Point coordinates

“Z 111  Point coordinates for unit cell center are
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Directions

Algorithm

1. Vector repositioned (if necessary) to pass
through origin.

2. Read off projections in terms of
unit cell dimensions a, b, and ¢

3. Adjust to smallest integer values

» y 4. Enclose in square brackets, no commas

[xyz]

ex:1,0,% => 2,0,1 =>[201]

-1,1,1 => [111] where overbar represents a negative index

families of directions <xyz>



Crystallographic planes

Miller Indices: Reciprocals of the (three) axial intercepts for a plane, cleared of
fractions & common multiples. All parallel planes have same Miller indices.

Algorithm
1. Read off intercepts of plane with axes in terms of a, b, ¢
2. Take reciprocals of intercepts
3. Reduce to smallest integer values
4. Enclose in parentheses, no commas i.e., (hkl)
Z
example a b C c
1. Intercepts 1 1 o0
2. Reciprocals 1/1 171 1/
3. Reduction 1 1 0 —
a b

4. Miller Indices  (110)



Crystallographic planes

example

1.
2.

3.

4.

Intercepts

Reciprocals

Reduction

Miller Indices

example

1.
2.

3.

4.

Intercepts

Reciprocals

Reduction

Miller Indices

a b c
1/2 00 o0
12 1/ 1/
2 0 0
2 0 0
(200)
a b C

1/2 1 3/4
12 11 1A

2 1 4/3
6 3 4

(634)

A 4

\ 4



Crystallographic planes

(110) Plane referenced to the
origin at point O

Family of Planes {hkl} B - B
Ex: {100} = (100), (010),(001),(100), (010),(001) /

pa (001) Plane referenced to
/ the origin at point O

\%4
Other equivalent

'
l' ’,-"lv
Of' - .Y ¥ (110) planes
/! (b)
s | z
VA | A (111) Plane referenced to
" ' the origin at point O
l
| Other equivalent
/" _____ (001) planes
/

N Other equivalent /
(111) planes

(a)
X
(©)

Adapted from Fig. 3.9, Callister 7e.



Linear density: BCC

Number of atoms
Unit length of direction vector

Linear Density of Atoms = LD =

' [100:LD=_1 =_\3
//C) a 4R
L

{0 [M11:LD= 2 =_1

4R 2R




Linear density (FCC) and planar densitry

[110]

a\

Planar Density of Atoms = PD =

ex: linear density of Al in [110] direction

a=0.405 nm
# atoms
4, 3
LD = = 3.5nm
/2 a
Iength/'

Number of atoms

Area of plane



Planar density

* WWe want to examine the atomic packing of crystallographic planes

* Iron foil can be used as a catalyst. The atomic packing of the exposed planes is
important.

a) Draw (100) and (111) crystallographic planes for Fe.
b)  Calculate the planar density for each of these planes.
R =0.1241 nm and Fe has a BCC structure at room temperature

2D repeat unit

OépﬂR
G-

atoms

2D repeat unit ~ 1

Planar Density = =

area / 4./3 A

2D repeat unit 3

Adapted from Fig. 3.2(c), Callister 7e.




Planar density

N N /
G pa Pa O “
L/ A JA A\
\\ 7
C A < b
L/ \V L \
\\ 7
e
atoms
\

2D repeat unit

Planar Density =

area

2D repeat unit

area

\/—ah =\/—az=\/3—

RRCY
3

atoms

nm?2

4\/3—R2

3

16 |7,

3

0.70 x 10"°

atoms

mZ




Ceramic crystal structures

« Site selection rules

1. Like charges do not touch
2. Charge balance (stoichiometry)

Adapted from Fig. 12.1,
Callister 7e.

unstable stable stable



Coordination number and ionic radii

roo..
o _ _ cation
* Coordination # increases with

anion
Issue: How many anions can you
arrange around a cation?

" O o
" cation Coord ¢ _ ZnS
Farion 4 (zincblende)
. Adapted from Fig.
<0.155 2 linear 12.4, Callister 7Ie.
0.155-0.225 3 triangular NaCl
(sodium
0.225-0.414 4 Tg chloride)
Adapted from Fig.
12.2, Callister 7e.
0.414 - 0.732 6 Oy CsCl
(cesium
0.732-1.0 8 cubic chloride)
Adapted from Fig.
Adapted from Table 12.2, 12.3, Callister 7e.

Callister 7e.



AX crystal structures

AX-Type Crystal Structures include NaCl, CsCl, and zinc blende

Cesium Chloride structure:

F~ +
Ocst  cst 0170 939
r 0181
Qc

*. cubic sites preferred

So each Cs* has 8 neighboring CI-

Adapted from Fig.
12.3, Callister 7e.



Rock salt structure (NaCl)

O Nat  r,=0.102 nm

i eﬂo O - ry=0.181nm

Lol & nlrg=0.564

. cations prefer O sites

Adapted from Fig.
12.2, Callister 7e.



Single crystal vs. Polycrystalline structures

Single crystals: Atoms all have the same arrangement throughouit.

Polycrystalline: Many crystals put together.

Nb-Hf-W plate with an electron beam weld.
Each "grain" is a single crystal.
If grains are randomly oriented,
overall component properties are not directional.
Grain sizes typ. range from 1 nm to 2 cm
(i.e., from a few to millions of atomic layers).

Anisotropic

m"“

¥ Adapted from Fig. K,
(M color inset pages of
LY Callister 5e.
IR (Fig. Kis courtesy of
. Paul E. Danielson,
B Teledyne Wah Chang
§ Albany)

Isotropic



Polycrystalline structures

Grain Boundaries

regions between crystals

transition from lattice of one region to

that of the other

slightly disordered

low density in grain boundaries
o high mobility
o high diffusivity
o high chemical reactivity

Angle of misalignment

Angle of misalignment

Adapted from Fig. 4.7, Callister 7e.

High-angle

__ grain

boundary

Small-angle

rain
_,__\_Q/_bc?undary



Single crystal vs. Polycrystalline structures

E (diagonal) = 273 GPa

) Data from Table 3.3,
» Single Crystals ./. Callister 7e.
-Properties vary with (Source of data is R.W.

direction: anisotropic. Hertzberg, Deformation
P and Fracture Mechanics

-Examplle:. the m_odulus | of Engineering
of elasticity (E) in BCC iron: Materials, 3rd ed., John
./. Wiley and Sons, 1989.)

E (edge) = 125 GPa

» Polycrystals
-Properties may/may not
vary with direction.
-If grains are randomly
. . - Bureau of Standards
riented: isotropic. ’
oriented: isot opic Washington, DC [now

(EpOIY ron = 210 GPa)7 - the National Institute of
-If grains are textured, A | Standards and

anisotropic. \ Technology,

Adapted from Fig. 4.14
(b), Callister 7e.

(Fig. 4.14(b) is courtesy
of L.C. Smith and C.
Brady, the National

Gaithersburg, MD].)




Point defects

* \Vacancies:

-vacant atomic sites in a structure.

Vacancy
distortion
of planes
» Self-Interstitials:
-"extra" atoms positioned between atomic sites.
self-
interstitial

distortion

of planes ~ &l -) * * *




Equilibrium concentration of defects

» Equilibrium concentration varies with temperature

Each lattice site is a potential vacancy

No. of defects Activation energy
\ A/\

Ny - Q,
No. of potential - eXp L —J
_—pN

k

v

Boltzmann's constant

defect sites.



Point defects in alloys

Two outcomes if impurity (B) added to host (A):

» Solid solution of B in A (i.e., random dist. of point defects)

e .

Substitutional solid soln. Interstitial solid soln.
(e.g., Cuin Ni) (e.g., CinFe)

 Solid solution of B in A plus particles of a new
phase (usually for a larger amount of B)

TIJILILIILTIILTLIT X )8 Second phase part|C|e
. --different composition
o ] --often different structure.

T
X




Imperfections of solids

Conditions for substitutional solid solution (S.S.)
W. Hume — Rothery rule
1. Ar (atomic radius) < 15%
2. Same crystal structure for pure metals
3. Proximity in periodic table
i.e., similar electronegativities
4. Valency

All else being equal, a metal will have a greater tendency to dissolve a
metal of higher valency than one of lower valency

Element  Atomic Crystal  Electro- Valence
Radius Structure  nega-
(nm) tivity

1. Would you predict more Al or
Ag to dissolve in Zn? Cu 0.1278 FCC 1.9 +2

| C  0.071
?
2. More Zn or Al in Cu” H 0.046
O 0.060
Ag 0.1445 FCC 1.9 +1
Table on p. 106, Callister 7e. Qli 8::‘212; Egg :|I g 1:23
Zn 0.1332 HCP 1.6 +2




Line defects

sLinear Defects (Dislocations)

*Are one-dimensional defects around which atoms are misaligned
*Edge dislocation:

sextra half-plane of atoms inserted in a crystal structure

*b 1 to dislocation line
*Screw dislocation:

espiral planar ramp resulting from shear deformation

*b || to dislocation line Burgers vector

b\

Edge
dislocation 1
line

Fig. 4.3, Callister 7e.



Screw defects
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Adapted from Fig. 4.4, Callister 7e.



Mixed defects
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Adapted from Fig. 4.5, Callister 7e.



Planar defects

*External defects
*On the surface
eUnsatisfied bonds

e|[nternal defects
*Grain boundaries

T
(&;jf 5 High-angle
\\\\\ ﬁfbogljgcljnary

XXX Small-angle

S o

/
/
NP /
3 /
/
/.
L \

Angle of misalignment



Planar defects

e Twin boundary (plane)
Essentially a reflection of atom positions across the twin plane.

. * Twin plane (boundary)
¢ & ®
L 4 4
Adapted from Fig. 4.9, Callister 7e.
L ® L

e Stacking faults
For FCC metals an error in ABCABC packing sequence
Ex: ABCABABC



