Chapter 11: Metal Alloys Applications and Processing

ISSUES TO ADDRESS...

- How are metal alloys classified and how are they used?
- What are some of the common fabrication techniques?
- How do properties vary throughout a piece of material that has been quenched, for example?
- How can properties be modified by post heat treatment?

Taxonomy of Metals

Steels

Based on data provided in Tables 11.1(b), 11.2(b), 11.3, and 11.4, Callister 7e.

Ferrous Alloys

Iron containing – Steels - cast irons

```
Nomenclature AISI & SAE

10xx Plain Carbon Steels

11xx Plain Carbon Steels (resulfurized for machinability)

15xx Mn (10 ~ 20%)

40xx Mo (0.20 ~ 0.30%)

43xx Ni (1.65 - 2.00%), Cr (0.4 - 0.90%), Mo (0.2 - 0.3%)

44xx Mo (0.5%)

where xx is wt% C x 100

example: 1060 steel – plain carbon steel with 0.60 wt% C
```

Stainless Steel -- >11% Cr

Cast Iron

- Ferrous alloys with > 2.1 wt% C
 - more commonly 3 4.5 wt%C
- low melting (also brittle) so easiest to cast
- Cementite decomposes to ferrite + graphite
 Fe₃C → 3 Fe (α) + C (graphite)

generally a slow process

Fe-C True Equilibrium Diagram

Graphite formation promoted by

- Si > 1 wt%
- slow cooling

Adapted from Fig. 11.2, Callister 7e. (Fig. 11.2 adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.)

Types of Cast Iron

Gray iron

- graphite flakes
- weak & brittle under tension
- stronger under compression
- excellent vibrational dampening
- wear resistant

Ductile iron

- add Mg or Ce
- graphite in nodules not flakes
- matrix often pearlite better ductility

Adapted from Fig. 11.3(a) & (b), Callister 7e.

Types of Cast Iron

White iron

- <1wt% Si so harder but brittle
- more cementite

Malleable iron

- heat treat at 800-900°C
- graphite in rosettes
- more ductile

Adapted from Fig. 11.3(c) & (d), Callister 7e.

Production of Cast Iron

Limitations of Ferrous Alloys

- 1) Relatively high density
- 2) Relatively low conductivity
- 3) Poor corrosion resistance

Nonferrous Alloys

Cu Alloys

Brass: Zn is subst. impurity (costume jewelry, coins, corrosion resistant)

Bronze: Sn, Al, Si, Ni are

subst. impurity

(bushings, landing

gear)

Cu-Be:

precip. hardened for strength

Ti Alloys

-lower ρ : 4.5g/cm³

vs 7.9 for steel

-reactive at high *T*

-space applic.

Al Alloys

-lower ρ : 2.7g/cm³

-Cu, Mg, Si, Mn, Zn additions

-solid sol. or precip.

strengthened (struct.

aircraft parts

& packaging)

Mg Alloys

-very low ρ: 1.7g/cm³

-ignites easily

-aircraft, missiles

Noble metals

-Ag, Au, Pt

-oxid./corr. resistant

NonFerrous

Alloys

Refractory metals

-high melting T

-Nb, Mo, W, Ta

Metal Fabrication

- How do we fabricate metals?
 - Blacksmith hammer (forged)
 - Molding cast
- Forming Operations
 - Rough stock formed to final shape

Hot working

- Thigh enough for recrystallization
- Larger deformations

VS.

Cold working

- well below T_m
- work hardening
- smaller deformations

Forging (Hammering; Stamping) •
 (wrenches, crankshafts)
 force

Drawing (rods, wire, tubing)

die must be well lubricated & clean

Rolling (Hot or Cold Rolling)
 (I-beams, rails, sheet & plate)

(rods, tubing)

ductile metals, e.g. Cu, Al (hot) Chapter 11 - 13

- Casting- mold is filled with metal
 - metal melted in furnace, perhaps alloying elements added. Then cast in a mold
 - most common, cheapest method
 - gives good production of shapes
 - weaker products, internal defects
 - good option for brittle materials

Sand Casting

 (large parts, e.g.,
 auto engine blocks)

- trying to hold something that is hot
- what will withstand >1600°C?
- cheap easy to mold => sand!!!
- pack sand around form (pattern) of desired shape

Sand Casting

(large parts, e.g., auto engine blocks)

Investment Casting

(low volume, complex shapes e.g., jewelry, turbine blades)

Investment Casting

- pattern is made from paraffin.
- mold made by encasing in plaster of paris
- melt the wax & the hollow mold is left
- pour in metal

 Sand Casting (large parts, e.g.,

auto engine blocks)

Sand

Sand

molten metal

Investment Casting

(low volume, complex shapes e.g., jewelry, turbine blades)

 Die Casting (high volume, low T alloys)

 Continuous Casting (simple slab shapes)

 Powder Metallurgy (materials w/low ductility)

heat
area
contact
densify

point contact
at low T

densification
by diffusion at
higher T

 Welding (when one large part is impractical)

Heat affected zone:

 (region in which the microstructure has been changed).

11.9, Callister 7e. (Fig. 11.9 from Iron Castings Handbook, C.F. Walton and T.J. Opar (Ed.), 1981.)

Thermal Processing of Metals

Annealing: Heat to T_{anneal} , then cool slowly.

• Stress Relief: Reduce stress caused by:

-plastic deformation

-nonuniform cooling

-phase transform.

Spheroidize (steels):
 Make very soft steels for good machining. Heat just below T_E & hold for

15-25 h.

Types of Annealing

• Full Anneal (steels): Make soft steels for good forming by heating to get *γ*, then cool in furnace to get coarse *P*.

Process Anneal:
 Negate effect of cold working by (recovery/ recrystallization)

• Normalize (steels): Deform steel with <u>large</u> grains, then normalize to make grains small.

Heat Treatments

Hardenability--Steels

- Ability to form martensite
- Jominy end quench test to measure hardenability.

Hardness versus distance from the quenched end.

Why Hardness Changes W/Position

The cooling rate varies with position.

Quenching Medium & Geometry

• Effect of quenching medium:

Medium Severity of Quench Hardness low low oil moderate moderate water high

Effect of geometry:

When surface-to-volume ratio increases:

- --cooling rate increases
- --hardness increases

Precipitation Hardening

Particles impede dislocations.

Ex: Al-Cu system

Procedure:

--Pt A: solution heat treat (get α solid solution)

--Pt B: quench to room temp.

--Pt C: reheat to nucleate small θ crystals within α crystals.

 Other precipitation systems:

Cu-Be
 Cu-Sn
 Mg-Al
 Mg-Al
 Pt A (sol'n heat treat)
 Pt C (precipitate θ)
 Adapted from Fig.
 11.22, Callister 7e.

Adapted from Fig. 11.24, *Callister 7e.* (Fig. 11.24 adapted from J.L. Murray, *International Metals Review* **30**, p.5, 1985.)

Precipitation Hardening

Precipitate Effect on TS, %EL

- 2014 Al Alloy:
- TS peaks with precipitation time.
- Increasing Taccelerates

• %*EL* reaches minimum with precipitation time.

Adapted from Fig. 11.27 (a) and (b), Callister 7e. (Fig. 11.27 adapted from Metals Handbook: Properties and Selection: Nonferrous Alloys and Pure Metals, Vol. 2, 9th ed., H. Baker (Managing Ed.), American Society for Metals, 1979. p. 41.)

Chapter 11 -

Summary

- Steels: increase TS, Hardness (and cost) by adding
 - --C (low alloy steels)
 - --Cr, V, Ni, Mo, W (high alloy steels)
 - --ductility usually decreases w/additions.
- Non-ferrous:
 - --Cu, Al, Ti, Mg, Refractory, and noble metals.
- Fabrication techniques:
 - --forming, casting, joining.
- Hardenability
 - --increases with alloy content.
- Precipitation hardening
 - --effective means to increase strength in Al, Cu, and Mg alloys.