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Diffusion -  Mass transport by atomic motion 

Mechanisms 
• Gases & Liquids – random (Brownian) motion 
• Solids – vacancy diffusion or interstitial diffusion 

Interdiffusion:  In an alloy, atoms tend to migrate from regions of high conc. to 
regions of low conc. 

Self-diffusion:  In an elemental solid, atoms also migrate. 
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Initially 

Adapted from 
Figs. 5.1 and 
5.2, Callister 
7e. 

After some time 
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Label some atoms After some time 
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Vacancy Diffusion: 
•  atoms exchange with vacancies 

•  applies to substitutional impurities atoms  
•  rate depends on: 
     --number of vacancies 
     --activation energy to exchange. 

increasing elapsed time 

Conditions: 
• There must be an empty site available 
•  Atoms must have the energy to make the jump 
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• Simulation of interdiffusion across an 
interface: 

•  Rate of substitutional diffusion depends on: 
     --vacancy concentration 
     --frequency of jumping. 

(Courtesy P.M. Anderson) 
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How do we quantify the amount or rate of diffusion? 

Measured empirically 
•  Make thin film (membrane) of known surface area 
•  Impose concentration gradient 
•  Measure how fast atoms or molecules diffuse through the membrane 
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dx
dCDJ −=

Fick’s first law of diffusion C1 
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•  Diffusion coefficient increases with increasing T. 

D =
 Do exp 
 
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R T 

= pre-exponential [m2/s] 

= diffusion coefficient [m2/s] 

= activation energy [J/mol or eV/atom]  

= gas constant [8.314 J/mol-K] 
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Diffusion FASTER for... 

• open crystal structures 

• materials w/secondary 
    bonding 

• smaller diffusing atoms 

• lower density materials 

Diffusion SLOWER for... 

• close-packed structures 

• materials w/covalent 
    bonding 

• larger diffusing atoms 

• higher density materials 
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•  Shear stress, τ: 
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•  Tensile strain: •  Lateral strain: 

•  Shear strain: 

θ
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Adapted from Fig. 6.1 (a) and (c), Callister 7e. 

δ
/2 

δ
L /2 

L 
o w 

o 



12 

• Modulus of Elasticity, E: 
    (also known as Young's modulus) 

• Hooke's Law: 

σ = E ε
 σ
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• Poisson's ratio, ν: 

Units: 
E:  [GPa] or [psi] 
ν:  dimensionless 

– ν > 0.50  density increases 
– ν < 0.50  density decreases   
                    (voids form) 

εL


ε


-
 ν


ε

ν
=
-
 L


ε


metals:  ν ~ 0.33 
ceramics: ν ~ 0.25 
polymers: ν ~ 0.40 

– For isotropic materials 
E = 2G (1+ν) 
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• Simple tension test: 

engineering stress, σ 

engineering strain, ε  

Elastic+Plastic  
at larger stress 

permanent (plastic)  
after load is removed 

εp


plastic strain 

Elastic  

initially 

Adapted from Fig. 6.10 (a), 
 Callister 7e.  
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• Stress at which noticeable plastic deformation has occurred. 

when εp  = 0.002  

Adapted from Fig. 6.10 (a), 
 Callister 7e.  

tensile stress,  σ


engineering strain,  ε


σy


ε
p  = 0.002 
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•  Metals:  occurs when noticeable necking starts. 
•  Polymers:  occurs when polymer backbone chains are aligned and about to break. 

σy 
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•  Plastic tensile strain at failure: 

Adapted from Fig. 6.13, 
Callister 7e. 

•  Another ductility measure: 100 x 
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•  Energy to break a unit volume of material 
•  Approximate by the area under the stress-strain curve. 

Brittle fracture:    elastic energy 
Ductile fracture:  elastic + plastic energy 

Adapted from Fig. 6.13, 
Callister 7e. 

very small toughness 

(unreinforced polymers) 
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•  Resistance to permanently indenting the surface. 
•  Large hardness means: 
    --resistance to plastic deformation or cracking in 
       compression. 
    --better wear properties. 

e.g.,   
10 mm sphere 

apply known force  measure size  
of indent after  
removing load 

d D 
Smaller indents  
mean larger  
hardness. 

increasing hardness 

most  
plastics 

brasses  
Al alloys 

easy to machine  
steels file hard 

cutting  
 tools 

nitrided  
steels diamond 
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Table 6.5 
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•  Cubic & hexagonal metals - plastic deformation by plastic shear or slip where 
one plane of atoms slides over adjacent plane by defect motion (dislocations). 

•    If dislocations don't move, deformation doesn't 
occur! Adapted from Fig. 7.1, 

Callister 7e. 
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Edge dislocation 

Screw dislocation 

Adapted from Fig. 7.2, 
Callister 7e. 

•  Dislocation moves along slip plane in slip direction perpendicular to dislocation 
line 

•  Edge dislocations move parallel to the applied force, screw dislocations move 
perpendicular to the applied force  
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•  Slip System 
–  Slip plane - plane allowing easiest slippage 

–  Slip direction - direction of movement 

–  FCC Slip occurs on {111} planes (close-packed) in <110> directions (close-
packed) 

•  => total of 12 slip systems in FCC 

Adapted from Fig. 
7.6, Callister 7e. 
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• Crystals slip due to a resolved shear stress, τR.  

• Applied tension can produce such a stress.  

slip plane 
normal, ns 

Resolved shear  
stress:  τR
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• Condition for dislocation motion: CRSS  τ>τR

• Crystal orientation can make it easy or hard to move dislocation 

φλσ=τ coscosR

τ  maximum at λ = φ = 45º 
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•  Stronger - grain boundaries pin 
deformations 

•  Slip planes & directions (λ, φ) change 
from one crystal to another. 

•  τR will vary from one crystal to another. 

•  The crystal with the largest τR yields 
first. 

•  Other (less favorably oriented) crystals 
yield later. 

Adapted from Fig. 
7.10, Callister 7e. 
(Fig. 7.10 is 
courtesy of C. 
Brady, National 
Bureau of 
Standards [now the 
National Institute of 
Standards and 
Technology, 
Gaithersburg, MD].) 

σ


300 µm 
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•  Grain boundaries are barriers to 
slip. 

•  Barrier "strength” increases with 
increasing angle of misorientation. 

•  Smaller grain size: more barriers 
to slip. 

•  Hall-Petch Equation: 
21 /

yoyield dk −+σ=σ

Adapted from Fig. 7.14, Callister 7e. 
(Fig. 7.14 is from A Textbook of Materials 
Technology, by Van Vlack, Pearson Education, 
Inc., Upper Saddle River, NJ.) 
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Adapted from Fig. 7.4, 
Callister 7e. 
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Adapted from Fig. 
7.5, Callister 7e.  
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•  small impurities tend to concentrate at dislocations 
•  reduce mobility of dislocation ∴ increase strength  

Adapted from Fig. 
7.17, Callister 7e.  
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•  large impurities concentrate at dislocations on low density side 

Adapted from Fig. 
7.18, Callister 7e.  
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•  Room temperature deformation. 

•  Common forming operations change the cross sectional area: 

Adapted from Fig. 
11.8, Callister 7e.  
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Adapted from Fig. 7.20, 
Callister 7e.   

•  Yield strength (σy) increases. 

•  Tensile strength (TS) increases. 

•  Ductility (%EL or %AR) decreases. 

As cold work is increased 


