. 4.1(a) and (b), p. 66 John Wiley and Sons, Inc., 1987. Used with permission.

Moderately Ductile Failure

• Evolution to failure:

void nucleation

void growth and linkage

 Resulting fracture surfaces (steel)

particles serve as void nucleation sites.

From V.J. Colangelo and F.A. Heiser, *Analysis of Metallurgical Failures* (2nd ed.), Fig. 11.28, p. 294, John Wiley and Sons, Inc., 1987. (Orig. source: P. Thornton, *J. Mater. Sci.*, Vol. 6, 1971, pp. 347-56.)

Fracture surface of tire cord wire loaded in tension. Courtesy of F. Roehrig, CC Technologies, Dublin, OH. Used with permission.

Ductile vs. Brittle Failure

cup-and-cone fracture

brittle fracture

Adapted from Fig. 8.3, Callister 7e.

Brittle Failure

Arrows indicate pt at which failure originated

Brittle Fracture Surfaces

Intergranular (between grains)

304 S. Steel (metal)

 Intragranular (within grains)
 316 S. Steel

316 S. Steel (metal)

Polypropylene (polymer)

Al Oxide (ceramic)

(Orig. source: K. Friedrick, *Fracture 1977*, Vol. 3, ICF4, Waterloo, CA, 1977, p. 1119.)

Ideal vs Real Materials

Stress-strain behavior (Room T):

- DaVinci (500 yrs ago!) observed...
 - -- the longer the wire, the smaller the load for failure.
- Reasons:
 - -- flaws cause premature failure.
 - -- Larger samples contain more flaws!

Flaws are Stress Concentrators!

Results from crack propagation

Griffith Crack

$$\sigma_m = 2\sigma_o \left(\frac{a}{\rho_t}\right)^{1/2} = K_t \sigma_o$$

where

 ρ_t = radius of curvature

 σ_o = applied stress

 σ_m = stress at crack tip

Adapted from Fig. 8.8(a), Callister 7e.

Concentration of Stress at Crack Tip

Adapted from Fig. 8.8(b), Callister 7e.

Engineering Fracture Design

Avoid sharp corners!

Adapted from Fig. 8.2W(c), *Callister 6e*. (Fig. 8.2W(c) is from G.H. Neugebauer, *Prod. Eng.* (NY), Vol. 14, pp. 82-87 1943.)

Crack Propagation

Cracks propagate due to sharpness of crack tip

A plastic material deforms at the tip, "blunting" the crack.

Energy balance on the crack

- Elastic strain energy-
 - energy stored in material as it is elastically deformed
 - this energy is released when the crack propagates
 - creation of new surfaces requires energy

When Does a Crack Propagate?

Crack propagates if above critical stress

i.e.,
$$\sigma_m > \sigma_c$$

or $K_t > K_c$ $\sigma_c = \left(\frac{2E\gamma_s}{\pi a}\right)^{1/2}$

where

- E = modulus of elasticity
- $-\gamma_s$ = specific surface energy
- a = one half length of internal crack

$$-K_c = \sigma_c/\sigma_0$$

For ductile => replace γ_s by $\gamma_s + \gamma_p$ where γ_p is plastic deformation energy

Fracture Toughness

Based on data in Table B5, *Callister 7e*.

Composite reinforcement geometry is: f = fibers; sf = short fibers; w = whiskers; p = particles. Addition data as noted (vol. fraction of reinforcement):

- 1. (55vol%) *ASM Handbook*, Vol. 21, ASM Int., Materials Park, OH (2001) p. 606.
- 2. (55 vol%) Courtesy J. Cornie, MMC, Inc., Waltham, MA.
- 3. (30 vol%) P.F. Becher et al., *Fracture Mechanics of Ceramics*, Vol. 7, Plenum Press (1986). pp. 61-73.
- 4. Courtesy CoorsTek, Golden, CO.
- 5. (30 vol%) S.T. Buljan et al., "Development of Ceramic Matrix Composites for Application in Technology for Advanced Engines Program", ORNL/Sub/85-22011/2, ORNL, 1992.
- 6. (20vol%) F.D. Gace et al., *Ceram. Eng. Sci. Proc.*, Vol. 7 (1986) pp. 978-82.

Design Against Crack Growth

Crack growth condition:

$$K \geq K_c = Y \sigma \sqrt{\pi a}$$

- Largest, most stressed cracks grow first!
 - --Result 1: Max. flaw size dictates design stress.

$$\sigma_{design} < \frac{K_c}{Y \sqrt{\pi a_{max}}}$$

--Result 2: Design stress dictates max. flaw size.

$$a_{max} < \frac{1}{\pi} \left(\frac{K_c}{Y_{O_{design}}} \right)^2$$

Design Example: Aircraft Wing

- Material has $K_c = 26 \text{ MPa-m}^{0.5}$
- Two designs to consider...

Design A

- --largest flaw is 9 mm
- --failure stress = 112 MPa

• Use...

$$\sigma_c = \frac{K_c}{Y \sqrt{\pi a_{max}}}$$

Design B

- --use same material
- --largest flaw is 4 mm
 - --failure stress = ?

• Key point: Y and K_c are the same in both designs.

--Result: 112 MPa 9 mm
$$\left(\sigma_{c} \sqrt{a_{\text{max}}} \right)_{A} = \left(\sigma_{c} \sqrt{a_{\text{max}}} \right)_{B}$$

Answer: $(\sigma_c)_B = 168 \text{ MPa}$

Reducing flaw size pays off!

Loading Rate

- Increased loading rate...
 - -- increases σ_V and TS
 - -- decreases %EL

 Why? An increased rate gives less time for dislocations to move past obstacles.

Impact Testing

Temperature

- Increasing temperature...
 - --increases %EL and Kc
- Ductile-to-Brittle Transition Temperature (DBTT)...

Design Strategy: Stay Above The DBTT!

Pre-WWII: The Titanic

WWII: Liberty ships

Problem: Used a type of steel with a DBTT ~ Room temp.

SUMMARY

- Engineering materials don't reach theoretical strength.
- Flaws produce stress concentrations that cause premature failure.
- Sharp corners produce large stress concentrations and premature failure.
- Failure type depends on T and stress.