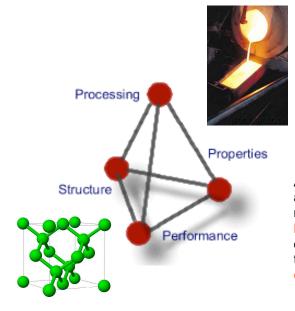
MSE 170: Introduction to Materials Science and Engineering

Instructor Prof. Christine Luscombe

Email luscombe@u.washington.edu

Office 302B Roberts Hall

Office hours 10:00am – 12:00pm, Friday, or by appointment

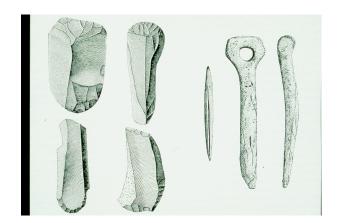

Course website http://courses.washington.edu/mse170

Lab TAs:

Betzaida Garcia bbg5@u.washington.edu Mueller 168

Carolyn Gresswell carolyn.gresswell@gmail.com Mueller 168

What is Materials Science and Engineering?



An interdisciplinary field that addresses the fundamental relationships between the Processing, Structure and Properties of materials and develops them for the desired technological application (Performance).

Materials through the ages

Stone Age (beginning of life - 3000 BC)

Feature: Using naturally occurring materials with only changes in shape

Materials through the ages

Bronze Age (3000 BC – 1200 BC)

Copper and Tin alloy

Ability to modify materials by refining (using heat), chemical modifications (alloying) and mechanical deformation (cold working)

Imperfection (Ch. 4) Diffusion (Ch. 5) Phase diagram (Ch. 9) Metal Processing (Ch. 11)

Materials through the ages

Iron Age (1200 BC - Present)

Casting and alloying wasn't perfected until 16th century

Mastery of Steel (Iron alloy) technology enables Industrial Revolution in the 18th and 19th century

Ability to heat treat at high temperature, control microstructure at different length scale and ability to design specific microstructures for specific properties

Phase transformation (Ch. 10)

Materials through the ages

Plastic Age (1940 - Present)

Discovery of polymers, and the ability to synthesize and process polymers.

Materials through the ages

Silicon Age (1950 - Present)

Commercialization of silicon technology (integrated circuits, electronic devices, etc...) leads to the information age, which gives boost to human productivity

Electronic Prop. (Ch.18) Thermal Prop. (Ch.19) Magnetic Prop. (Ch.20) Optical Prop. (Ch.21)

Ability to control alloying accurately, ability to make thin films

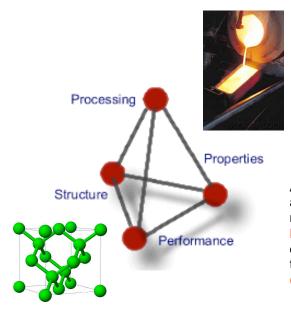
Future

1. Nanotechnology

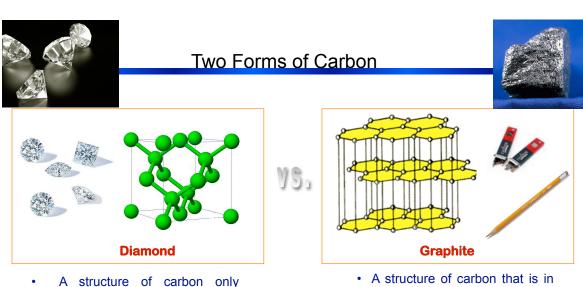
- Synthesis and characterizations of nanomaterials and nanostructure

2. Biotechnology

- biomimetics and biomaterials


3. Energy/Environmental

- Next generation energy conversion

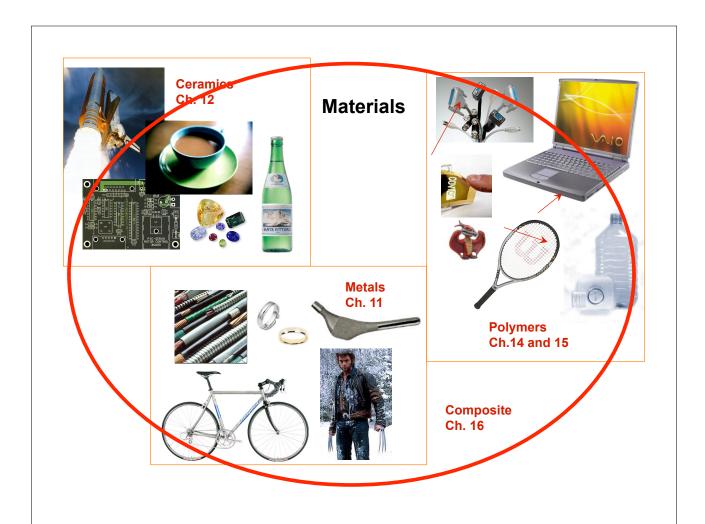

4. Information Technology

- Materials informatics

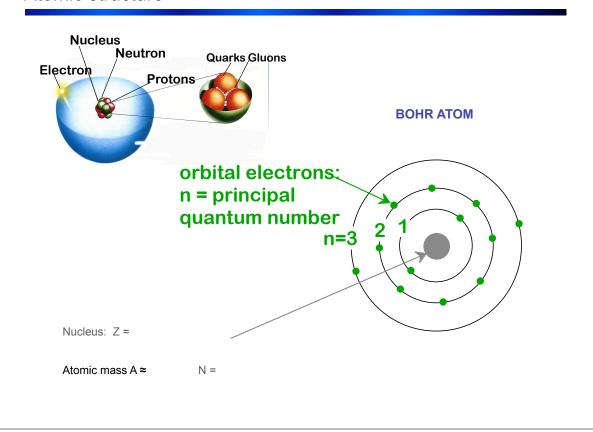
What is Materials Science and Engineering?

An interdisciplinary field that addresses the fundamental relationships between the Processing, Structure and Properties of materials and develops them for the desired technological application (Performance).

• The hardest known material.


produced

temperature and pressure.


- A structure of carbon that is in equilibrium (it is stable and will not change form over time).
- It is soft.

Atomic structure and interatomic bonding (Ch.2) Crystallography (Ch. 3), Imperfection (Ch. 4)

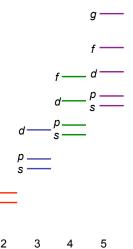
high

Atomic structure

Electronic structure

Valence electrons determine all of the following properties:

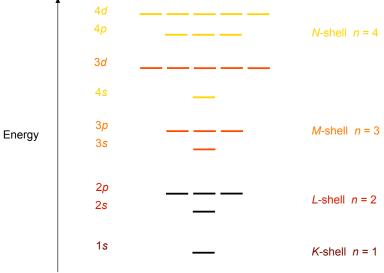
Electrons have wavelike and particulate properties.


- This means that electrons are in orbitals defined by a probability.
- Each orbital at discrete energy level determined by quantum numbers.

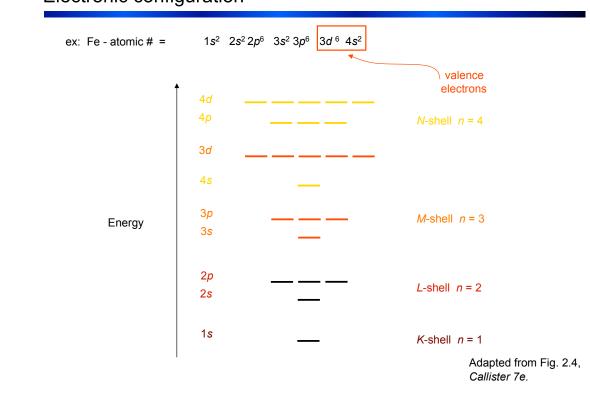
Quantum #

Designation

Electronic structure


Principal	Shell	Subshells	No. of states	Number of electrons	
quantum no.	designation			Per subshell	Per shell
1	К	s	1	2	2
2	L	s	1	2	8
		р	3	6	
3	М	s	1	2	18
		р	3	6	
		d	5	10	
4	N	s	1	2	32
		р	3	6	
		d	5	10	
		f	7	14	

Electron energy states


Electrons...

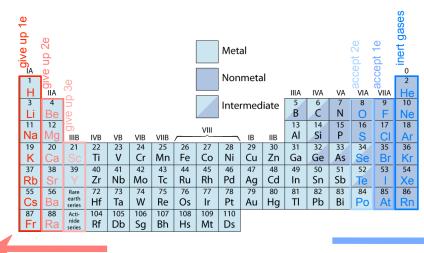
- have discrete energy states
- tend to occupy lowest available energy state.

Adapted from Fig. 2.4, *Callister 7e.*

Electronic configuration

Survey of elements

Most elements: Electron configuration not stable.

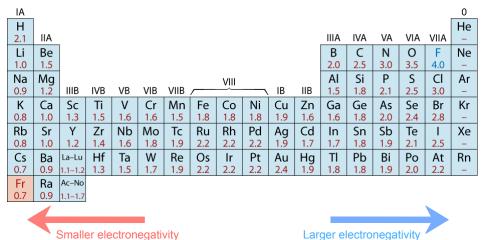

<u>Element</u>	Atomic #	Electron configuration
Hydrogen	1	1s ¹
Helium	2	1s ² (stable)
Lithium	3	1s ² 2s ¹
Beryllium	4	1s ² 2s ²
Boron	5	1s ² 2s ² 2p ¹
Carbon	6	1s ² 2s ² 2p ²
Neon	10	1s ² 2s ² 2p ⁶ (stable)
Sodium	11	1s ² 2s ² 2p ⁶ 3s ¹
Magnesium	12	1s ² 2s ² 2p ⁶ 3s ²
Aluminum	13	1s ² 2s ² 2p ⁶ 3s ² 3p ¹
Argon	18	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ (stable)
	•••	
Krypton	36	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ (stable)

• Why? Valence (outer) shell usually not filled completely.

Adapted from Table 2.2, *Callister 7e.*

The periodic table

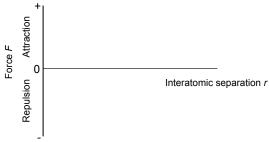
• Columns: Similar Valence Structure



Electropositive elements: Readily give up electrons to become + ions. Electronegative elements: Readily acquire electrons to become - ions.

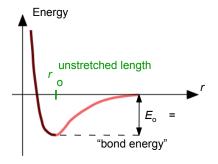
Adapted from Fig. 2.6, *Callister 7e.*

Electronegativity

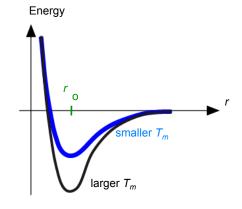

- Ranges from 0.7 to 4.0,
- · Large values: tendency to acquire electrons.

Adapted from Fig. 2.7, Callister 7e. (Fig. 2.7 is adapted from Linus Pauling, The Nature of the Chemical Bond, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

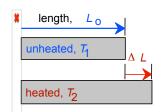
Bonding forces and energies



Properties from bonding

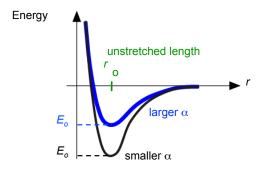

• Bond length, r

• Bond energy, E_o

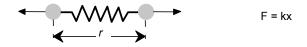

• Melting Temperature, T_m

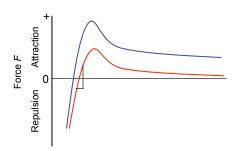
 T_m is larger if E_o is larger.

Properties from bonding: thermal expansion coefficient

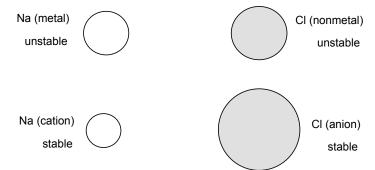

- Coefficient of thermal expansion, $\boldsymbol{\alpha}$

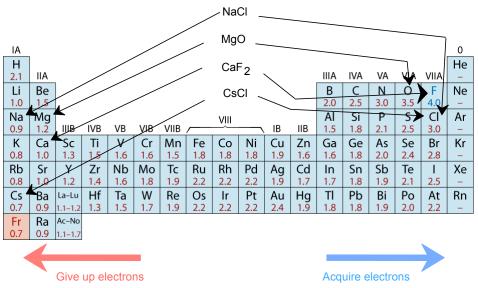
coeff. thermal expansion


$$\frac{\Delta L}{L_0} = \alpha \left(T_2 - T_1 \right)$$


• α ~ symmetry at r_0

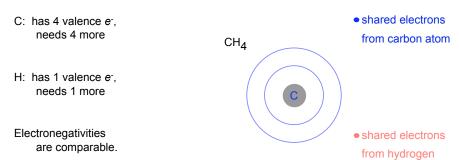
 α is larger if $\emph{E}_{\rm o}$ is smaller.


Properties from bonding: modulus E


Types of bonding: ionic

- Occurs between + and ions.
- Requires electron transfer.
- Large difference in electronegativity required.
- Example: NaCl

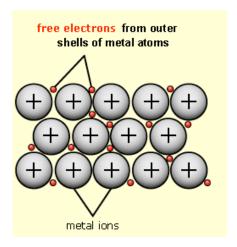
Examples of ionic bonding


· Predominant bonding in Ceramics

Adapted from Fig. 2.7, Callister 7e. (Fig. 2.7 is adapted from Linus Pauling, The Nature of the Chemical Bond, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

Covalent bonding

- •similar electronegativity :: share electrons
- •bonds determined by valence s & p orbitals dominate bonding
- •Example: CH₄



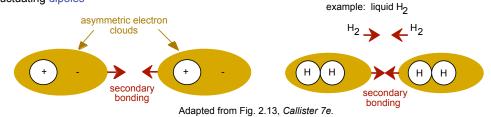
Adapted from Fig. 2.10, Callister 7e.

atoms

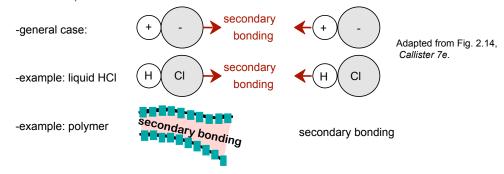
Metallic bonding

- •lons in a sea of electrons
- •Attraction between free electrons and metal ions

Ionic-covalent mixed bonding


% ionic character =
$$\left(1 - e^{-\frac{(X_A - X_B)^2}{4}}\right) x (100 \%)$$

where $X_{\rm A}$ & $X_{\rm B}$ are Pauling electronegativities


Secondary bonding

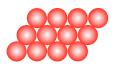
Arises from interaction between dipoles

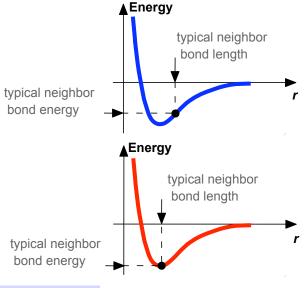
Fluctuating dipoles

• Permanent dipoles-molecule induced

Summary

Туре	Bond Energy	Comments	
Ionic	Large!	Non-directional (ceramics)	
Covalent	Variable Diamond (large) Bismuth (small)	Directional (semiconductors, ceramics, polymer chains)	
Metallic	Variable Tungsten (large) Mercury (small)	Non-directional (metals)	
Secondary	Smallest	Directional Interchain (polymer) Intermolecular	


Ceramics	Large bond energy	
(Ionic & covalent bonding)	Large T_m and E , small α	
Metals	Variable bond energy	
(Metallic bonding)	Moderate T_m , E , and α	
Polymers (Covalent & secondary)	Directional properties, Secondary bonding dominates Small T_m and E, large α	


Energy and packing

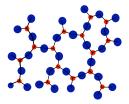
• Non dense, random packing

· Dense, ordered packing

Dense, ordered packed structures tend to have lower energies.

Materials and packing

Crystalline materials...


Noncrystalline materials...

Adapted from Fig. 3.22(a), Callister 7e.

Oxygen

noncrystalline SiO₂ Adapted from Fig. 3.22(b), Callister 7e.

Crystals

Unit cell:

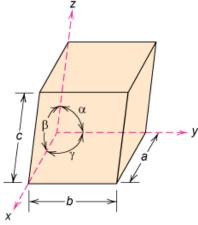
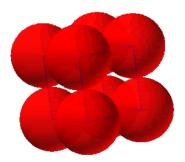
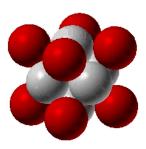



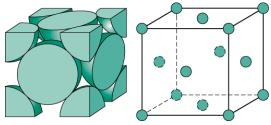
Fig. 3.4, Callister 7e.

a, b, and c are the lattice constants

Simple cubic structure (SC)

- Rare due to low packing density (only Po has this structure)
 Close-packed directions are cube edges.


(Courtesy P.M. Anderson)



Face centered cubic structure (FCC)

- · Atoms touch each other along face diagonals.
 - --Note: All atoms are identical; the face-centered atoms are shaded differently only for ease of viewing.

ex: Al, Cu, Au, Pb, Ni, Pt, Ag

Adapted from Fig. 3.1, Callister 7e.

(Courtesy P.M. Anderson)

Atomic packing factor (APF): FCC

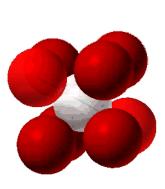
close-packed directions

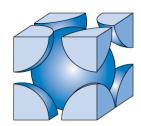
contains $6 \times 1/2 + 8 \times 1/8 =$ 4 atoms/unit cell

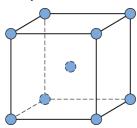
Theoretical density, $\boldsymbol{\rho}$

Density = ρ = Mass of atoms in unit cell Total volume of unit cell

$$\rho = \frac{nA}{V_C N_A}$$

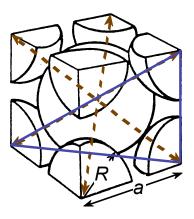

where

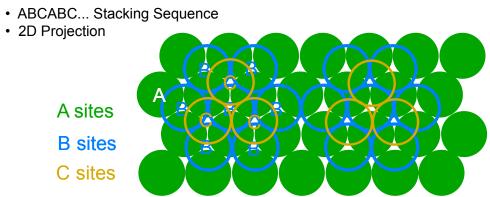

n = number of atoms/unit cellA = atomic weight V_C = Volume of unit cell = a^3 for cubic N_A = Avogadro's number = 6.023×10^{23} atoms/mol


Body centered cubic structure (BCC)

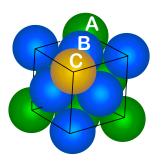
- · Atoms touch each other along cube diagonals.
 - --Note: All atoms are identical; the center atom is shaded differently only for ease of viewing.

ex: Cr, W, Fe (α), Tantalum, Molybdenum




Adapted from Fig. 3.2, Callister 7e.

(Courtesy P.M. Anderson)


Atomic packing factor (APF): BCC

FCC stacking sequence

• FCC Unit Cell

Hexagonal close-packed structure (hcp)

- ABAB... Stacking Sequence
- 3D Projection

 A sites

 B sites

 A sites

 Adapted from Fig. 3.3(a),

 Callister 7e.

• 2D Projection

Top layer

Middle layer

Bottom layer

6 atoms/unit cell

ex: Cd, Mg, Ti, Zn