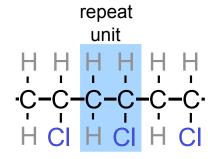
CHAPTER 14: POLYMER STRUCTURES

- Read Only: 14.8 and 14.13-.14.14 Study Everything else.
- What are the basic microstructural features?
- How are polymer properties effected by molecular weight?
- How do polymeric crystals accommodate the polymer chain?

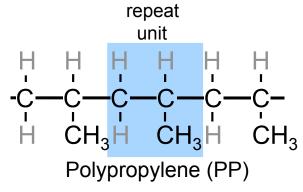
Chapter 14 – Polymers

What is a polymer?


Polyethylene (PE)

repeat

unit



Polyvinyl chloride (PVC)

Adapted from Fig. 14.2, Callister 7e.

Chapter 14 - 2

Polymer Composition

Most polymers are hydrocarbons

- i.e. made up of H and C
- Saturated hydrocarbons
 - Each carbon bonded to four other atoms

$$C_nH_{2n+2}$$

Table 14.1 Compositions and Molecular Structures for Some of the Paraffin Compounds: C_nH_{2n+2}

Name	Composition	Structure	Boiling Point (°C)
Methane	CH ₄	H — C — H 	-164
Ethane	C_2H_6	H H 	-88.6
Propane	$\mathrm{C_3H_8}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-42.1
Butane	C_4H_{10}		-0.5
Pentane	C_5H_{12}		36.1
Hexane	C_6H_{14}		69.0

Some common hydrocarbon groups

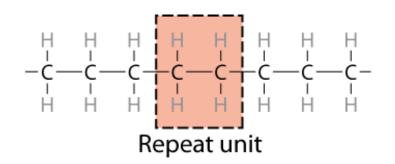
Family	Characteristic Unit	Represei Compo	
Alcohols	R—ОН	Н Н—С—ОН Н	Methyl alcohol
Ethers	R—O—R'	H H H-C-O-C-H H H	Dimethyl ether
Acids	R—C O	H—C—C H	Acetic acid
Aldehydes	R C=O	H_C=O	Formaldehyde
Aromatic hydrocarbons	R	OH	Phenol
"The simplified structure	denotes a	phenyl group, C	C H

Unsaturated Hydrocarbons

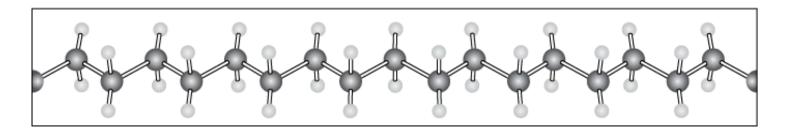
- Double & triple bonds relatively reactive can form new bonds
 - Double bond ethylene or ethene C_nH_{2n}

$$C=CH$$

- 4-bonds, but only 3 atoms bound to C's
- Triple bond acetylene or ethyne C_nH_{2n-2}


Chemistry of Polymers

Free radical polymerization


Initiator: example - benzoyl peroxide

7

Chemistry of Polymers

Adapted from Fig. 14.1, *Callister 7e.*

OC OH

Note: polyethylene is just a long HC
- paraffin is short polyethylene

Bulk or Commodity Polymers

Table 14.3 A Listing of Repeat Units for 10 of the More Common Polymeric Materials

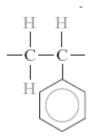
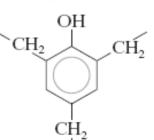

Polymer		Repeat Unit	
	Polyethylene (PE)	H H	
	Poly(vinyl chloride) (PVC)	H H	
	Polytetrafluoroethylene (PTFE)	$\begin{array}{c c} F & F \\ \mid & \mid \\ -C - C - \\ \mid & \mid \\ F & F \end{array}$	
	Polypropylene (PP)	H H -C-C- H CH ₃	

Table 14.3 A Listing of Repeat Units for 10 of the More Common Polymeric Materials

Polymer Repeat Unit


Polystyrene (PS)

Poly(methyl methacrylate) (PMMA)

Phenol-formaldehyde (Bakelite)

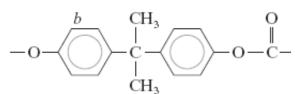
Table 14.3 A Listing of Repeat Units for 10 of the More Common Polymeric Materials

Repeat Unit Polymer

Poly(hexamethylene adipamide) (nylon 6,6)

Poly(ethylene terephthalate)

(PET, a polyester)

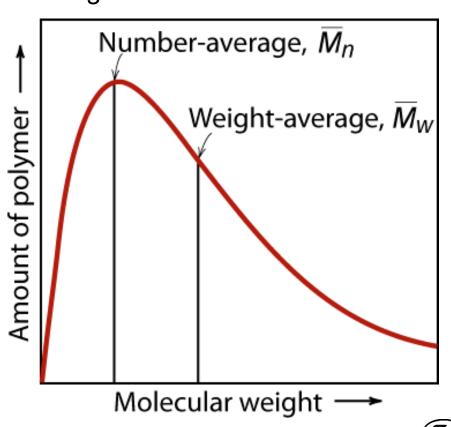


Polycarbonate (PC)

Chapter 14 -

MOLECULAR WEIGHT

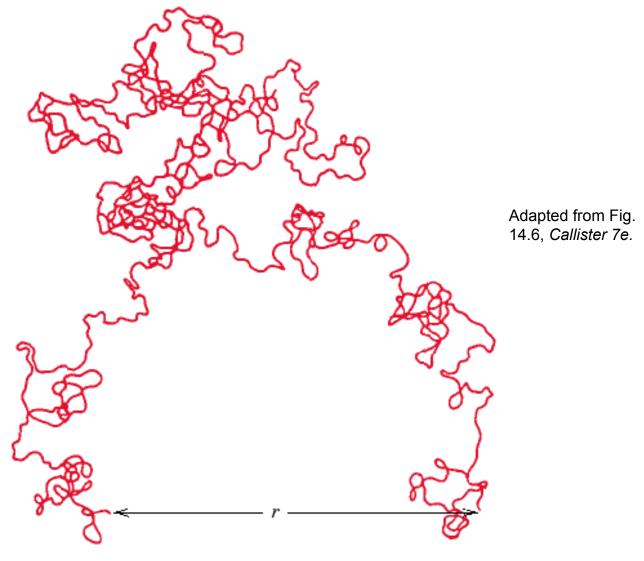
• Molecular weight, M_i : Mass of a mole of chains.



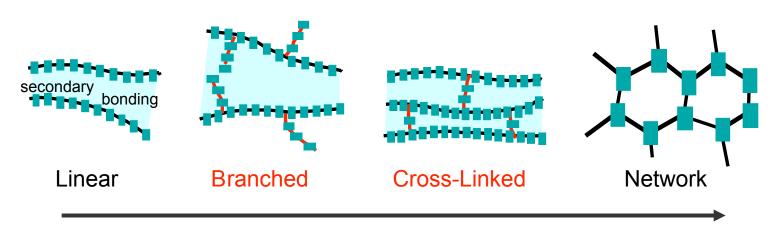
$$\overline{M}_n = \frac{\text{total wt of polymer}}{\text{total # of molecules}}$$

$$\overline{M}_n = \sum x_i M_i$$

$$\overline{M}_w = \sum w_i M_i$$


 M_w is more sensitive to higher molecular weights

Adapted from Fig. 14.4, Callister 7e.



End to End Distance, r

Molecular Structures

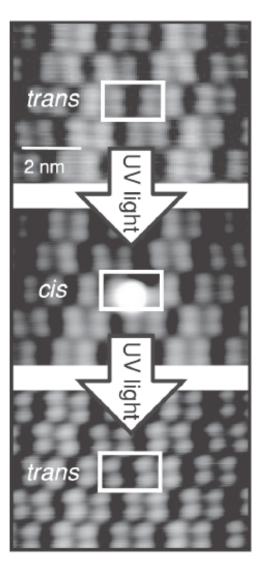
Covalent chain configurations and strength:

Direction of increasing strength

Adapted from Fig. 14.7, Callister 7e.

Molecular configuration

Geometrical isomerism

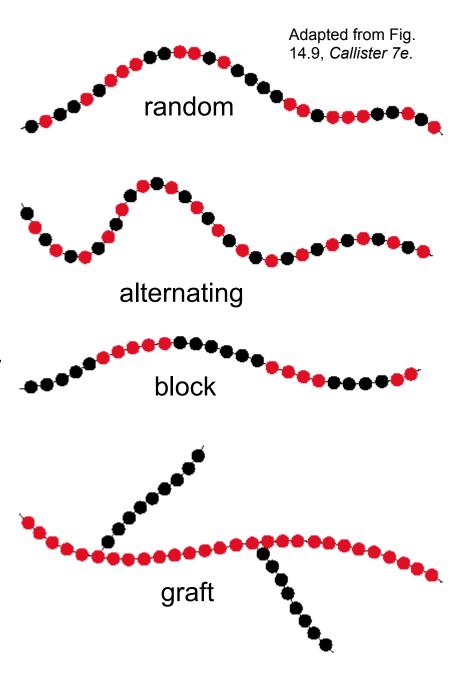

Cis

Trans

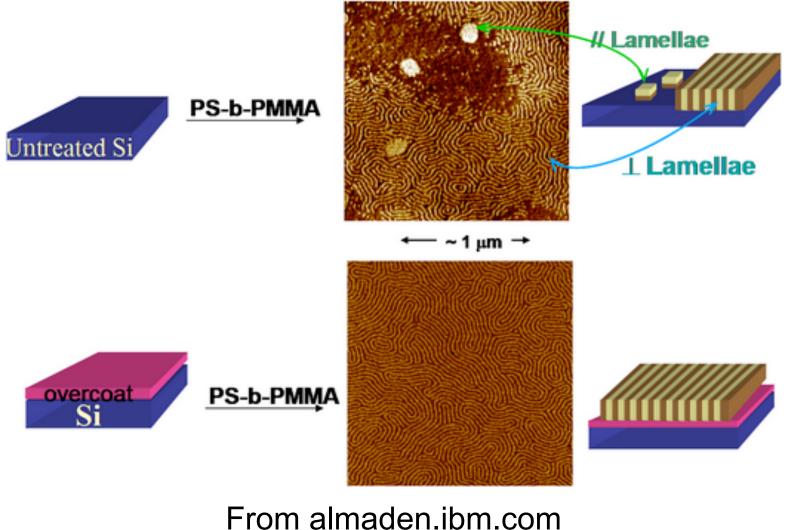
Cis-Trans Molecular Machines

azobenezene

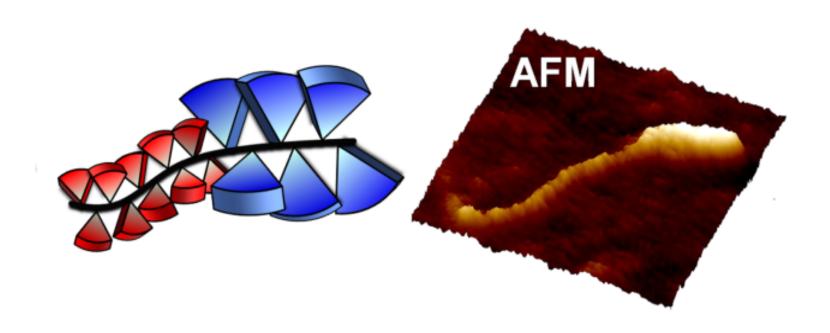
http://www.physics.berkeley.edu/research/crommie



Copolymers


two or more monomers polymerized together

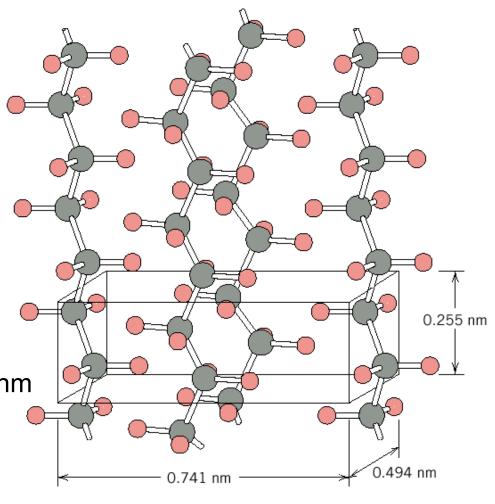
- random A and B randomly vary in chain
- alternating A and B alternate in polymer chain
- block large blocks of A alternate with large blocks of B
- graft chains of B grafted on to A backbone



Block Copolymers

Block Copolymers

Polymer Crystallinity


Adapted from Fig. 14.10, *Callister 7e.*

Ex: polyethylene unit cell

 Crystals must contain the polymer chains in some way

Chain folded structure

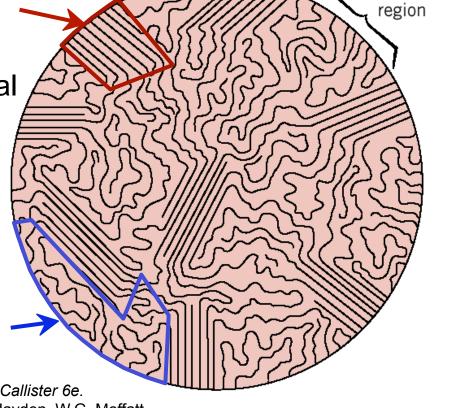
Adapted from Fig. 14.12, Callister 7e.

Polymer Crystallinity

Polymers rarely 100% crystalline

 Too difficult to get all those chains aligned crystalline

region


 % Crystallinity: % of material that is crystalline.

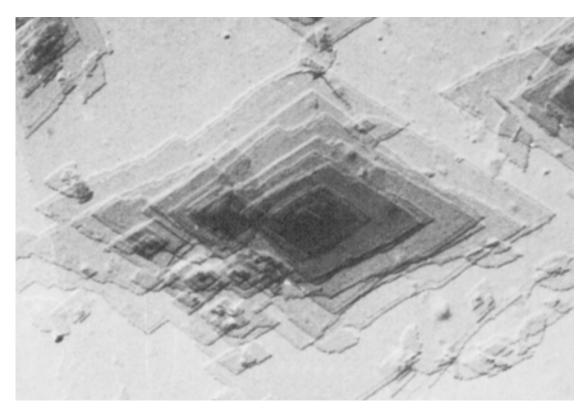
-- *TS* and *E* often increase with % crystallinity.

Annealing causes
 crystalline regions
 to grow. % crystallinity
 increases.

amorphous region

Adapted from Fig. 14.11, *Callister 6e*. (Fig. 14.11 is from H.W. Hayden, W.G. Moffatt, and J. Wulff, *The Structure and Properties of Materials*, Vol. III, *Mechanical Behavior*, John Wiley and Sons, Inc., 1965.)

Chapter 14 - 2


Region of high

crystallinity

Amorphous

Polymer Crystal Forms

Single crystals – only if slow careful growth

Adapted from Fig. 14.11, Callister 7e.