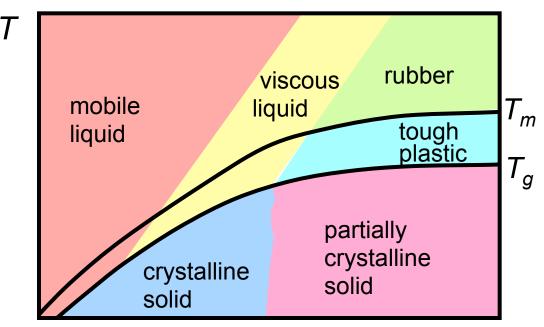
## Chapter 15: Characteristics, Applications & Processing of Polymers

**Study:** 15.1-15.14 **Read:** 15.15-15.24

- What are the tensile properties of polymers and how are they affected by basic microstructural features?
- Hardening, anisotropy, and annealing in polymers.
- How does the elevated temperature mechanical response of polymers compare to ceramics and metals?




## **Processing of Plastics**

- Thermoplastic -
  - can be reversibly cooled & reheated, i.e. recycled
  - heat till soft, shape as desired, then cool
  - ex: polyethylene, polypropylene, polystyrene, etc.
- Thermoset
  - when heated forms a network
  - degrades (not melts) when heated
  - mold the prepolymer then allow further reaction
  - ex: urethane, epoxy, bakelyte



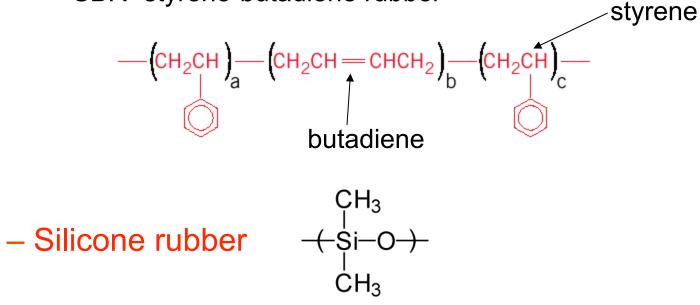
### **Thermoplastics vs. Thermosets**

- Thermoplastics:
  - -- little crosslinking
  - -- ductile
  - -- soften w/heating
  - -- polyethylene polypropylene polycarbonate polystyrene



### Molecular weight

- Thermosets:
  - -- large crosslinking (10 to 50% of mers)
  - -- hard and brittle
  - -- do NOT soften w/heating
  - -- vulcanized rubber, epoxies, polyester resin, phenolic resin


Adapted from Fig. 15.19, *Callister 7e.* (Fig. 15.19 is from F.W. Billmeyer, Jr., *Textbook of Polymer Science*, 3rd ed., John Wiley and Sons, Inc., 1984.)



## **Polymer Types: Elastomers**

#### Elastomers – rubber

- Crosslinked materials
  - Natural rubber
  - Synthetic rubber and thermoplastic elastomers
    - SBR- styrene-butadiene rubber

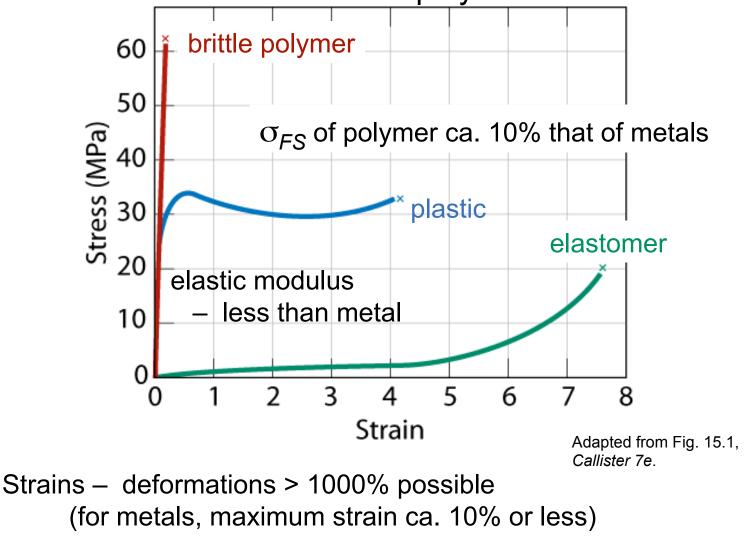




# **Polymer Types: Fibers**

- Fibers length/diameter >100
- Textiles are main use
  - Must have high tensile strength
  - Usually highly crystalline & highly polar
- Formed by spinning
  - ex: extrude polymer through a spinnerette
    - Pt plate with 1000's of holes for nylon
    - ex: rayon dissolved in solvent then pumped through die head to make fibers
  - the fibers are drawn
  - leads to highly aligned chains- fibrillar structure

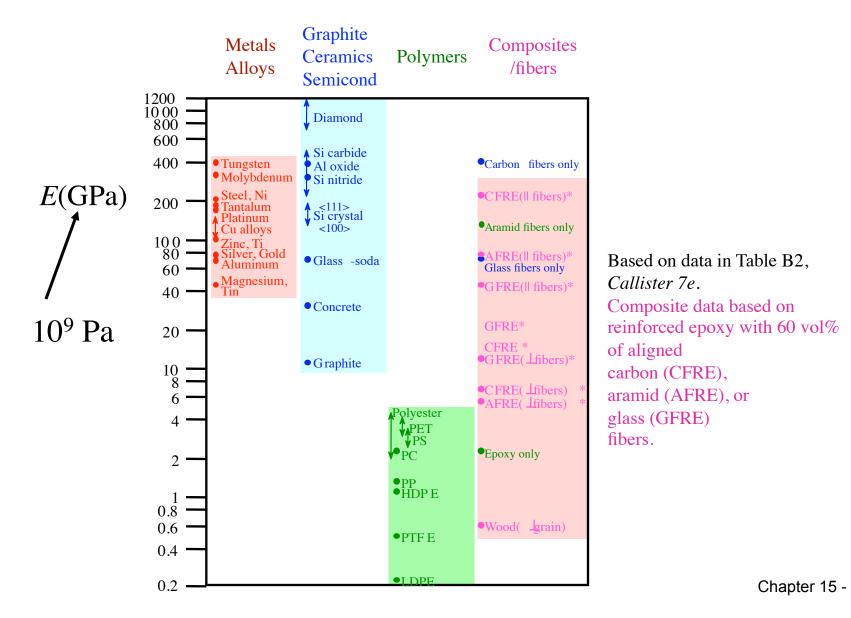



## **Polymer Types**

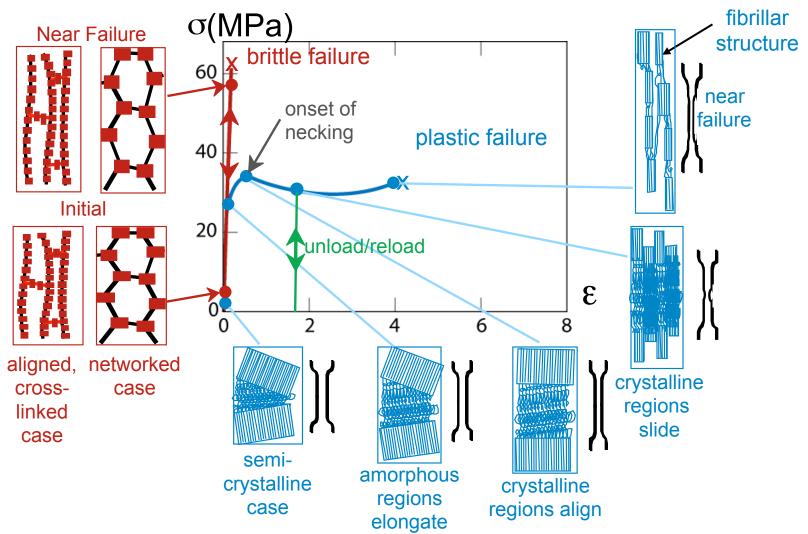
- Coatings thin film on surface i.e. paint, varnish
  - To protect item
  - Improve appearance
  - Electrical insulation
- Adhesives produce bond between two adherands
  - Usually bonded by:
    - 1. Secondary bonds
    - 2. Mechanical bonding
- Films blown film extrusion
- Foams gas bubbles in plastic



## **Mechanical Properties**


• i.e. stress-strain behavior of polymers




| Material                    | Specific<br>Gravity | Tensile<br>Modulus<br>[GPa (ksi)] | Tensile<br>Strength<br>[MPa (ksi)] | Yield<br>Strength<br>[MPa (ksi)] | Elongation<br>at Break (%) |
|-----------------------------|---------------------|-----------------------------------|------------------------------------|----------------------------------|----------------------------|
| Polyethylene (low density)  | 0.917-0.932         | 0.17–0.28<br>(25–41)              | 8.3–31.4<br>(1.2–4.55)             | 9.0–14.5<br>(1.3–2.1)            | 100-650                    |
| Polyethylene (high density) | 0.952-0.965         | 1.06–1.09<br>(155–158)            | 22.1–31.0<br>(3.2–4.5)             | 26.2–33.1<br>(3.8–4.8)           | 10-1200                    |
| Poly(vinyl chloride)        | 1.30-1.58           | 2.4–4.1<br>(350–600)              | 40.7–51.7<br>(5.9–7.5)             | 40.7–44.8<br>(5.9–6.5)           | 40-80                      |
| Polytetrafluoroethylene     | 2.14-2.20           | 0.40–0.55<br>(58–80)              | 20.7–34.5<br>(3.0–5.0)             |                                  | 200-400                    |
| Polypropylene               | 0.90-0.91           | 1.14–1.55<br>(165–225)            | 31–41.4<br>(4.5–6.0)               | 31.0–37.2<br>(4.5–5.4)           | 100-600                    |
| Polystyrene                 | 1.04-1.05           | 2.28–3.28<br>(330–475)            | 35.9–51.7<br>(5.2–7.5)             | _                                | 1.2–2.5                    |
| Poly(methyl methacrylate)   | 1.17-1.20           | 2.24–3.24<br>(325–470)            | 48.3–72.4<br>(7.0–10.5)            | 53.8–73.1<br>(7.8–10.6)          | 2.0-5.5                    |
| Phenol-formaldehyde         | 1.24–1.32           | 2.76–4.83<br>(400–700)            | 34.5-62.1<br>(5.0-9.0)             |                                  | 1.5-2.0                    |
| Nylon 6,6                   | 1.13–1.15           | 1.58–3.80<br>(230–550)            | 75.9–94.5<br>(11.0–13.7)           | 44.8-82.8<br>(6.5-12)            | 15-300                     |
| Polyester (PET)             | 1.29–1.40           | 2.8–4.1<br>(400–600)              | 48.3–72.4<br>(7.0–10.5)            | 59.3<br>(8.6)                    | 30–300                     |
| Polycarbonate               | 1.20                | 2.38<br>(345)                     | 62.8–72.4<br>(9.1–10.5)            | 62.1<br>(9.0)                    | 110–150                    |

Y

## Young's Moduli: Comparison



### **Tensile Response: Brittle & Plastic**

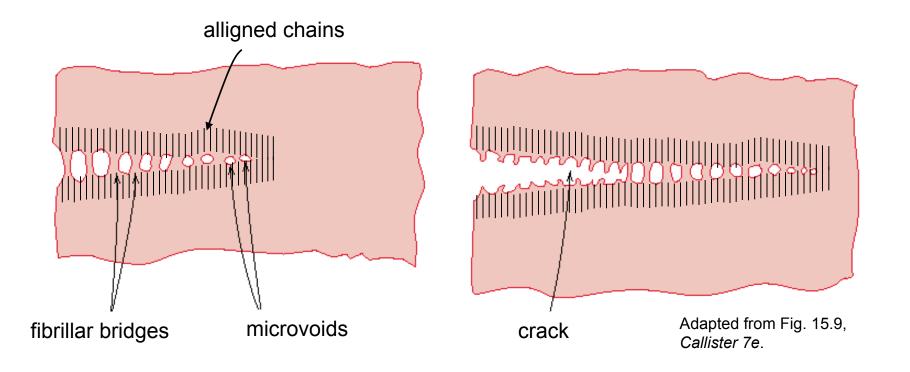



Stress-strain curves adapted from Fig. 15.1, Callister 7e. Inset figures along plastic response curve adapted from Figs. 15.12 & 15.13, Callister 7e. (Figs. 15.12 & 15.13 are from J.M. Schultz, Polymer Materials Science, Prentice-Hall, Inc., 1974, pp. 500-501.)



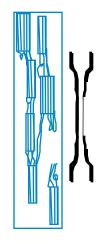
#### **Polymer Crystal Forms** Direction of Lamellar spherulite growth chain-folded **Spherulites** – fast crystallite growth - forms lamellar Amorphous (layered) structures material Tie molecule **Nucleation Site** Interspherulitic boundary Adapted from Fig. 14.13, Callister 7e.

Nuc




## **Polymer Fracture**

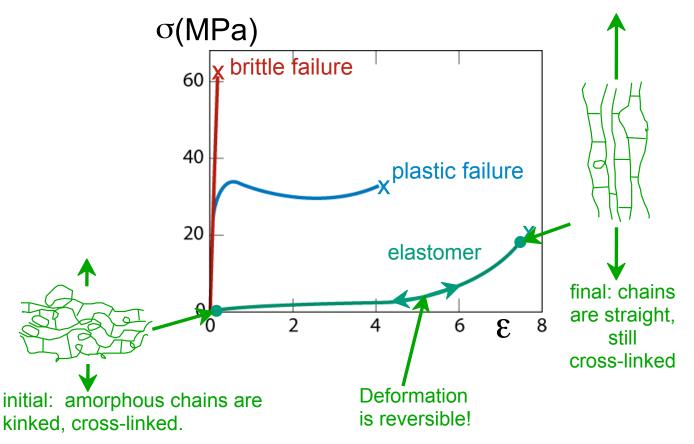
#### Crazing ≅ Griffith cracks in metals


#### - spherulites plastically deform to fibrillar structure

- microvoids and fibrillar bridges form



## **Predeformation by Drawing**


- Drawing...(ex: monofilament fishline)
  - -- stretches the polymer prior to use
  - -- aligns chains in the stretching direction
- Results of drawing:
  - -- increases the elastic modulus (*E*) in the stretching direction
  - -- increases the tensile strength (*TS*) in the stretching direction
  - -- decreases ductility (%EL)
- Annealing after drawing...
  - -- decreases alignment
  - -- reverses effects of drawing.
- Compare to cold working in metals!

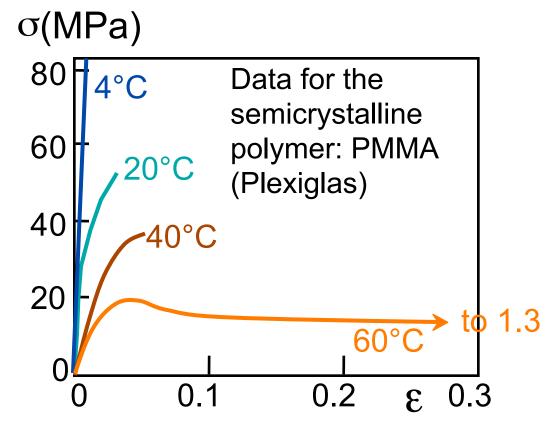


Adapted from Fig. 15.13, *Callister* 7e. (Fig. 15.13 is from J.M. Schultz, *Polymer Materials Science*, Prentice-Hall, Inc., 1974, pp. 500-501.)




### **Tensile Response: Elastomer Case**




Stress-strain curves adapted from Fig. 15.1, *Callister 7e.* Inset figures along elastomer curve (green) adapted from Fig. 15.15, *Callister 7e.* (Fig. 15.15 is from Z.D. Jastrzebski, *The Nature and Properties of Engineering Materials*, 3rd ed., John Wiley and Sons, 1987.)

- Compare to responses of other polymers:
  - -- brittle response (aligned, crosslinked & networked polymer)
  - -- plastic response (semi-crystalline polymers)



### **T** and Strain Rate: Thermoplastics

- Decreasing T...
  - -- increases E
  - -- increases TS
  - -- decreases %EL
- Increasing strain rate...
  - -- same effects as decreasing *T*.

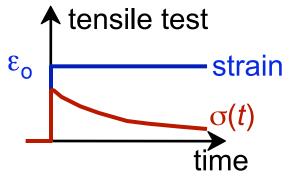


Adapted from Fig. 15.3, *Callister 7e.* (Fig. 15.3 is from T.S. Carswell and J.K. Nason, 'Effect of Environmental Conditions on the Mechanical Properties of Organic Plastics", *Symposium on Plastics*, American Society for Testing and Materials, Philadelphia, PA, 1944.)

## Melting vs. Glass Transition Temp.

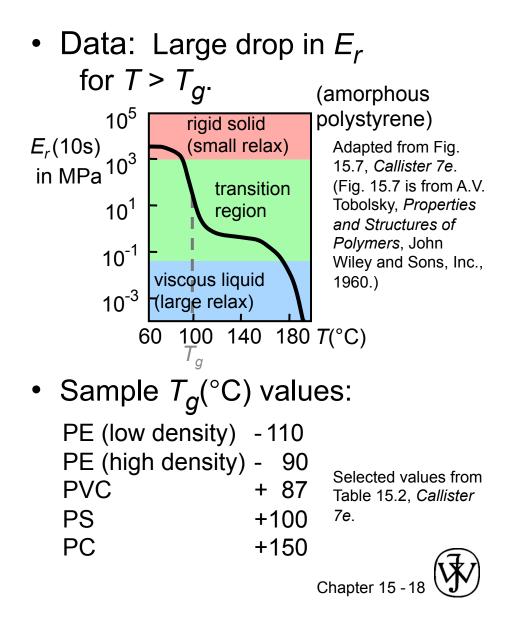
#### What factors affect $T_m$ and $T_a$ ? Liquid Both $T_m$ and $T_q$ increase with increasing chain stiffness Polar groups or sidegroups Double bonds or arow hain groups Chain stiffness increased by 1. Glass 2. Double bonds or aromatic chain groups Semicrystalline solid 3. B Regularity – effects $T_m$ only Crystalline solid $T_q$ T<sub>m</sub> Temperature Adapted from Fig. 15.18,

Callister 7e.


| Material                    | Glass Transition<br>Temperature<br>[°C (°F)] | Melting<br>Temperature<br>[°C (°F)] |  |
|-----------------------------|----------------------------------------------|-------------------------------------|--|
| Polyethylene (low density)  | -110(-165)                                   | 115 (240)                           |  |
| Polytetrafluoroethylene     | -97(-140)                                    | 327 (620)                           |  |
| Polyethylene (high density) | -90(-130)                                    | 137 (279)                           |  |
| Polypropylene               | -18(0)                                       | 175 (347)                           |  |
| Nylon 6,6                   | 57 (135)                                     | 265 (510)                           |  |
| Polyester (PET)             | 69 (155)                                     | 265 (510)                           |  |
| Poly(vinyl chloride)        | 87 (190)                                     | 212 (415)                           |  |
| Polystyrene                 | 100 (212)                                    | 240 (465)                           |  |
| Polycarbonate               | 150 (300)                                    | 265 (510)                           |  |

t15\_02\_pg547




## **Time Dependent Deformation**

- Stress relaxation test:
  - -- strain to  $\epsilon_o$  and hold.
  - -- observe decrease in stress with time.



• Relaxation modulus:

$$E_r(t) = \frac{\sigma(t)}{\varepsilon_o}$$




## Summary

- General drawbacks to polymers:
  - -- E,  $\sigma_y$ ,  $K_c$ ,  $T_{application}$  are generally small.
  - -- Deformation is often T and time dependent.
  - -- Result: polymers benefit from composite reinforcement.
- Thermoplastics (PE, PS, PP, PC):
  - -- Smaller *E*,  $\sigma_y$ , *T*<sub>application</sub>
  - -- Larger K<sub>c</sub>
  - -- Easier to form and recycle
- Elastomers (rubber):
  - -- Large reversible strains!
- Thermosets (epoxies, polyesters):
  - -- Larger *E*,  $\sigma_y$ , *T*<sub>application</sub>
  - -- Smaller Kc

Table 15.3 Callister 7e:

Good overview of applications and trade names of polymers.



| Material Type                                 | Trade<br>Names                                                                              | Major Application<br>Characteristics                                                                                                                                                                 | Typical Applications                                                                                                         |
|-----------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
|                                               |                                                                                             | Thermoplastics                                                                                                                                                                                       |                                                                                                                              |
| Acrylonitrile-<br>butadiene-<br>styrene (ABS) | Abson<br>Cycolac<br>Kralastic<br>Lustran<br>Novodur<br>Tybrene                              | Outstanding strength and toughness,<br>resistant to heat distortion; good<br>electrical properties; flammable and<br>soluble in some organic solvents                                                | Refrigerator linings, lawn and<br>garden equipment, toys,<br>highway safety devices                                          |
| Acrylics<br>[poly(methyl<br>methacrylate)]    | Acrylite<br>Diakon<br>Lucite<br>Plexiglas                                                   | Outstanding light transmission and<br>resistance to weathering; only fair<br>mechanical properties                                                                                                   | Lenses, transparent aircraft<br>enclosures, drafting<br>equipment, outdoor signs                                             |
| Fluorocarbons<br>(PTFE or<br>TFE)             | Teflon<br>Fluon<br>Halar<br>Hostaflon TF<br>Neoflon                                         | Chemically inert in almost all environ-<br>ments, excellent electrical properties;<br>low coefficient of friction; may be<br>used to 260°C (500°F); relatively<br>weak and poor cold-flow properties | Anticorrosive seals, chemical<br>pipes and valves, bearings,<br>antiadhesive coatings, high-<br>temperature electronic parts |
| Polyamides<br>(nylons)                        | Nylon<br>Baylon<br>Durethan<br>Herox<br>Nomex<br>Ultramid<br>Zytel                          | Good mechanical strength, abrasion<br>resistance, and toughness; low coef-<br>ficient of friction; absorbs water and<br>some other liquids                                                           | Bearings, gears, cams, bushings,<br>handles, and jacketing for<br>wires and cables                                           |
| Polycarbonates                                | Calibre<br>Iupilon<br>Lexan<br>Makrolon<br>Merlon                                           | Dimensionally stable; low water<br>absorption; transparent; very good<br>impact resistance and ductility;<br>chemical resistance not outstanding                                                     | Safety helmets, lenses, light<br>globes, base for photo-<br>graphic film                                                     |
| Polyethylene                                  | Alathon<br>Alkathene<br>Fortiflex<br>Hi-fax<br>Petrothene<br>Rigidex<br>Rotothene<br>Zendel | Chemically resistant and electrically<br>insulating; tough and relatively low<br>coefficient of friction; low strength<br>and poor resistance to weathering                                          | Flexible bottles, toys, tumblers,<br>battery parts, ice trays, film<br>wrapping materials                                    |

Cnapter 15 -



| Material Type              | Trade<br>Names                                                                | Major Application<br>Characteristics                                                                                                                                         | Typical Applications                                                                                  |
|----------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Polypropylene              | Herculon<br>Meraklon<br>Moplen<br>Poly-pro<br>Pro-fax<br>Propak<br>Propathene | Resistant to heat distortion; excellent<br>electrical properties and fatigue<br>strength; chemically inert; relatively<br>inexpensive; poor resistance to UV<br>light        | Sterilizable bottles, packaging film, TV cabinets, luggage                                            |
| Polystyrene                | Carinex<br>Dylene<br>Hostyren<br>Lustrex<br>Styron<br>Vestyron                | Excellent electrical properties and<br>optical clarity; good thermal and<br>dimensional stability; relatively<br>inexpensive                                                 | Wall tile, battery cases, toys,<br>indoor lighting panels,<br>appliance housings                      |
| Vinyls                     | Darvic<br>Exon<br>Geon<br>Pliovic<br>Saran<br>Tygon<br>Vista                  | Good low-cost, general-purpose<br>materials; ordinarily rigid, but may<br>be made flexible with plasticizers;<br>often copolymerized; susceptible to<br>heat distortion      | Floor coverings, pipe, electrical<br>wire insulation, garden hose,<br>phonograph records              |
| Polyester (PET<br>or PETE) | Celanar<br>Dacron<br>Eastapak<br>Hylar<br>Melinex<br>Mylar<br>Petra           | One of the toughest of plastic films;<br>excellent fatigue and tear strength,<br>and resistance to humidity, acids,<br>greases, oils, and solvents                           | Magnetic recording tapes,<br>clothing, automotive tire<br>cords, beverage containers                  |
|                            |                                                                               | Thermosetting Polymers                                                                                                                                                       |                                                                                                       |
| Epoxies                    | Araldite<br>Epikote<br>Epon<br>Epi-rez<br>Lekutherm<br>Lytex                  | Excellent combination of mechanical<br>properties and corrosion resistance;<br>dimensionally stable; good adhesion;<br>relatively inexpensive; good electrical<br>properties | Electrical moldings, sinks,<br>adhesives, protective coat-<br>ings, used with fiberglass<br>laminates |
| Phenolics                  | Bakelite<br>Amberol<br>Arofene<br>Durite<br>Resinox                           | Excellent thermal stability to over<br>150°C (300°F); may be compounded<br>with a large number of resins, fillers,<br>etc.; inexpensive                                      | Motor housings, telephones,<br>auto distributors, electrical<br>fixtures                              |
| Polyesters                 | Aropol<br>Baygal<br>Derakane<br>Laminac<br>Selectron                          | Excellent electrical properties and low<br>cost; can be formulated for room- or<br>high-temperature use; often fiber rein-<br>forced                                         | Helmets, fiberglass boats, auto<br>body components, chairs,<br>fans                                   |

**Source:** Adapted from C. A. Harper (Editor), *Handbook of Plastics and Elastomers*. Copyright © 1975 by McGraw-Hill Book Company. Reproduced with permission.



Chapter 15 -

t15\_03\_pg551

| Chemical<br>Type                         | Trade<br>(Common)<br>Names  | Elongation<br>(%) | Useful<br>Temperature<br>Range [°C (°F)] | Major Application<br>Characteristics                                                                                                                                            | Typical Applications                                                                                          |
|------------------------------------------|-----------------------------|-------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Natural poly-<br>isoprene                | Natural<br>rubber<br>(NR)   | 500–760           | -60 to 120<br>(-75 to 250)               | Excellent physical proper-<br>ties; good resistance to<br>cutting, gouging, and<br>abrasion; low heat, ozone,<br>and oil resistance; good<br>electrical properties              | Pneumatic tires and<br>tubes; heels and<br>soles; gaskets                                                     |
| Styrene-<br>butadiene<br>copolymer       | GRS,<br>Buna S<br>(SBR)     | 450–500           | -60 to 120<br>(-75 to 250)               | Good physical properties;<br>excellent abrasion resis-<br>tance; not oil, ozone, or<br>weather resistant; elec-<br>trical properties good,<br>but not outstanding               | Same as natural<br>rubber                                                                                     |
| Acrylonitrile-<br>butadiene<br>copolymer | Buna A,<br>Nitrile<br>(NBR) | 400–600           | -50 to 150<br>(-60 to 300)               | Excellent resistance to<br>vegetable, animal, and<br>petroleum oils; poor<br>low-temperature proper-<br>ties; electrical properties<br>not outstanding                          | Gasoline, chemical,<br>and oil hose; seals<br>and O-rings; heels<br>and soles                                 |
| Chloroprene                              | Neoprene<br>(CR)            | 100-800           | -50 to 105<br>(-60 to 225)               | Excellent ozone, heat, and<br>weathering resistance;<br>good oil resistance; ex-<br>cellent flame resistance;<br>not as good in electrical<br>applications as natural<br>rubber | Wire and cable;<br>chem. tank linings;<br>belts, hoses, seals,<br>and gaskets                                 |
| Polysiloxane                             | Silicone<br>(VMQ)           | 100–800           | -115 to 315<br>(-175 to 600)             | Excellent resistance to<br>high and low tempera-<br>tures; low strength;<br>excellent electrical<br>properties                                                                  | High- and low-<br>temperature insula-<br>tion; seals,<br>diaphragms; tubing<br>for food and med-<br>ical uses |

Sources: Adapted from C. A. Harper (Editor), *Handbook of Plastics and Elastomers*. Copyright © 1975 by McGraw-Hill Book Company, reproduced with permission; and Materials Engineering's *Materials Selector*, copyright Penton/IPC.

(J)

t15\_04\_pg553