Phase equilibria: solubility limit

Introduction

- Solutions solid solutions, single phase
- Mixtures more than one phase

Adapted from Fig. 9.1, *Callister 7e.*

Solubility Limit: Max concentration for which only a single phase solution occurs.

Question: What is the solubility limit at 20°C?

Answer: 65 wt% sugar.

If $C_o < 65$ wt% sugar: syrup If $C_o > 65$ wt% sugar: syrup + sugar.

Sucrose/Water Phase Diagram

Components and phases

• Components:

The elements or compounds which are present in the mixture (e.g., Al and Cu)

• Phases:

The physically and chemically distinct material regions that result (e.g., α and β).

Aluminum-Copper Alloy

Adapted from chapter-opening photograph, Chapter 9, *Callister 3e.*

- Indicate phases as function of *T*, *C*_o, and *P*.
- For this course:
 - -binary systems: just 2 components.
 - -independent variables: T and C_o (P = 1 atm is almost always used).

• Rule 1: If we know *T* and *C*_o, then we know: --the # and types of phases present.

- Rule 2: If we know *T* and *C*_o, then we know: --the composition of each phase.
- Examples: *C*₀ = 35 wt% Ni At $T_A = 1320^{\circ}$ C: Only Liquid (*L*) $C_{L} = C_{0}$ (= 35 wt% Ni) At T_D = 1190°C: Only Solid (α) $C \alpha = C_o$ (= 35 wt% Ni) At $T_B = 1250^{\circ}C$: Both α and L $C_L = C_{\text{liquidus}}$ (= 32 wt% Ni here) $C\alpha = C_{\text{solidus}}$ (= 43 wt% Ni here)

Adapted from Fig. 9.3(b), *Callister 7e.* (Fig. 9.3(b) is adapted from *Phase Diagrams of Binary Nickel Alloys*, P. Nash (Ed.), ASM International, Materials Park, OH, 1991.)

- Rule 3: If we know *T* and *C_o*, then we know:
 --the amount of each phase (given in wt%).
- system • Examples: *T*(°C) $C_{0} = 35 \text{ wt}\% \text{ Ni}$ A TA tie line idus At T_A : Only Liquid (L) L (liquid) 1300 + ^d W_L = 100 wt%, $W\alpha$ = 0 solidus T_{B} Only Solid (α) At T_D: L + d α $W_L = 0, W_{\alpha} = 100 \text{ wt\%}$ (solid) 1200 *T* D α and L At T_B: Both $\frac{43-35}{43-32}$ 3082 35 20 4043 50 W_{l} 73 wt% $\overline{R + S}$ $C_L C_o$ Cα wt% Ni Adapted from Fig. 9.3(b), Callister 7e. R (Fig. 9.3(b) is adapted from Phase Diagrams of W_{α} = 27 wt% Binary Nickel Alloys, P. Nash (Ed.), ASM $\overline{R + S}$ International, Materials Park, OH, 1991.)

Cu-Ni

The lever rule

Tie line – connects the phases in equilibrium with each other - essentially an isotherm

How much of each phase? Think of it as a lever (teeter-totter)

$$M_{\alpha} \cdot S = M_{L} \cdot R$$

$$W_{\alpha} = \frac{R}{R+S} = \frac{C_0 - C_L}{C_{\alpha} - C_L}$$

Cooling

- Phase diagram: Cu-Ni system.
- System is:

 --binary *i.e.*, 2 components:
 Cu and Ni.

 --isomorphous

 i.e., complete
 solubility of one
 component in
 another; α phase
 field extends from
 0 to 100 wt% Ni.

• Consider *C_o* = 35 wt%Ni.

Binary eutectic systems

Callister 7e.

Binary eutectic systems

For a 40 wt% Sn-60 wt% Pb alloy at 150°C, find...
 --the phases present: α + β

Binary eutectic systems

- *C*_o < 2 wt% Sn
- Result:
 - --at extreme ends
 - --polycrystal of $\boldsymbol{\alpha}$ grains
 - i.e., only one solid phase.

- 2 wt% Sn < C_o < 18.3 wt% Sn
- Result:
 - Initially liquid + α
 - then α alone
 - finally two phases
 - $\succ \alpha$ polycrystal
 - > fine β -phase inclusions

- $C_o = C_E$
- Result: Eutectic microstructure (lamellar structure) --alternating layers (lamellae) of α and β crystals.

- 18.3 wt% Sn < C_o < 61.9 wt% Sn
- Result: α crystals and a eutectic microstructure

Hypoeutectic & hypereutectic

Intermetallic compounds

Note: intermetallic compound forms a line - not an area - because stoichiometry (i.e. composition) is exact.

Peritectic & eutectoid

Fe-C phase diagram

Hypoeutectoid steel

Hypereutectoid steel

