MSE 170: Introduction to Materials Science and Engineering

Instructor	Prof. Christine Luscombe
Email	luscombe@u.washington.edu
Office	302B Roberts Hall
Office hours	10:00am – 12:00pm, Monday, or by appointment
Course website	http://courses.washington.edu/mse170

Lab TAs: Nik Hrabe	nhrabe@u.washington.edu	Mueller 168
Ashleigh Cooper	ashleigh@u.washington.edu	Mueller 168
Shelly Arreguin	arreguin@u.washington.edu	Mueller 168

What is Materials Science and Engineering?

An interdisciplinary field that addresses the fundamental relationships between the **Processing, Structure and Properties** of materials and develops them for the desired technological application (**Performance**).

Stone Age (beginning of life – 3000 BC)

Feature: Using naturally occurring materials with only changes in shape

Bronze Age (3000 BC – 1200 BC)

Copper and Tin alloy

Ability to modify materials by refining (using heat), chemical modifications (alloying) and mechanical deformation (cold working)

Imperfection (Ch. 4) Diffusion (Ch. 5) Phase diagram (Ch. 9) Metal Processing (Ch. 11)

Iron Age (1200 BC – Present)

Casting and alloying wasn't perfected until 16th century

Mastery of Steel (Iron alloy) technology enables Industrial Revolution in the 18th and 19th century

Ability to heat treat at high temperature, control microstructure at different length scale and ability to design specific microstructures for specific properties

Phase transformation (Ch. 10)

Plastic Age (1940 - Present)

Discovery of polymers, and the ability to synthesize and process polymers.

Silicon Age (1950 - Present)

Commercialization of silicon technology (integrated circuits, electronic devices, etc...) leads to the information age, which gives boost to human productivity Electronic Prop. (Ch.18) Thermal Prop. (Ch.19) Magnetic Prop. (Ch.20) Optical Prop. (Ch.21)

Ability to control alloying accurately, ability to make thin films

Future

1. Nanotechnology

- Synthesis and characterizations of nanomaterials and nanostructure

2. Biotechnology

- biomimetics and biomaterials

3. Energy/Environmental

- Next generation energy conversion

4. Information Technology

- Materials informatics

What is Materials Science and Engineering?

An interdisciplinary field that addresses the fundamental relationships between the **Processing, Structure and Properties** of materials and develops them for the desired technological application (**Performance**).

Two Forms of Carbon

- A structure of carbon only produced at high temperature and pressure.
- The hardest known material.

• A structure of carbon that is in equilibrium (it is stable and will not change form over time).

• It is soft.

Atomic structure and interatomic bonding (Ch.2) Crystallography (Ch. 3), Imperfection (Ch. 4)

Atomic structure

Electronic structure

Valence electrons determine all of the following properties:

- Chemical
- Electrical
- Thermal
- Optical

Electrons have wavelike and particulate properties.

- This means that electrons are in orbitals defined by a probability.
- Each orbital at discrete energy level determined by quantum numbers.

<u>Quantum #</u>	Designation
<i>n</i> = principal (energy level-shell)	K, L, M, N, O (1, 2, 3, etc.)
l = subsidiary (orbitals)	s, p, d, f (0, 1, 2, 3,, n -1)
m_l = magnetic	1, 3, 5, 7 (-l to +l)
m _s = spin	1/2, -1/2

Electronic structure

Principal	Shell	Subaballa	No. of	Number of electrons			
quantum no.	designation	Subshells	states	Per subshell	Per shell		
1	К	S	1	2	2		
2	L	S	1	2	8		
		р	3	6			
3	М	S	1	2	18		
		р	3	6			
		d	5	10			
4	N	S	1	2	32		
		р	3	6			
		d	5	10			
		f	7	14			

S

Electron energy states

Electrons...

- have discrete energy states
- tend to occupy lowest available energy state.

Adapted from Fig. 2.4, *Callister 7e.*

Electronic configuration

Survey of elements

•	Most elements:	Electron configuration not stable.
---	----------------	------------------------------------

<u>Element</u>	<u>Atomic #</u>	Electron configuration
Hydrogen	1	1s ¹
Helium	2	1s ² (stable)
Lithium	3	1s ² 2s ¹
Beryllium	4	1s ² 2s ²
Boron	5	1s ² 2s ² 2p ¹
Carbon	6	1s ² 2s ² 2p ²
Neon	10	1s ² 2s ² 2p ⁶ (stable)
Sodium	11	1s ² 2s ² 2p ⁶ 3s ¹
Magnesium	12	1s ² 2s ² 2p ⁶ 3s ²
Aluminum	13	1s ² 2s ² 2p ⁶ 3s ² 3p ¹
Argon	18	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ (stable)
Krypton	36	$1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{10}4s^{2}4p^{6}$ (stable)

• Why? Valence (outer) shell usually not filled completely.

Adapted from Table 2.2, *Callister 7e.*

The periodic table

	p e																	gases
-	give u	up 26								Met	al					spt 2e	spt 1e	inert
	IA 1	JIVe	Ð							Non	meta	ıl				CCC		0
	H	IIA	м С]			IIIA	IVA	VA	VIA	VIIA	He
	3	4	n D							Inte	rmed	iate	5	6	7	8	9	10
	Li	Be	9										В	C	N	0	F	Ne
	11	12	l D						VIII				13	14	15	16	17	18
	Na	Mg	IIIB	IVB	VB	VIB	VIIB	<i>_</i>			IB	IIB	AI	Si	P	S	CI	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
	55	56	Rare	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba	earth series	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	87	88	Acti-	104	105	106	107	108	109	110								
	Fr	Ra	nide	Rf	Db	Sq	Bh	Hs	Mt	Ds								

Electropositive elements: Readily give up electrons to become + ions. Electronegative elements: Readily acquire electrons to become - ions.

Adapted from Fig. 2.6, *Callister 7e.*

Electronegativity

- Ranges from 0.7 to 4.0,
- Large values: tendency to acquire electrons.

IA	_																0
Н																	He
2.1	IIA											IIIA	IVA	VA	VIA	VIIA	-
Li	Be											В	C	N	0	F	Ne
1.0	1.5											2.0	2.5	3.0	3.5	4.0	-
Na	Mg							VIII				AI	Si	Р	S	Cl	Ar
0.9	1.2	IIIB	IVB	VB	VIB	VIIB				IB	IIB	1.5	1.8	2.1	2.5	3.0	-
Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8	-
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5	-
Cs	Ba	La–Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
0.7	0.9	1.1-1.2	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2	-
Fr	Ra	Ac–No															
0.7	0.9	1.1–1.7															
	Smaller electronegativity Larger electronegativity																

Adapted from Fig. 2.7, *Callister 7e.* (Fig. 2.7 is adapted from Linus Pauling, *The Nature of the Chemical Bond*, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

Bonding forces and energies

- Attractive force, F_A
- Repulsive force, F_{R}

$$E = \int F dr$$

$$E_N = \int_{\infty}^{r} F_N dr = \int_{\infty}^{r} F_A dr + \int_{\infty}^{r} F_R dr$$

$$= E_A + E_R$$

Properties from bonding

• Bond length, *r*

• Bond energy, *E*_o

• Melting Temperature, T_m

Properties from bonding: thermal expansion coefficient

- Coefficient of thermal expansion, $\boldsymbol{\alpha}$

coeff. thermal expansion

• $\alpha \sim$ symmetry at r_{o}

Properties from bonding: modulus *E*

Types of bonding: ionic

- Occurs between + and ions.
- Requires electron transfer.
- Large difference in electronegativity required.
- Example: NaCl

Examples of ionic bonding

• Predominant bonding in Ceramics

Adapted from Fig. 2.7, *Callister 7e.* (Fig. 2.7 is adapted from Linus Pauling, *The Nature of the Chemical Bond*, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

Covalent bonding

similar electronegativity ∴ share electrons
bonds determined by valence – s & p orbitals dominate bonding

•Example: CH₄

Adapted from Fig. 2.10, Callister 7e.

Metallic bonding

- •lons in a sea of electrons
- •Attraction between free electrons and metal ions

Ionic-covalent mixed bonding

% ionic character =
$$\begin{pmatrix} -\frac{(X_A - X_B)^2}{4} \\ 1 - e^{-\frac{(X_A - X_B)^2}{4}} \end{pmatrix} x (100\%)$$

where $X_A \& X_B$ are Pauling electronegativities

Example: MgO
$$X_{Mg} = 1.3$$

 $X_{O} = 3.5$

% ionic character =
$$\left(1 - e^{-\frac{(3.5 - 1.3)^2}{4}}\right) x (100\%) = 70.2\%$$
 ionic

Secondary bonding

Arises from interaction between dipoles

• Fluctuating dipoles example: liquid H₂ asymmetric electron H_2 clouds ^H2 Н Н Н Н secondary secondary bonding bonding Adapted from Fig. 2.13, Callister 7e. · Permanent dipoles-molecule induced secondary -general case: bonding Adapted from Fig. 2.14, Callister 7e. secondary CI CI Η -example: liquid HCl bonding secondary bonding

secondary bonding

-example: polymer

Summary

Туре	Bond Energy	Comments
Ionic	Large!	Non-directional (ceramics)
Covalent	Variable Diamond (large) Bismuth (small)	Directional (semiconductors, ceramics, polymer chains)
Metallic	Variable Tungsten (large) Mercury (small)	Non-directional (metals)
Secondary	Smallest	Directional Interchain (polymer) Intermolecular

Ceramics	Large bond energy
(Ionic & covalent bonding)	Large T_{m} and E, small α
Metals	Variable bond energy
(Metallic bonding)	Moderate $T_{m}^{},$ E, and α
Polymers (Covalent & secondary)	Directional properties, Secondary bonding dominates Small T_m and E, large $^{\alpha}$

Energy and packing

Materials and packing

Crystalline materials...

- atoms pack in periodic, 3D arrays
- typical of:

-metals -many ceramics -some polymers

Noncrystalline materials...

- atoms have no periodic packing
- occurs for:

-complex structures -rapid cooling

"Amorphous" = Noncrystalline

crystalline SiO₂ Adapted from Fig. 3.22(a), *Callister 7e.*

Si
 Oxygen

noncrystalline SiO₂ Adapted from Fig. 3.22(b), *Callister 7e.*

Crystals

Unit cell: smallest repetitive volume which contains the complete lattice pattern of a crystal.

- 7 crystal systems
- 14 crystal lattices

Lattice points: 3D array of points which coincides with atom positions.

a, *b*, and *c* are the lattice constants

Simple cubic structure (SC)

- Rare due to low packing density (only Po has this structure)
- Close-packed directions are cube edges.
- Coordination # = 6 (# nearest neighbors)

1 atoms/unit cell: 8 corners x 1/8

(Courtesy P.M. Anderson)

Face centered cubic structure (FCC)

- Atoms touch each other along face diagonals.
 - --Note: All atoms are identical; the face-centered atoms are shaded differently only for ease of viewing.

4 atoms/unit cell: 6 face x 1/2 + 8 corners x 1/8

Atomic packing factor (APF): FCC

Theoretical density, ρ

Density = ρ = $\frac{\text{Mass of atoms in unit cell}}{\text{Total volume of unit cell}}$

$$\rho = \frac{nA}{V_C N_A}$$

where

n = number of atoms/unit cell A = atomic weight $V_{\rm C}$ = Volume of unit cell = a^3 for cubic $N_{\rm A}$ = Avogadro's number = 6.023 x 10²³ atoms/mol

Ex: Cu (FCC) A = 63.54 g/mol R = 0.128 nmn = 4

Body centered cubic structure (BCC)

- Atoms touch each other along cube diagonals.
 - --Note: All atoms are identical; the center atom is shaded differently only for ease of viewing.

ex: Cr, W, Fe (α), Tantalum, Molybdenum

2 atoms/unit cell: 1 center + 8 corners x 1/8 • Coordination # = 8 Atomic packing factor (APF): BCC

FCC stacking sequence

- ABCABC... Stacking Sequence
- 2D Projection

• FCC Unit Cell

Hexagonal close-packed structure (hcp)

- ABAB... Stacking Sequence
- 3D Projection

- 2D Projection
 Top layer
 Middle layer
 Bottom layer
- 6 atoms/unit cell
 - ex: Cd, Mg, Ti, Zn

• APF = 0.74

• Coordination # = 12

• *c*/*a* = 1.633