CHAPTER 14: POLYMER STRUCTURES

ISSUES TO ADDRESS...

- What are the basic microstructural features?
- How are polymer properties effected by molecular weight?
- How do polymeric crystals accommodate the polymer chain?

Chapter 14 – Polymers

What is a polymer?

Adapted from Fig. 14.2, Callister 7e.

Ancient Polymer History

Originally natural polymers were used

– Wood– Rubber

CottonWool

LeatherSilk

- Oldest known uses
 - Rubber balls used by Incas
 - Noah used pitch (a natural polymer) for the ark

Polymer Composition

Most polymers are hydrocarbons

- i.e. made up of H and C
- Saturated hydrocarbons
 - Each carbon bonded to four other atoms

$$\mathsf{C}_{\mathsf{n}}\mathsf{H}_{\mathsf{2n+2}}$$

Table 14.1 Compositions and Molecular Structures for Some of the Paraffin Compounds: C_nH_{2n+2}

Name	Composition	Structure	Boiling Point (°C)
Methane	CH ₄	H H-C-H H	-164
Ethane	C_2H_6	H H 	-88.6
Propane	$\mathrm{C_3H_8}$	H H H H-C-C-C-H 	-42.1
Butane	C_4H_{10}		-0.5
Pentane	C_5H_{12}		36.1
Hexane	C_6H_{14}		69.0

Unsaturated Hydrocarbons

- Double & triple bonds relatively reactive can form new bonds
 - Double bond ethylene or ethene C_nH_{2n}

- 4-bonds, but only 3 atoms bound to C's
- Triple bond acetylene or ethyne C_nH_{2n-2}

Chemistry of Polymers

Note: polyethylene is just a long HC

- paraffin is short polyethylene

Bulk or Commodity Polymers

Table 14.3 A Listing of Repeat Units for 10 of the More Common Polymeric Materials

Polymer		Repeat Unit
	Polyethylene (PE)	H H
	Poly(vinyl chloride) (PVC)	H H
	Polytetrafluoroethylene (PTFE)	$\begin{array}{c c} \mathbf{F} & \mathbf{F} \\ -\mathbf{C} - \mathbf{C} - \\ -\mathbf{C} & \mathbf{F} \end{array}$
	Polypropylene (PP)	$\begin{array}{c c} H & H \\ - & \\ - C - C - \\ - & \\ H & CH_3 \end{array}$

Table 14.3 A Listing of Repeat Units for 10 of the More Common Polymeric Materials

Polymer		Repeat Unit
	Polystyrene (PS)	H H H -C-C-
	Poly(methyl methacrylate) (PMMA)	H CH ₃ -C-C- H C-O-CH ₃
	Phenol-formaldehyde (Bakelite)	CH_2 CH_2 CH_2

MOLECULAR WEIGHT

Molecular weight, M_i: Mass of a mole of chains.

Lower M

$$\overline{M}_n = \frac{\text{total wt of polymer}}{\text{total # of molecules}}$$

$$\overline{M}_{n} = \sum x_{i} M_{i}$$

$$\overline{M}_{w} = \sum w_{i} M_{i}$$

 $M_{\rm w}$ is more sensitive to higher molecular weights

Adapted from Fig. 14.4, Callister 7e.

Molecular Weight Calculation

Example: average mass of a class

N _i	M_i	X _i	W _i
# of students	mass (lb)		
1	100	0.1	0.054
1	120	0.1	0.065
2	140	0.2	0.151
3	180	0.3	0.290
2	220	0.2	0.237
1	380	0.1	0.204
		\overline{M}_n	\overline{M}_{w}
		186 lb	216 lb

$$\overline{M}_n = \sum x_i M_i$$

$$\overline{M}_w = \sum w_i M_i$$

Degree of Polymerization, n

n = number of repeat units per chain

$$n_n = \sum x_i n_i = \frac{\overline{M}_n}{\overline{m}} \qquad \qquad n_w = \sum w_i n_i = \frac{\overline{M}_w}{\overline{m}}$$

where m = average molecular weight of repeat unit

$$\overline{m} = \sum f_i m_i$$
Chain fraction — mol. wt of repeat unit i

Molecular Structures

Covalent chain configurations and strength:

Direction of increasing strength

Adapted from Fig. 14.7, Callister 7e.

Polymers – Molecular Shape

Conformation – Molecular orientation can be changed by rotation around the bonds

note: no bond breaking needed

Copolymers

two or more monomers polymerized together

- random A and B randomly vary in chain
- alternating A and B alternate in polymer chain
- block large blocks of A alternate with large blocks of B
- graft chains of B grafted on to A backbone

Polymer Crystallinity

Adapted from Fig. 14.10, *Callister 7e.*

Ex: polyethylene unit cell

Crystals must contain the polymer chains in some way

Chain folded structure

Adapted from Fig. 14.12, Callister 7e.

Polymer Crystallinity

Polymers rarely 100% crystalline

 Too difficult to get all those chains aligned crystalline

region

region

 % Crystallinity: % of material that is crystalline.

-- TS and E often increase with % crystallinity.

-- Annealing causes
 crystalline regions
 to grow. % crystallinity
 increases.
 amorphous

Adapted from Fig. 14.11, *Callister 6e.* (Fig. 14.11 is from H.W. Hayden, W.G. Moffatt, and J. Wulff, *The Structure and Properties of Materials*, Vol. III, *Mechanical Behavior*, John Wiley and Sons, Inc., 1965.)

Chapter 14

Region of high

crystallinity

Amorphous

Polymer Crystal Forms

Single crystals – only if slow careful growth

Adapted from Fig. 14.11, Callister 7e.

Polymer Crystal Forms

Spherulites – crossed polarizers

Maltese cross

Characteristics, Applications & Processing of Polymers

ISSUES TO ADDRESS...

- What are the tensile properties of polymers and how are they affected by basic microstructural features?
- Hardening, anisotropy, and annealing in polymers.
- How does the elevated temperature mechanical response of polymers compare to ceramics and metals?
- What are the primary polymer processing methods?

Mechanical Properties

i.e. stress-strain behavior of polymers

Strains – deformations > 1000% possible Callister 7e. (for metals, maximum strain ca. 10% or less)

Tensile Response: Brittle & Plastic

Stress-strain curves adapted from Fig. 15.1, *Callister 7e.* Inset figures along plastic response curve adapted from Figs. 15.12 & 15.13, *Callister 7e.* (Figs. 15.12 & 15.13 are from J.M. Schultz, *Polymer Materials Science*, Prentice-Hall, Inc., 1974, pp. 500-501.)

Predeformation by Drawing

- Drawing...(ex: monofilament fishline)
 - -- stretches the polymer prior to use
 - -- aligns chains in the stretching direction
- Results of drawing:
 - -- increases the elastic modulus (*E*) in the stretching direction
 - -- increases the tensile strength (*TS*) in the stretching direction
 - -- decreases ductility (%*EL*)
- Annealing after drawing...
 - -- decreases alignment
 - -- reverses effects of drawing.
- Compare to cold working in metals!

Adapted from Fig. 15.13, *Callister* 7e. (Fig. 15.13 is from J.M. Schultz, *Polymer Materials Science*, Prentice-Hall, Inc., 1974, pp. 500-501.)

Tensile Response: Elastomer Case

Stress-strain curves adapted from Fig. 15.1, Callister 7e. Inset figures along elastomer curve (green) adapted from Fig. 15.15, Callister 7e. (Fig. 15.15 is from Z.D. Jastrzebski, The Nature and Properties of Engineering Materials, 3rd ed., John Wiley and Sons, 1987.)

- Compare to responses of other polymers:
 - -- brittle response (aligned, crosslinked & networked polymer)
 - -- plastic response (semi-crystalline polymers)

Thermoplastics vs. Thermosets

Thermoplastics:

- -- little crosslinking
- -- ductile
- -- soften w/heating
- polyethylenepolypropylenepolycarbonatepolystyrene

• Thermosets:

- -- large crosslinking (10 to 50% of mers)
- -- hard and brittle
- -- do NOT soften w/heating
- -- vulcanized rubber, epoxies, polyester resin, phenolic resin

Molecular weight

Adapted from Fig. 15.19, *Callister 7e.* (Fig. 15.19 is from F.W. Billmeyer, Jr., *Textbook of Polymer Science*, 3rd ed., John Wiley and Sons, Inc., 1984.)

Tand Strain Rate: Thermoplastics

- Decreasing *T*...
 - -- increases E
 - -- increases *TS*
 - -- decreases %EL
- Increasing strain rate...
 - -- same effects as decreasing *T*.

Adapted from Fig. 15.3, *Callister 7e.* (Fig. 15.3 is from T.S. Carswell and J.K. Nason, 'Effect of Environmental Conditions on the Mechanical Properties of Organic Plastics", *Symposium on Plastics*, American Society for Testing and Materials, Philadelphia, PA, 1944.)

Time Dependent Deformation

- Stress relaxation test:
 - -- strain to ε₀ and hold.
 - -- observe decrease in stress with time.

Relaxation modulus:

$$E_r(t) = \frac{\sigma(t)}{\varepsilon_o}$$

Data: Large drop in E_r

Sample T_g(°C) values:

PE (low density)	- 110	
PE (high density)	- 90	Outrote to all outros
PVC	+ 87	Selected values from Table 15.2, <i>Callister</i>
PS	+100	7e.
PC	+150	

Polymer Additives

Improve mechanical properties, processability, durability, etc.

Fillers

- Added to improve tensile strength & abrasion resistance, toughness & decrease cost
- ex: carbon black, silica gel, wood flour, glass, limestone, talc, etc.

Plasticizers

- Added to reduce the glass transition temperature T_q
- commonly added to PVC otherwise it is brittle

Polymer Additives

- Stabilizers
 - Antioxidants
 - UV protectants
- Lubricants
 - Added to allow easier processing
 - "slides" through dies easier ex: Na stearate
- Colorants
 - Dyes or pigments
- Flame Retardants
 - CI/F & B

Processing of Plastics

Thermoplastic –

- can be reversibly cooled & reheated, i.e. recycled
- heat till soft, shape as desired, then cool
- ex: polyethylene, polypropylene, polystyrene, etc.

Thermoset

- when heated forms a network
- degrades (not melts) when heated
- mold the prepolymer then allow further reaction
- ex: urethane, epoxy

Summary

- General drawbacks to polymers:
 - -- E, σ_y , K_c , $T_{application}$ are generally small.
 - -- Deformation is often *T* and time dependent.
 - -- Result: polymers benefit from composite reinforcement.
- Thermoplastics (PE, PS, PP, PC):
 - -- Smaller *E*, σ_y, T_{application}
 - -- Larger K_c
 - -- Easier to form and recycle
- Elastomers (rubber):
 - -- Large reversible strains!
- Thermosets (epoxies, polyesters):
 - -- Larger E, σ_y , $T_{application}$
 - -- Smaller K_c

Table 15.3 Callister 7e:

Good overview of applications and trade names of polymers.

