

Chapter 12: Structures of Ceramics

Outline

- Introduction
- Crystal structures
 - Ceramic structure
 - AX-type crystal structures
 - A_mX_p-type
 - A_mB_nX_p- type
- Silicate ceramics
- Carbon

Ceramics

- Two or more different elements
- More complex than metal structures
- Ionic and/or covalent bonds
- A mix of ionic and covalent bonds -electronegativity
- Ionic bonds form ions
 - Metals donate electrons --metallic ions-cations--positively charged
 - Non-metals gain electrons --nonmetallic ions--anions--negatively charged
- Crystals must be electrically neutral, e.g.
 CaF₂

Ceramic Bonding

- Bonding:
 - -- Mostly ionic, some covalent.
 - -- % ionic character increases with difference in electronegativity.
- Large vs small ionic bond character:

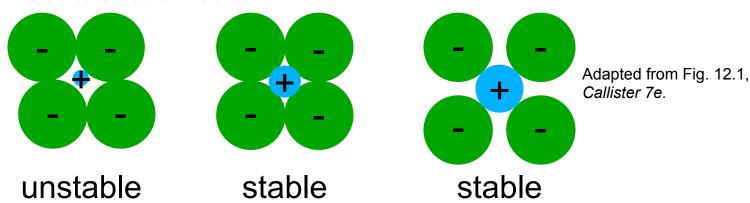
IA																	0
Н						Ca	F _~ ·	lar	ge								He
2.1	IIA					Ou	. 5.	ICII	90			IIIA	IVA	VA	VIA	VIIA	_
Li	Be					SiC	٠. د	ma	Ш			В	* C	N	0	F	Ne
1.0	1.5					SIC	J. 3	1110	III -			2.0	2.5	3.0	3.5	4.0	_
Na	Mg	_						VIII				Αl	Si	P	S	Cl	Ar
0.9	1.2	HIB	IVB	VB	VIB	VIIB			$\overline{}$	IB	IIB	1.5	1.8	2.1	2.5	3.0	_
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8	_
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5	_
Cs	Ва	La-Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
0.7	0.9	1.1-1.2	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2	_
Fr	Ra	Ac-No															
0.7	0.9	1.1-1.7															

Adapted from Fig. 2.7, *Callister 7e.* (Fig. 2.7 is adapted from Linus Pauling, *The Nature of the Chemical Bond*, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by

Cornell University.

Chapter 12 -

Ionic Bonding & Structure


- Charge Neutrality
 - --Net charge in the structure should be zero.

--General form:

m, p determined by charge neutrality

Ceramic structures

- Factors that influence crystal structure
 - Magnitude of electrical charge of ions
 - Relative size of ions (Non-metal > metal ions Rc/ Ra<1)
 - Cations must be next to anions--maximize # of nearest neighbors that are anions
 - Stable structure--anions and cations must contact each other

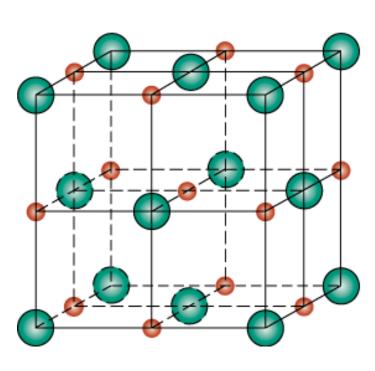
The # of anions depends on ratio of Rc/Ra

Coordination numbers and geometries for various cation-anion radius ratios (R_c/R_a)

Table 13.2 Coordination Numbers and

Geometries for Various Cation-Anion

Radius Ratios (r../r.)


Table 13.2 Coordination Numbers and Geometries for Various Cation-Anion Radius Ratios (r_c/r_h)

Kadius Katio	$s(r_C/r_A)$		Radius Ratios (r_C/r_A)						
Coordination Number	Cation–Anion Radius Ratio	Coordination Geometry	Coordination Number	Cation–Anion Radius Ratio	Coordination Geometry				
2	< 0.155								
			6	0.414-0.732					
3	0.155-0.225								
4	0.225-0.414		8	0.732-1.0					
					Charter 40				
					Chapter 12 -				

AX-type crystal structure

Rock Salt

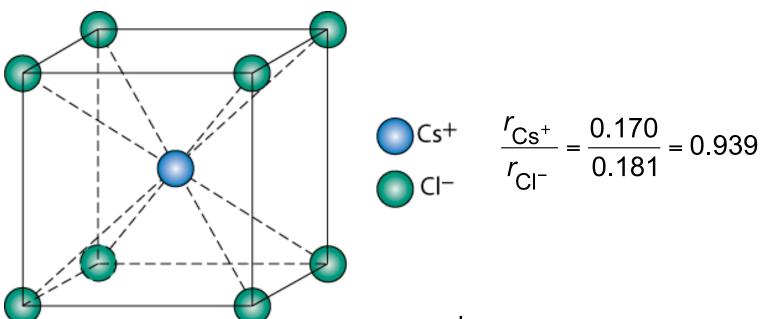
NaCl structure

Adapted from Fig. 12.2, Callister 7e.

$$o$$
 Na+ r_{Na} = 0.102 nm

$$r_{CI} = 0.181 \text{ nm}$$

$$r_{\rm Na}/r_{\rm Cl} = 0.564$$

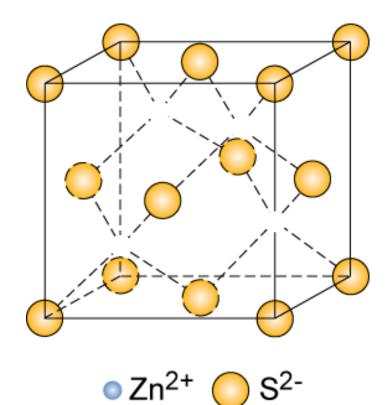

Unit cell: FCC arrangement of anions with one cation at center of each of 12 cube edges

Two interpenetrating FCC lattices

AX Crystal Structures

AX-Type Crystal Structures include NaCl, CsCl, and zinc blende

Cesium Chloride structure:



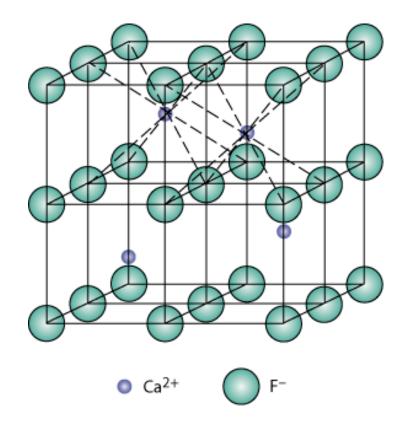
Each Cs⁺ has 8 neighboring Cl⁻

Adapted from Fig. 12.3, *Callister 7e.*

AX Crystal Structures

Zinc Blende structure

$$\frac{r_{\rm Zn^{2+}}}{r_{\rm O^{2-}}} = \frac{0.074}{0.140} = 0.529$$

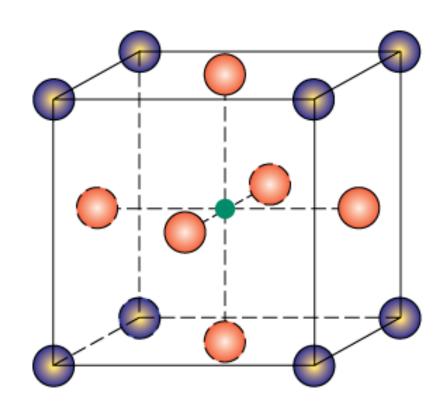

C#=4,
FCC structure of S with Zn at interior tetrahedral

Adapted from Fig. 12.4, Callister 7e.

Ex: ZnO, ZnS, SiC

A_mX_p Crystal Structures

Fluorite structure (AX₂)


Adapted from Fig. 12.5, Callister 7e.

- Calcium Fluorite (CaF₂)
- cations in cubic sites
- UO₂, ThO₂, ZrO₂, CeO₂
- •Rc/Ra=0.8, C #_{Ca}=8, C#_F=4
- •Ca atoms at center of cubes with F atoms at cube corners.
- Unit cell consists of 8 cubes

A_mB_n X_p Crystal Structures

Perosvkite (ABX₃)

- Ba at cubic corner, O at center of 6 faces, Ti at body center
- CN_O=12, CN_{Ba}=6, and CN_{Ti}=6
- Large A cation and oxygen form an FCC lattice
- Cubic--tetragonal at 130°C (Curie points)
- Cubic -- orthrhombic and rhombohedral at low T

Adapted from Fig. 12.6, Callister 7e.

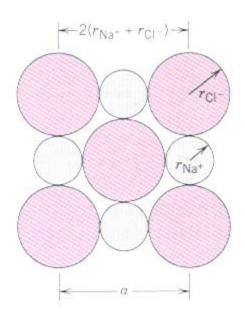
Ceramic density computations

$$\rho = \frac{n'(\Sigma A_{\rm C} + \Sigma A_{\rm A})}{V_{\rm C} N_{\rm A}} \tag{13.1}$$

where

n' = the number of formula units¹ within the unit cell

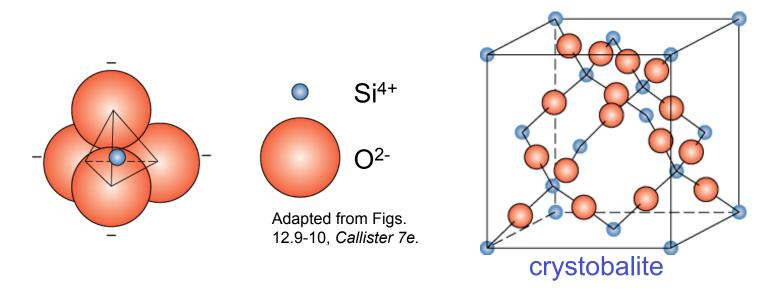
 $\Sigma A_{\rm C}$ = the sum of the atomic weights of all cations in the formula unit


 $\Sigma A_{\rm A}$ = the sum of the atomic weights of all anions in the formula unit

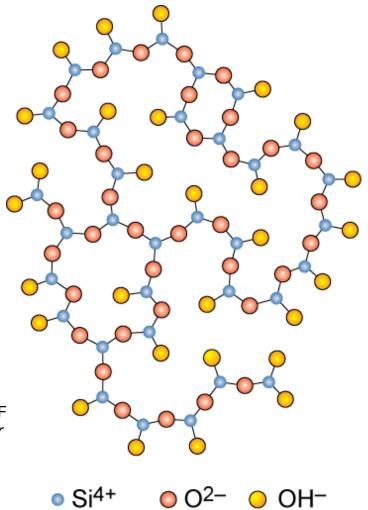
 $V_{\rm C}$ = the unit cell volume

 N_A = Avogadro's number, 6.023×10^{23} formula units/mol

Ceramic density computation


(example Rock Salt)

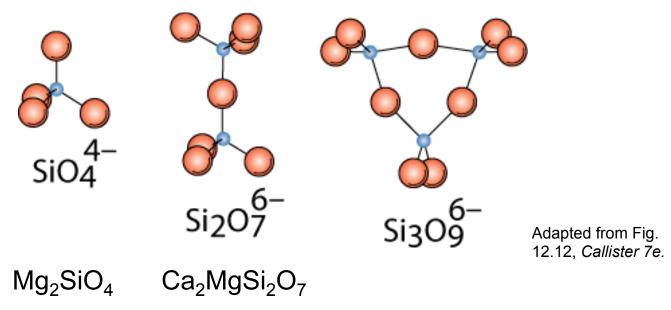
Silicate Ceramics


Most common elements on earth are Si & O

- SiO₂ (silica) structures are quartz, crystobalite, & tridymite
- The strong Si-O bond leads to a strong, high melting material (1710°C)

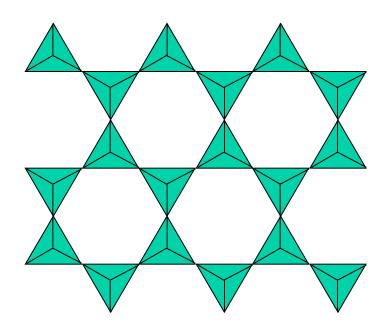
Amorphous Silica

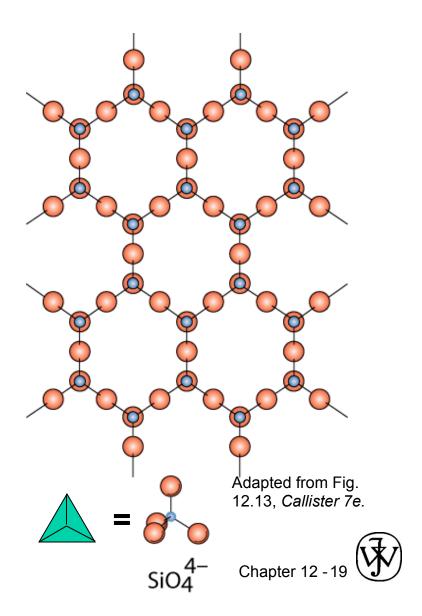
- Silica gels amorphous SiO₂
 - Si⁴⁺ and O²⁻ not in well-ordered lattice
 - Charge balanced by H⁺ (to form OH⁻) at "dangling" bonds
 - very high surface area > 200 m²/g
 - SiO₂ is quite stable, therefore unreactive
 - makes good catalyst support



Adapted from F 12.11, Callister

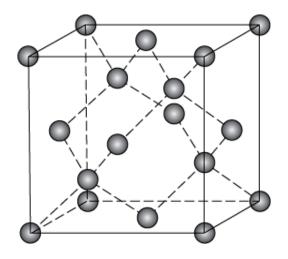
Silicates


 Combine SiO₄⁴⁻ tetrahedra by having them share corners, edges, or faces


 Cations such as Ca²⁺, Mg²⁺, & Al³⁺ act to neutralize & provide ionic bonding

Layered Silicates

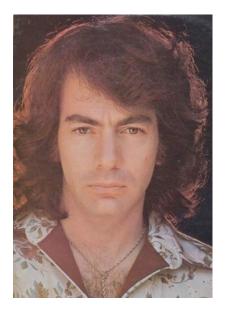
- Layered silicates (clay silicates)
 - SiO₄ tetrahedra connected together to form 2-D plane



- $(Si_2O_5)^{2-}$
- So need cations to balance charge

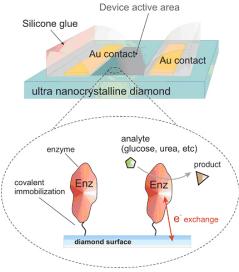
Carbon Forms

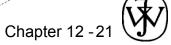
- Carbon black amorphous surface area ca. 1000 m²/g
- Diamond
 - tetrahedral carbon
 - hard no good slip planes
 - brittle can cut it
 - large diamonds jewelry
 - small diamonds
 - often man made used for cutting tools and polishing
 - diamond films
 - hard surface coat tools, medical devices, etc.



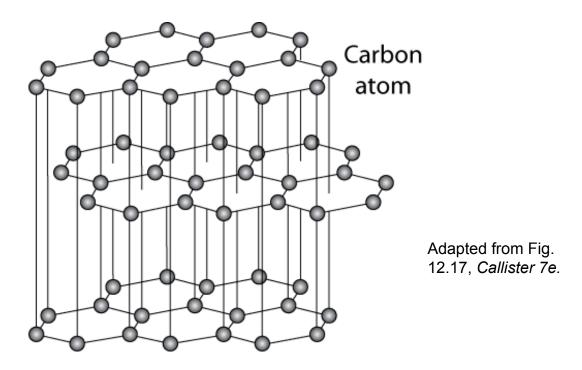
Adapted from Fig. 12.15, *Callister 7e.*

Diamonds!



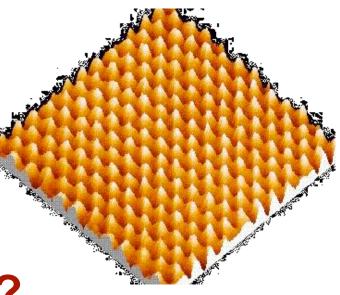


120 m

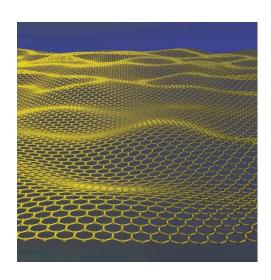

100 m \$

Carbon Forms - Graphite

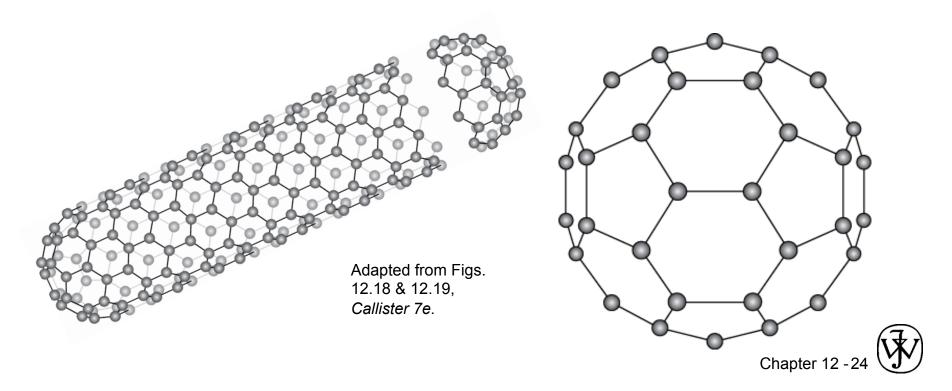
layer structure – aromatic layers

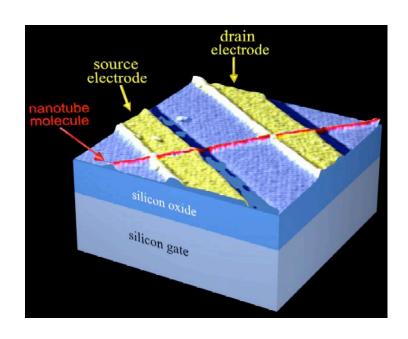


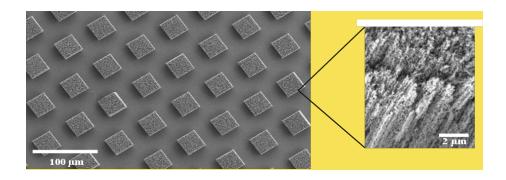
- weak van der Waal's forces between layers
- planes slide easily, good lubricant


Graphite!

Graphene?






Carbon Forms – Fullerenes and Nanotubes

- Fullerenes or carbon nanotubes
 - wrap the graphene sheet by curving into ball or tube
 - Buckminister fullerenes
 - Like a soccer ball C₆₀ also C₇₀ + others

Nanotubes

AzidePoster.wmv

MSE 170 Discussion Board

https://catalysttools.washington.edu/gopost/board/peterkaz/13030/