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Diffusion

Diffusion -  Mass transport by atomic motion

Mechanisms
•Gases & Liquids – random (Brownian) motion
•Solids – vacancy diffusion or interstitial diffusion

Interdiffusion:  In an alloy, atoms tend to migrate from regions of high conc. to
regions of low conc.

Self-diffusion:  In an elemental solid, atoms also migrate.
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Interdiffusion

Initially

Adapted from
Figs. 5.1 and
5.2, Callister
7e.

After some time
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Self-diffusion
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Diffusion mechanisms

Vacancy Diffusion:
•  atoms exchange with vacancies
•  applies to substitutional impurities atoms
•  rate depends on:
     --number of vacancies
     --activation energy to exchange.

increasing elapsed time

Conditions:
•There must be an empty site available
• Atoms must have the energy to make the jump
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Diffusion simulation

• Simulation of interdiffusion across an
interface:

•  Rate of substitutional diffusion depends on:
     --vacancy concentration
     --frequency of jumping.

(Courtesy P.M. Anderson)
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Diffusion flux

How do we quantify the amount or rate of diffusion?

Measured empirically
• Make thin film (membrane) of known surface area
• Impose concentration gradient
• Measure how fast atoms or molecules diffuse through the membrane
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Steady-state diffusion
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Diffusion and temperature

•  Diffusion coefficient increases with increasing T.
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Diffusion paths

Diffusion FASTER for...

• open crystal structures

• materials w/secondary
    bonding

• smaller diffusing atoms

• lower density materials

Diffusion SLOWER for...

• close-packed structures

• materials w/covalent
    bonding

• larger diffusing atoms

• higher density materials
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Elastic properties of materials

• Poisson's ratio, ν:

Units:
E:  [GPa] or [psi]
ν:  dimensionless

–ν > 0.50  density increases

–ν < 0.50  density decreases
                    (voids form)

εL

ε

- ν

ε
ν = − L

ε

metals:  ν ~ 0.33
ceramics: ν ~ 0.25
polymers: ν ~ 0.40

–For isotropic materials
E = 2G (1+ν)
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Plastic deformation

• Simple tension test:

engineering stress, σ

engineering strain, ε 

Elastic+Plastic 
at larger stress

permanent (plastic) 
after load is removed

εp

plastic strain

Elastic 

initially

Adapted from Fig. 6.10 (a),
 Callister 7e. 
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Yield strength, σy

• Stress at which noticeable plastic deformation has occurred.

when εp  = 0.002 

Adapted from Fig. 6.10 (a),
 Callister 7e. 

tensile stress, σ

engineering strain, ε

σy

ε p  = 0.002
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Tensile strength, TS

•  Metals:  occurs when noticeable necking starts.
•  Polymers:  occurs when polymer backbone chains are aligned and about to break.

σy

strain

Typical response of  a metal

F = fracture or
       ultimate
       strength
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as stress
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• Maximum stress on engineering stress-strain curve.
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Ductility

•  Plastic tensile strain at failure:

Adapted from Fig. 6.13,
Callister 7e.

•  Another ductility measure: 100x
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Toughness

•  Energy to break a unit volume of material
•  Approximate by the area under the stress-strain curve.

Brittle fracture:    elastic energy
Ductile fracture:  elastic + plastic energy

Adapted from Fig. 6.13,
Callister 7e.

very small toughness 
(unreinforced polymers) 

Engineering tensile strain, ε

Engineering 
tensile 
stress, σ

small toughness (ceramics)

large toughness (metals) 
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Dislocation and plastic deformation

• Cubic & hexagonal metals - plastic deformation by plastic shear or slip where
one plane of atoms slides over adjacent plane by defect motion (dislocations).

•   If dislocations don't move, deformation doesn't
occur! Adapted from Fig. 7.1,

Callister 7e.
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Dislocation motion

Edge dislocation

Screw dislocation

Adapted from Fig. 7.2,
Callister 7e.

• Dislocation moves along slip plane in slip direction perpendicular to dislocation
line

• Edge dislocations move parallel to the applied force, screw dislocations move
perpendicular to the applied force
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Deformation mechanisms

• Slip System
– Slip plane - plane allowing easiest slippage

– Slip direction - direction of movement

– FCC Slip occurs on {111} planes (close-packed) in <110> directions (close-
packed)

• => total of 12 slip systems in FCC

Adapted from Fig.
7.6, Callister 7e.
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Slip in single crystals

• Crystals slip due to a resolved shear stress, τR.

• Applied tension can produce such a stress.

slip plane
normal, ns
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Critical resolved shear stress

• Condition for dislocation motion: CRSS  !>!R

• Crystal orientation can make it easy or hard to move dislocation

!"#=$ coscos
R

τ  maximum at λ = φ = 45º

τR  = 0

λ =90°

σ

τR  = σ /2

λ =45°
φ =45°

σ

τR  = 0

φ =90°

σ
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Slip motion in polycrystals

•  Stronger - grain boundaries pin
deformations

•  Slip planes & directions (λ, φ) change
from one crystal to another.

•  τR will vary from one crystal to another.

•  The crystal with the largest τR yields
first.

•  Other (less favorably oriented) crystals
yield later.

Adapted from Fig.
7.10, Callister 7e.
(Fig. 7.10 is
courtesy of C.
Brady, National
Bureau of
Standards [now the
National Institute of
Standards and
Technology,
Gaithersburg, MD].)

σ

300 µm
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Strategies for strengthening: grain size reduction

•  Grain boundaries are barriers to
slip.

•  Barrier "strength” increases with
increasing angle of misorientation.

•  Smaller grain size: more barriers
to slip.

•  Hall-Petch Equation:
21

 
/
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Adapted from Fig. 7.14, Callister 7e.
(Fig. 7.14 is from A Textbook of Materials
Technology, by Van Vlack, Pearson
Education, Inc., Upper Saddle River, NJ.)
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Strategies for strengthening: solid solutions

Adapted from Fig. 7.4,
Callister 7e.
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Effects of stress at dislocations

Adapted from Fig.
7.5, Callister 7e.
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Strengthening by alloying

• small impurities tend to concentrate at dislocations
• reduce mobility of dislocation ∴ increase strength

Adapted from Fig.
7.17, Callister 7e.
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Strengthening by alloying

• large impurities concentrate at dislocations on low density side

Adapted from Fig.
7.18, Callister 7e.
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Strategies for strengthening: Cold work (%CW)

•  Room temperature deformation.

•  Common forming operations change the cross sectional area:

Adapted from Fig.
11.8, Callister 7e.
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Impact of cold work

Adapted from Fig. 7.20,
Callister 7e.

•  Yield strength (σy) increases.

•  Tensile strength (TS) increases.

•  Ductility (%EL or %AR) decreases.

As cold work is increased


