Polymers

Poly mer many repeat unit

Bulk or commodity polymers

Table 14.3 A Listing of Repeat Units for 10 of the More Common Polymeric Materials

Polymer		Repeat Unit
	Polyethylene (PE)	$\begin{array}{ccc} H & H \\ - & I \\ - C - C - \\ - & I \\ H & H \end{array}$
	Poly(vinyl chloride) (PVC)	$ \begin{array}{ccc} H & H \\ $
	Polytetrafluoroethylene (PTFE)	$ \begin{array}{ccc} \mathbf{F} & \mathbf{F} \\ & \\ -\mathbf{C} - \mathbf{C} - \\ \mathbf{C} - \\ \mathbf{F} & \mathbf{F} \end{array} $
	Polypropylene (PP)	$\begin{array}{ccc} H & H \\ & \\ -C - C - \\ & \\ H & CH_3 \end{array}$

Bulk or commodity polymers

Phenol-formaldehyde (Bakelite)

Bulk or commodity polymers

Table 14.3 A Listing of Repeat Units for 10 of the More Common Polymeric Materials

Molecular weight

• Molecular weight, *M_i*: Mass of a mole of chains.

Adapted from Fig. 14.4, Callister 7e.

Molecular structures

• Covalent chain configurations and strength:

Adapted from Fig. 14.7, Callister 7e.

Tacticity

Tacticity – stereoregularity of chain

CH_3 C=C H_2 CH_2 CH

cis

cis-isoprene (natural rubber)

bulky groups on same side of chain

trans

trans-isoprene (gutta percha)

bulky groups on opposite sides of chain

Copolymers

A – 🔸

End to end distance

Polymer crystalline structure

Polymer crystalline structure

Polymers rarely 100% crystalline Too difficult to get all those chains aligned

crystalline region

- % Crystallinity: % of material that is crystalline.
 - -- *TS* and *E* often increase with % crystallinity.
 - -- Annealing causes crystalline regions to grow. % crystallinity increases.

amorphous region

Adapted from Fig. 14.11, *Callister 6e.* (Fig. 14.11 is from H.W. Hayden, W.G. Moffatt, and J. Wulff, *The Structure and Properties of Materials*, Vol. III, *Mechanical Behavior*, John Wiley and Sons, Inc., 1965.)

T_m and T_g

What factors affect T_m and T_g ?

Mechanical properties

i.e. stress-strain behavior of polymers

Brittle and plastic behavior

Stress-strain curves adapted from Fig. 15.1, *Callister 7e.* Inset figures along plastic response curve adapted from Figs. 15.12 & 15.13, *Callister 7e.* (Figs. 15.12 & 15.13 are from J.M. Schultz, *Polymer Materials Science*, Prentice-Hall, Inc., 1974, pp. 500-501.)

Tensile response: elastomers

Stress-strain curves adapted from Fig. 15.1, *Callister 7e.* Inset figures along elastomer curve (green) adapted from Fig. 15.15, *Callister 7e.* (Fig. 15.15 is from Z.D. Jastrzebski, *The Nature and Properties of Engineering Materials*, 3rd ed., John Wiley and Sons, 1987.)

- Compare to responses of other polymers:
 - -- brittle response (aligned, crosslinked & networked polymer)
 - -- plastic response (semi-crystalline polymers)

Thermoplastic vs. thermosets

- Thermoplastics:
 - -- little crosslinking
 - -- ductile
 - -- soften w/heating
 - -- polyethylene polypropylene polycarbonate polystyrene

• Thermosets:

- -- large crosslinking
 - (10 to 50% of mers)
- -- hard and brittle
- -- do NOT soften w/heating
- -- vulcanized rubber, epoxies, polyester resin, phenolic resin

Adapted from Fig. 15.19, *Callister 7e*. (Fig. 15.19 is from F.W. Billmeyer, Jr., *Textbook of Polymer Science*, 3rd ed., John Wiley and Sons, Inc., 1984.)

Strain rates and T

- Decreasing T...
 - -- increases E
 - -- increases TS
 - -- decreases %EL
- Increasing strain rate...
 - -- same effects as decreasing *T*.

Adapted from Fig. 15.3, *Callister 7e.* (Fig. 15.3 is from T.S. Carswell and J.K. Nason, 'Effect of Environmental Conditions on the Mechanical Properties of Organic Plastics", *Symposium on Plastics*, American Society for Testing and Materials, Philadelphia, PA, 1944.)

Composites

- Composites:
 - -- Multiphase material w/significant proportions of each phase.
- Matrix:
 - -- The continuous phase
 - -- Purpose is to:
 - transfer stress to other phases
 - protect phases from environment
 - -- Classification: MMC, CMC, PMC

metal ceramic polymer

- Dispersed phase:
 - Purpose: enhance matrix properties.
 MMC: increase σ_y, *TS*, creep resist.
 CMC: increase *Kc*
 - PMC: increase *E*, σ_y , *TS*, creep resist.
 - -- Classification: Particle, fiber, structural

Reprinted with permission from D. Hull and T.W. Clyne, *An Introduction to Composite Materials*, 2nd ed., Cambridge University Press, New York, 1996, Fig. 3.6, p. 47.

16.2, Callister 7e.

Particle-reinforced Fiber-reinforced

- Elastic modulus, *E*_c, of composites:
 - -- two approaches.

Adapted from Fig. 16.3, *Callister 7e.* (Fig. 16.3 is from R.H. Krock, *ASTM Proc*, Vol. 63, 1963.)

Structural

- Application to other properties:
 - -- Electrical conductivity, σ_e : Replace *E* in equations with σ_e .
 - -- Thermal conductivity, *k*: Replace *E* in equations with *k*.

Fiber Materials

- Whiskers Thin single crystals large length to diameter ratio graphite, SiN, SiC high crystal perfection – extremely strong, strongest known very expensive
- Fibers
 - polycrystalline or amorphous
 - generally polymers or ceramics
 - Ex: AI_2O_3 , Aramid, E-glass, Boron, UHMWPE
- Wires
 - Metal steel, Mo, W

Fiber alignment

Fiber alignment

(a) Fig. 4.24(a), p. 151; (b) Fig. 4.24(b) p. 151. (Courtesy I.J. Davies) Reproduced with permission of CRC Press, Boca Raton, FL.

Fiber alignment

• Ex: For fiberglass, fiber length > 15 mm needed

Fiber reinforcement

Values from Table 16.3, *Callister 7e*. (Source for Table 16.3 is H. Krenchel, *Fibre Reinforcement*, Copenhagen: Akademisk Forlag, 1964.)

-- TS in fiber direction:

Structural composites

Particle-reinforced Fiber-reinforced

- Stacked and bonded fiber-reinforced sheets
 - -- stacking sequence: e.g., 0°/90°
 - -- benefit: balanced, in-plane stiffness

• Sandwich panels

- -- low density, honeycomb core
- -- benefit: small weight, large bending stiffness

Structural

Adapted from Fig. 16.16, *Callister 7e*.

Composite benefits

