### Ceramic crystal structures

Need to consider stoichiometry, relative size of ions, bond hybridization



### Rock salt structure

Example: NaCl (rock salt) structure



Adapted from Fig. 12.2, *Callister 7e.* 

$$Na^+ r_{Na} = 0.102 \text{ nm}$$

$$CI- r_{CI} = 0.181 \text{ nm}$$

$$r_{\rm Na}/r_{\rm Cl} = 0.564$$

 $\therefore$  cations prefer  $O_H$  sites

# MgO and FeO

### MgO and FeO also have the NaCl structure



O<sup>2-</sup>

 $r_{\rm O}$  = 0.140 nm

Mg<sup>2+</sup>

 $r_{\rm Mg}$  = 0.072 nm

 $r_{\rm Mg}/r_{\rm O} = 0.514$ 

 $\therefore$  cations prefer  $O_H$  sites

Adapted from Fig. 12.2, *Callister 7e.* 

So each oxygen has 6 neighboring Mg<sup>2+</sup>

## AX crystal structures

AX-Type Crystal Structures include NaCl, CsCl, and zinc blende

#### **Cesium Chloride structure:**



$$\frac{r_{\text{Cs}^+}}{r_{\text{Cl}^-}} = \frac{0.170}{0.181} = 0.939$$

∴ cubic sites preferred
So each Cs<sup>+</sup> has 8 neighboring Cl<sup>-</sup>

Adapted from Fig. 12.3, *Callister 7e.* 

## AX crystal structures

#### Zinc Blende structure



Adapted from Fig. 12.4, *Callister 7e.* 

Ex: ZnO, ZnS, SiC

$$\frac{r_{Zn^{2+}}}{r_{O^{2-}}} = \frac{0.074}{0.140} = 0.529 \implies O_H??$$

- Size arguments predict Zn<sup>2+</sup> in O<sub>H</sub> sites,
- In observed structure Zn<sup>2+</sup> in T<sub>D</sub> sites
- Why is  $Zn^{2+}$  in  $T_D$  sites?
  - bonding hybridization of zinc favors T<sub>D</sub> sites

So each Zn<sup>2+</sup> has 4 neighboring O<sup>2-</sup>

# AX<sub>2</sub> crystal structures

#### Fluorite structure



Adapted from Fig. 12.5, *Callister 7e.* 

- Calcium Fluorite (CaF<sub>2</sub>)
- · cations in cubic sites
- UO<sub>2</sub>, ThO<sub>2</sub>, ZrO<sub>2</sub>, CeO<sub>2</sub>
- antifluorite structure cations and anions reversed

# ABX<sub>3</sub> crystal structures

#### Perovskite

Ex: complex oxide  $BaTiO_3$ 

Adapted from Fig. 12.6, *Callister 7e.* 

