Diffusion

Diffusion - Mass transport by atomic motion

Mechanisms
*Gases & Liquids — random (Brownian) motion
*Solids — vacancy diffusion or interstitial diffusion

Interdiffusion: In an alloy, atoms tend to migrate from regions of high conc. to
regions of low conc.

Self-diffusion: In an elemental solid, atoms also migrate.



Interdiffusion
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Self-diffusion

Label some atoms After some time
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Diffusion mechanisms

Conditions:

Vacancy Diffusion:
« atoms exchange with vacancies
« applies to substitutional impurities atoms
 rate depends on:
--number of vacancies
--activation energy to exchange.
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Diffusion simulation

» Simulation of interdiffusion across an
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Diffusion flux

How do we quantify the amount or rate of diffusion?

Measured empirically
* Make thin film (membrane) of known surface area
* Impose concentration gradient
* Measure how fast atoms or molecules diffuse through the membrane



Steady-state diffusion

dC

Flux proportional to concentration gradient= ——

adx




Diffusion and temperature

« Diffusion coefficient increases with increasing T.



Diffusion paths
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» materials w/secondary  * materials w/covalent
bonding bonding

» smaller diffusing atoms - larger diffusing atoms
* lower density materials  * higher density materials
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Elastic properties of materials

* Poisson's ratio, v:

—v > (0.50 density increases

—v < 0.50 density decreases
(voids form)
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Plastic deformation

» Simple tension test:

engineering stress, o
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Adapted from Fig. 6.10 (a),

Callister 7e.
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Yield strength, Oy

tensile stress, O

A

engineering strain, €

Adapted from Fig. 6.10 (a),

Callister 7e.
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Tensile strength, TS

« Maximum stress on engineering stress-strain curve.

stress

engineering

engineering strain

» Metals: occurs when noticeable necking starts.
« Polymers: occurs when polymer backbone chains are aligned and about to break.
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Ductility

» Plastic tensile strain at failure:
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Adapted from Fig. 6.13,
Callister 7e.
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Toughness

* Energy to break a unit volume of material
« Approximate by the area under the stress-strain curve.

Engineering A
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stress, ¢ |
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Adapted from Fig. 6.13,

Callister 7e.
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Dislocation and plastic deformation

« Cubic & hexagonal metals - plastic deformation by plastic shear or slip where
one plane of atoms slides over adjacent plane by defect motion (dislocations).

Unit step
Edge _ A of slip
dislocation -
line — 0
(a) (c)
Adapted from Fig. 7.1,
Callister 7e.
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Dislocation motion

Edge dislocation

Directipn
of moti

Adapted from Fig. 7.2,
Callister 7e.
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Deformation mechanisms

Adapted from Fig.
7.6, Callister 7e.
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Slip in single crystals

* Crystals slip due to a resolved shear stress, tx.

» Applied tension can produce such a stress.

Applied tensile
stfepss \ / Resolved shear \ ﬂ?elation between \

F

A slip plane
normal, ns

stress: O and Tgr
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Critical resolved shear stress

* Condition for dislocation motion:

» Crystal orientation can make it easy or hard to move dislocation

T
l
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Slip motion in polycrystals

» Stronger - grain boundaries pin
deformations

 Slip planes & directions (A, ¢) change
from one crystal to another.

» trWill vary from one crystal to another.

» The crystal with the largest tr yields
first.

» Other (less favorably oriented) crystals
yield later.

A Adapted from Fig.

7.10, Callister 7e.
(Fig. 7.10 is
courtesy of C.
Brady, National
Bureau of
Standards [now the
National Institute of
Standards and

TEN Technology,

Gaithersburg, MD].)
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Strategies for strengthening: grain size reduction
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 Grain boundaries are barriers to Grain boundary-_ O O

slip. 0000000y O Lo
O0O0O0O00OO0 Q0 _O
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to slip. Grain A

Adapted from Fig. 7.14, Callister 7e.
(Fig. 7.14 is from A Textbook of Materials
Technology, by Van Vlack, Pearson
Education, Inc., Upper Saddle River, NJ.)

« Hall-Petch Equation:
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Adapted from Fig. 7.4,

Callister 7e.
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Effects of stress at dislocations

C C
Repulsion
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Strengthening by alloying
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Strengthening by alloying
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Strategies for strengthening: Cold work (%CW)

» Room temperature deformation.

« Common forming operations change the cross sectional area:

-Forging force -Rolling
W Ad
Aol l > I
Adapted from Fig.
11.8, Callister 7e. @

-Drawing force -Extrusion
B - .
d die holder
tensne
Ao I m force force——) blllet extrusion I Ay
container die
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Impact of cold work

As cold work is increased

Adapted from Fig. 7.20,
Callister 7e.
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