Chapter 18: Electrical Properties

• Why study electrical properties?
• What are the physical phenomena that distinguish conductors, semiconductors, and insulators?
• For metals, how is conductivity affected by imperfections, T, and deformation?
• For semiconductors, how is conductivity affected by impurities (doping) and T?
View of an Integrated Circuit

• Scanning electron microscope images of an IC:

 ![Image of IC with Al and Si](a)

 • A dot map showing location of Si (a semiconductor):
 -- Si shows up as light regions.

 ![Image of Si dot map](b)

 • A dot map showing location of Al (a conductor):
 -- Al shows up as light regions.

 ![Image of Al dot map](c)

Fig. (d) from Fig. 18.27 (a), *Callister 7e*. (Fig. 18.27 is courtesy Nick Gonzales, National Semiconductor Corp., West Jordan, UT.)

Fig. (a), (b), (c) from Fig. 18.0, *Callister 7e.*
Electrical Properties

• Which will conduct more electricity?

$$D$$

$$2D$$

• Analogous to flow of water in a pipe
• So resistance depends on sample geometry, etc.

$$\rho = \frac{RA}{l} = \frac{VA}{Il}$$
Electrical Conduction

- **Ohm's Law:**

 \[\Delta V = I R \]

 - Voltage drop (volts = J/C)
 - Current (amps = C/s)
 - Resistance (Ohms)
 - Electric field intensity
 - Cross sect. area

- **Resistivity, \(\rho \) and Conductivity, \(\sigma \):**

 -- Geometry-independent forms of Ohm's Law
 -- Resistivity is a material property & is independent of sample

 \[E = \frac{\Delta V}{L} = \frac{I}{A} \rho \]

 - \(E \): Electric field intensity
 - \(\rho \): Resistivity (Ohm-m)
 - \(J \): Current density

- **Resistance:**

 \[R = \frac{\rho L}{A} = \frac{L}{A\sigma} \]

 - Conductivity
Conductivity: Comparison

- Room T values $(\text{Ohm-m})^{-1} = (\Omega \cdot \text{m})^{-1}$

METALS
- Silver: 6.8×10^7
- Copper: 6.0×10^7
- Iron: 1.0×10^7

CERAMICS
- Soda-lime glass: $10^{-10} - 10^{-11}$
- Concrete: 10^{-9}
- Aluminum oxide: $<10^{-13}$

SEMICONDUCTORS
- Silicon: 4×10^{-4}
- Germanium: 2×10^0
- GaAs: 10^{-6}

POLYMERS
- Polystyrene: $<10^{-14}$
- Polyethylene: $10^{-15} - 10^{-17}$

Selected values from Tables 18.1, 18.3, and 18.4, Callister 7e.
Electronic Band Structures

Adapted from Fig. 18.2, Callister 7e.
Band Structure

- **Valence band** – filled – highest occupied energy levels
- **Conduction band** – empty – lowest unoccupied energy levels

Adapted from Fig. 18.3, *Callister 7e.*
Various possible electron band structures

- Fermi energy E_f: the energy corresponding to the highest filled state at 0 K

(a) Metal (Cu)

(b) Metal (Mg)

(c) Insulator

(d) Semiconductor
Conduction & Electron Transport

• Metals (Conductors):
 -- Thermal energy puts many electrons into a higher energy state.

• Energy States:
 -- for metals nearby energy states are accessible by thermal fluctuations.

- Energy
 - empty band
 - partly filled valence band
 - filled band

- GAP

+ Energy
 - empty band
 - filled valence band
 - filled band
Metals: Resistivity vs T, Impurities

- Imperfections increase resistivity
 - grain boundaries
 - dislocations
 - impurity atoms
 - vacancies

These act to scatter electrons so that they take a less direct path.

- Resistivity increases with:
 - temperature
 - wt% impurity
 - % CW

\[
\rho = \rho_{\text{thermal}} + \rho_{\text{impurity}} + \rho_{\text{deformation}}
\]

Adapted from Fig. 18.8, Callister 7e. (Fig. 18.8 adapted from J.O. Linde, Ann. Physik 5, p. 219 (1932); and C.A. Wert and R.M. Thomson, Physics of Solids, 2nd ed., McGraw-Hill Book Company, New York, 1970.)
Energy States: Insulators & Semiconductors

- Insulators:
 - Higher energy states not accessible due to gap (> 2 eV).

- Semiconductors:
 - Higher energy states separated by smaller gap (< 2 eV).
Charge Carriers

Two charge carrying mechanisms

Electron – negative charge
Hole – equal & opposite positive charge

Move at different speeds - drift velocity

Higher temp. promotes more electrons into the conduction band

\[\therefore \sigma \uparrow \text{ as } T \uparrow \]

Electrons scattered by impurities, grain boundaries, etc.

Adapted from Fig. 18.6 (b), *Callister 7e.*
Pure Semiconductors: Conductivity vs T

• Data for **Pure Silicon**:
 -- σ increases with T
 -- opposite to metals

Electrical conductivity, σ

\[
(\text{Ohm-m})^{-1}
\]

\[
\begin{array}{|c|c|}
\hline
\text{material} & \text{band gap (eV)} \\
\hline
\text{Si} & 1.11 \\
\text{Ge} & 0.67 \\
\text{GaP} & 2.25 \\
\text{CdS} & 2.40 \\
\hline
\end{array}
\]

Selected values from Table 18.3, *Callister 7e.*

Adapted from Fig. 19.15, *Callister 5e.* (Fig. 19.15 adapted from G.L. Pearson and J. Bardeen, *Phys. Rev.* 75, p. 865, 1949.)
Intrinsic vs Extrinsic Conduction

- **Intrinsic:**

 # electrons = # holes ($n = p$)

 --case for pure Si

- **Extrinsic:**

 --$n \neq p$

 --occurs when impurities are added with a different # valence electrons than the host (e.g., Si atoms)

- **n-type Extrinsic:** ($n >> p$)

 no applied electric field

- **p-type Extrinsic:** ($p >> n$)

 no applied electric field

\[
\sigma \approx n |e| \mu_e \\
\sigma \approx p |e| \mu_h
\]

Adapted from Figs. 18.12(a) & 18.14(a), Callister 7e.
Summary

• Electrical **conductivity** and **resistivity** are:
 -- material parameters.
 -- geometry independent.
• Electrical **resistance** is:
 -- a geometry and material dependent parameter.
• Conductors, semiconductors, and insulators...
 -- differ in accessibility of energy states for conductance electrons.
• For metals, conductivity is increased by
 -- reducing deformation
 -- reducing imperfections
 -- decreasing temperature.