Diffusion

Diffusion - Mass transport by atomic motion

Mechanisms
*Gases & Liquids — random (Brownian) motion
*Solids — vacancy diffusion or interstitial diffusion

Interdiffusion: In an alloy, atoms tend to migrate from regions of high conc. to
regions of low conc.

Self-diffusion: In an elemental solid, atoms also migrate.



Interdiffusion
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Self-diffusion

Label some atoms After some time
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Diffusion mechanisms

Conditions:

*There must be an empty site available
* Atoms must have the energy to make the jump

Vacancy Diffusion:
» atoms exchange with vacancies
« applies to substitutional impurities atoms
 rate depends on:
--number of vacancies
--activation energy to exchange.
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Diffusion simulation

« Simulation of interdiffusion across an
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» Rate of substitutional diffusion depends on:
--vacancy concentration
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Diffusion flux

How do we quantify the amount or rate of diffusion?

moles (or mass) diffusing  mol or kg

J =Flux =
> (surfacearea)time)  cm2s m?2s

Measured empirically
* Make thin film (membrane) of known surface area
e Impose concentration gradient
 Measure how fast atoms or molecules diffuse through the membrane

M =
. = / - mass J o slope
At A dt diffused




Steady-state diffusion

Rate of diffusion independent of time

Flux proportional to concentration gradient = ——
ax
C, Fick’s first law of diffusion

C J- %
: adx
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. dC AC Cy-Cq4
if linear = =
dx Ax X9 — Xq

D = diffusion coefficient




Diffusion and temperature

 Diffusion coefficient increases with increasing T.

[ Qy )
D = D, exp L_EJ

p = diffusion coefficient [m?/s]

D, = pre-exponential [m?2/s]

Q, = activation energy [J/mol or eV/atom]
R = gas constant [8.314 J/mol-K]

T = absolute temperature [K]



Diffusion paths

A/\ngle of misalignment

\J'Jl? ] High-angle
(j} P | ‘grain
SOQ ﬁ boundary
Small-angle
— grain
ﬂ boundary
z /:)///
X 7 . . , ,
?5\7 Diffusion FASTER for... Diffusion SLOWER for...
\b AN
\Y . .
Angle of misalignment - open crystal structures close-packed structures

» materials w/secondary  * materials w/covalent
bonding bonding

« smaller diffusing atoms e larger diffusing atoms
* lower density materials  * higher density materials
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Engineering stress

* Tensile stress, o: e Shear stress, t:
Area, A i
Area, A \\ :
S /
F F f
T = S F
F, b N
O = t == —f or A
Ao In2 m2 o)
pud

original area
before loading



Engineering strain

* Tensile strain: T e Lateral strain:
7072
o) M - 6L
€ = : € = W
L L L (0]
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w o |
«-----7--- ) 2 Y
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0 L/2 5 i
e Shear strain:
e '
F v=Ax/ly=tan6
=/ >
}I 90°-0

( Adapted from Fig. 6.1 (a) and (c), Callister 7e. 1



Engineering strain

* Modulus of Elasticity, E:
(also known as Young's modulus)

e Hooke's Law:

o=Ec¢

Linear-

elastic iF
simple
tension
test
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Elastic properties of materials

e Poisson's ratio, v:

metals: v ~0.33
ceramics: v ~ 0.25
polymers: v ~ 0.40

Units:
E: [GPa] or [psi]
v: dimensionless

—For isotropic materials
E=2G (1+v)

—v > (0.50 density increases

—v < 0.50 density decreases
(voids form)
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Plastic deformation

» Simple tension test:

engineering stress, o

A

Elastic+Plastic
lat larger stress

permanent (plastic)
after load is removed

R

engineering strain, ¢

plastic strain

>

Adapted from Fig. 6.10 (a),

Callister 7e.
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Yield strength, Oy

e Stress at which noticeable plastic deformation has occurred.

~

when g, = 0.002

tensile stress, o

A

>

N I(_ engineering strain, €

€ p - 0.002 Adapted from Fig. 6.10 (a),

Callister 7e.
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Tensile strength, TS

« Maximum stress on engineering stress-strain curve.

TS
— F= fraclzture or
ultimate
strength
£ ® Neck — acts
£ 9 —
§ 2 T~ as stress
'@ concentrator
(O]

engineering strain

« Metals: occurs when noticeable necking starts.
* Polymers: occurs when polymer backbone chains are aligned and about to break.
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Ductility

- L
« Plastic tensile strain at failure: % EL = —_f o x 100

A smaller %EL

larger %EL \ A,

// Lo Ar Y ILy

/
[

Engineering tensile strain, ¢

Engineering

tensile

stress, O

Adapted from Fig. 6.13,
Callister 7e.

« Another ductility measure: % RA = o f x 100
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Toughness

* Energy to break a unit volume of material
« Approximate by the area under the stress-strain curve.

Engineering A small toughness (ceramics)

tensile | large toughness (metals)

stress, g |
I \

Adapted from Fig. 6.13,
Callister 7e.

Engineering tensile strain, ¢

Brittle fracture: elastic energy
Ductile fracture: elastic + plastic energy
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Hardness

* Resistance to permanently indenting the surface.
« Large hardness means:
--resistance to plastic deformation or cracking in
compression.
--better wear properties.

apply known force measure size
©g. ‘ of indent after
10 mm sphere removing load
|\'/| Smaller indents
d mean larger
hardness.
most brasses easy to machine cutting  nitrided
plastics Al alloys steels file hard tools steels diamond

- I S E—

increasing hardness
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Hardness Measurement

Table 6.5 Hardness Testing Techniques

Shape of Indentation Formula for
Test Indenter Side View Top View Load Hardness Number*

J P 2P

HB = —
—~] i 7D[D — VD’ - d’|

Brinell 10-mm sphere
of steel or
tungsten carbide

Vickers Diamond
microhardness pyramid

d ¢ i P HV = 1.854P/d}
<

Knoop Diamond ' b P HK = 14.2P/1°
microhardness pyramid -
Ih =7.11 F L_ __‘

bit =4.00 !

Rockwell and Diamond 120° 60 kg
Superficial cone 100 kg L\ Rockwell
Rockwell ot din : 150 kg

diameter o 15 kg
steel spheres /

2 For the hardness formulas given, P (the applied load) is in kg, while D, d, d,, and [ are all in mm.
Source: Adapted from H. W. Havden, W. G. Moffatt, and J. Wulff, The Structure and Properties of Materials, Vol. 111, Mechani-
cal Behavior. Copyright @ 1965 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.

30 kg }Superficial Rockwell
45 kg
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Dislocation and plastic deformation

« Cubic & hexagonal metals - plastic deformation by plastic shear or slip where
one plane of atoms slides over adjacent plane by defect motion (dislocations).

Shear Shear Shear
stress stress stress

Slip plane+
Edge ¢
dislocation g
line

Unit step
of slip

(a) (b) (c)
» |f dislocations don't move, deformation doesn't _

' Adapted from Fig. 7.1,
occur: Callister 7e.
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Dislocation motion

e Dislocation moves along slip plane in slip direction perpendicular to dislocation
line

e Edge dislocations move parallel to the applied force, screw dislocations move
perpendicular to the applied force

T @ Edge dislocation

(@)

Adapted from Fig. 7.2,
Callister 7e.

A
@ Screw dislocation

(b) 23

Direction
of motion AN

S




Deformation mechanisms

« Slip System
— Slip plane - plane allowing easiest slippage

— Slip direction - direction of movement
A

Adapted from Fig.
7.6, Callister 7e.

(b)

— FCC Slip occurs on {111} planes (close-packed) in <110> directions (close-
packed)

« => total of 12 slip systems in FCC

24



Slip in single crystals

* Crystals slip due to a resolved shear stress, .

* Applied tension can produce such a stress.

/ Applied tensile \

stress: o =F/A

F
A

O
i O
Q \
o ec’,\

&

/ Resolved shear \

stress: TR =Fg/Ag

slip plane .
normal, ng R

Tr= OCOSACOS ¢}

ﬂ?elation between \

o and 7g
tr= Fs [Ag
Fcos® A Alcos ¢
T; w
3R
R -/
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Critical resolved shear stress

» Condition for dislocation motion: TR > TCRSS

« Crystal orientation can make it easy or hard to move dislocation

Tr= OCOSACOS(

O

>

=45°
¢ =45°

l l i

T maximum at A = ¢ =45°

()

T |

|

|

T,'R =O ////IR = 0/2 : TR
"""" 7 W fowo

’ I

|
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Slip motion in polycrystals

« Stronger - grain boundaries pin
deformations

« Slip planes & directions (A, ¢) change
from one crystal to another.

» trWiIill vary from one crystal to another.

» The crystal with the largest tr yields
first.

* Other (less favorably oriented) crystals
yield later.

Y Adapted from Fig.

7.10, Callister 7e.
(Fig. 7.10 is
courtesy of C.
Brady, National
Bureau of
Standards [now the
National Institute of
Standards and

: * % Technology,

Gaithersburg, MD].)
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Strategies for strengthening: grain size reduction

O
» Grain boundaries are barriers to Grain boundary-. O O
slip. 000000 0PI
OO0O0OO00OO0OO O/ 0 _0O
 Barrier "strength” increases with lio ol OO00O0 9@ O OO OOOOO
increasing angle of misorientation. P Pane— 0000 00O\ 00 >
0000 00000
« Smaller grain size: more barriers OO0O0OO OOO0O0
to slip. Grain A

Adapted from Fig. 7.14, Callister 7e.

(Fig. 7.14 is from A Textbook of Materials
Technology, by Van Vlack, Pearson Education,
Inc., Upper Saddle River, NJ.)

-1/2
» Hall-Petch Equation: Oy = O, +k d-
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1/

Adapted from Fig. 7.4,

Callister 7e.

Compression

Strategies for strengthening: solid solutions

l

Tension
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Effects of stress at dislocations

C C
@ RePUISion @_,
Adapted from Fig. i B — — = =
7.5, Callister 7e. @ @

(a)
¢ T Dislocation
@ Attraction @ annihilation
9 - ! J_ + = ——
.

@ (Perfect crystal)
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Strengthening by alloying

e small impurities tend to concentrate at dislocations
* reduce mobility of dislocation ... increase strength

0l0/0000/0

OO0O00O0

OO0O0O0O0O
(b)

Adapted from Fig.
7.17, Callister 7e.



Strengthening by alloying

e large impurities concentrate at dislocations on low density side

OOOCO00
0000000

OO00O00O

Adapted from Fig. b
7.18, Callister 7e.
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Strategies for strengthening: Cold work (% CW)

 Room temperature deformation.

« Common forming operations change the cross sectional area:

-Forging force -Rolling @
m Ad
Ao 1 > i
Adapted from Fig. @

11.8, Callister 7e.

-Drawing force -Extrusion
A
w Ad - LR die holder
Aol : _)tensne force | |
m force —> =ign Ibillet extrusion | Ad
container die
A,-A
%CW =20 "¢ x 100

A, 33



Impact of cold work

As cold work is increased
* Yield strength (o,) increases.

» Tensile strength (TS) increases.
* Ductility (%EL or %AR) decreases.

Adapted from Fig. 7.20,
Callister 7e.
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