Chapter 6: Mechanical Properties

- Elastic behavior: When loads are small, how much deformation occurs? What materials deform least?
- Stress and strain: What are they and why are they used instead of load and deformation?
- Plastic behavior: At what point does permanent deformation occur? What materials are most resistant to permanent deformation?
- Toughness and ductility: What are they and how do we measure them?

Elastic Deformation

Concepts of stress and strain

Tension tests

engineering stress

$$\sigma = \frac{F}{A_0}$$

engineering strain

$$\varepsilon = \frac{l_i - l_0}{l_0} = \frac{\Delta l}{l_0}$$

Compression tests

Linear Elastic Properties

- Modulus of Elasticity, E: (also known as Young's modulus)
- Hooke's Law:

Young's Moduli: Comparison

Based on data in Table B2, Callister 7e.

Composite data based on reinforced epoxy with 60 vol% of aligned carbon (CFRE), aramid (AFRE), or glass (GFRE) fibers.

Mechanical Properties

 Slope of stress strain plot (which is proportional to the elastic modulus) depends on dF/dr

Concepts of stress and strain (continued)

- Shear and torsional tests
 - Shear stress $\tau = \frac{F}{A_0} = G\gamma$
 - Shear strain $\gamma = \frac{x}{h}$
- Geometric considerations of the stress state

Common States of Stress

Simple tension: cable-

$$\sigma = \frac{F}{A_o} \quad \sigma \longleftrightarrow \sigma$$

• Torsion (a form of shear): drive shaft

Ski lift (photo courtesy P.M. Anderson)

OTHER COMMON STRESS STATES (1)

• Simple compression:

Poisson's ratio, v

Poisson's ratio, ν:

$$\mathbf{v} = -\frac{\varepsilon_L}{\varepsilon}$$

metals: $v \sim 0.33$

ceramics: $v \sim 0.25$

polymers: $v \sim 0.40$

Relation of elastic properties for isotropic materials

$$E = 2G(1+\nu)$$

• Tensile strain: $\varepsilon = \frac{\delta}{L_o}$

• Lateral strain: $\varepsilon_L = \frac{-oL}{W_O}$

Examples

 Determine the load required to produce a 2.5x10⁻³ mm change in diameter.
D₀=10mm, Poisson's ratio for brass is 0.34

Plastic Deformation (Metals)

Plastic (Permanent) Deformation

(at lower temperatures, i.e. $T < T_{melt}/3$)

Yield Strength, σ_y

Stress at which noticeable plastic deformation has occurred.

when $\varepsilon_p = 0.002$

Callister 7e.

 σ_v = yield strength

Note: for 2 inch sample

$$\varepsilon = 0.002 = \Delta z/z$$

$$\Delta z = 0.004$$
 in

Yield Strength: Comparison

Room T values

Based on data in Table B4, Callister 7e.

a = annealed

hr = hot rolled

ag = aged

cd = cold drawn

cw = cold worked

qt = quenched & tempered

Tensile Strength, TS

Maximum stress on engineering stress-strain curve.

- Metals: occurs when noticeable necking starts.
- Polymers: occurs when polymer backbone chains are aligned and about to break.

Tensile Strength: Comparison

Ductility

Plastic tensile strain at failure:

$$\%EL = \frac{L_f - L_o}{L_o} \times 100$$

Another ductility measure:

$$%RA = \frac{A_o - A_f}{A_o} \times 100$$

Resilience, U_r

- Ability of a material to store energy
 - Energy stored best in elastic region

Adapted from Fig. 6.15, *Callister 7e.*

$$U_r = \int_0^{\varepsilon_y} \sigma d\varepsilon$$

If we assume a linear stress-strain curve this simplifies to

$$U_r \cong \frac{1}{2} \sigma_y \varepsilon_y$$

Toughness

- Energy to break a unit volume of material
- Approximate by the area under the stress-strain curve.

Brittle fracture: elastic energy

Ductile fracture: elastic + plastic energy

Summary

- Stress and strain: These are size-independent measures of load and displacement, respectively.
- Elastic behavior: This reversible behavior often shows a linear relation between stress and strain.
 To minimize deformation, select a material with a large elastic modulus (E or G).
- Plastic behavior: This permanent deformation behavior occurs when the tensile (or compressive) uniaxial stress reaches σ_{v} .
- Toughness: The energy needed to break a unit volume of material.
- Ductility: The plastic strain at failure.