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Diffusion -  Mass transport by atomic motion 

Mechanisms 
• Gases & Liquids – random (Brownian) motion 
• Solids – vacancy diffusion or interstitial diffusion 

Interdiffusion:  In an alloy, atoms tend to migrate from regions of high conc. to 
regions of low conc. 

Self-diffusion:  In an elemental solid, atoms also migrate. 
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Initially 

Adapted from 
Figs. 5.1 and 
5.2, Callister 
7e. 

After some time 
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Label some atoms After some time 
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Vacancy Diffusion: 
•  atoms exchange with vacancies 
•  applies to substitutional impurities atoms  
•  rate depends on: 
     --number of vacancies 
     --activation energy to exchange. 

increasing elapsed time 

Conditions: 
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• Simulation of interdiffusion across an 
interface: 

•  Rate of substitutional diffusion depends on: 
     --vacancy concentration 
     --frequency of jumping. 

(Courtesy P.M. Anderson) 
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How do we quantify the amount or rate of diffusion? 

Measured empirically 
•  Make thin film (membrane) of known surface area 
•  Impose concentration gradient 
•  Measure how fast atoms or molecules diffuse through the membrane 
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C1 

C2 

  x 

C1 

C2 

x1 x2 

Flux proportional to concentration gradient = 
dx
dC
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•  Diffusion coefficient increases with increasing T. 
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Diffusion FASTER for... 

• open crystal structures 

• materials w/secondary 
    bonding 

• smaller diffusing atoms 

• lower density materials 

Diffusion SLOWER for... 

• close-packed structures 

• materials w/covalent 
    bonding 

• larger diffusing atoms 

• higher density materials 
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•  Shear stress, τ: 

Area, A 

F t 

F t 

F s 

F 

F 

F s 

•  Tensile stress, σ: 

Area, A 

F t 

F t 
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•  Tensile strain: •  Lateral strain: 

•  Shear strain: 

θ

90º 

90º - θ y 

Δx θγ = Δx/y = tan  

Adapted from Fig. 6.1 (a) and (c), Callister 7e. 
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• Modulus of Elasticity, E: 
    (also known as Young's modulus) 

σ

Linear- 

elastic

E

ε

F 

F 

simple  
tension  
test 
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• Poisson's ratio, ν: 

– ν > 0.50  density increases 
– ν < 0.50  density decreases   
                    (voids form) 

εL

ε

- ν
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• Simple tension test: 

engineering stress, σ 

engineering strain, ε  

Elastic+Plastic  
at larger stress 

permanent (plastic)  
after load is removed 

εp

plastic strain 

Elastic  

initially 

Adapted from Fig. 6.10 (a), 
 Callister 7e.  
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Adapted from Fig. 6.10 (a), 
 Callister 7e.  

tensile stress,  σ

engineering strain,  ε
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•  Metals:  occurs when noticeable necking starts. 
•  Polymers:  occurs when polymer backbone chains are aligned and about to break. 

σy 

strain 

Typical response of   a metal
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 engineering strain  

• Maximum stress on engineering stress-strain curve. 
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•  Plastic tensile strain at failure: 

Adapted from Fig. 6.13, 
Callister 7e. 

Engineering tensile strain,  ε

Engineering  
tensile  
stress,  σ

smaller %EL  

larger %EL 
Lf 

Ao 
Af Lo 
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•  Energy to break a unit volume of material 
•  Approximate by the area under the stress-strain curve. 

Adapted from Fig. 6.13, 
Callister 7e. 

Engineering tensile strain, ε

Engineering 
tensile 
stress, σ
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•  Resistance to permanently indenting the surface. 
•  Large hardness means: 
    --resistance to plastic deformation or cracking in 
       compression. 
    --better wear properties. 

e.g.,   
10 mm sphere 

apply known force  measure size  
of indent after  
removing load 

d D 
Smaller indents  
mean larger  
hardness. 

increasing hardness 

most  
plastics 

brasses  
Al alloys 

easy to machine  
steels file hard 

cutting  
 tools 

nitrided  
steels diamond 
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Table 6.5 
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•  Cubic & hexagonal metals - plastic deformation by plastic shear or slip where 
one plane of atoms slides over adjacent plane by defect motion (dislocations). 

Adapted from Fig. 7.1, 
Callister 7e. 
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Edge dislocation 

Screw dislocation 

Adapted from Fig. 7.2, 
Callister 7e. 
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Adapted from Fig. 
7.6, Callister 7e. 
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• Crystals slip due to a resolved shear stress, τR.  

• Applied tension can produce such a stress.  

slip plane 
normal, ns 

Resolved shear  
stress:  

AS 

τR

τR

FS 

Relation between  
σ and  τR

λ
F 

FS 

φnS 

AS 
A 

Applied tensile 
stress:  

F 
A 

F 
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• Condition for dislocation motion: 

• Crystal orientation can make it easy or hard to move dislocation 

σ σ σ
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•  Stronger - grain boundaries pin 
deformations 

•  Slip planes & directions (λ, φ) change 
from one crystal to another. 

•  τR will vary from one crystal to another. 

•  The crystal with the largest τR yields 
first. 

•  Other (less favorably oriented) crystals 
yield later. 

Adapted from Fig. 
7.10, Callister 7e. 
(Fig. 7.10 is 
courtesy of C. 
Brady, National 
Bureau of 
Standards [now the 
National Institute of 
Standards and 
Technology, 
Gaithersburg, MD].) 

σ

300 µm 
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•  Grain boundaries are barriers to 
slip. 

•  Barrier "strength” increases with 
increasing angle of misorientation. 

•  Smaller grain size: more barriers 
to slip. 

•  Hall-Petch Equation: 

Adapted from Fig. 7.14, Callister 7e. 
(Fig. 7.14 is from A Textbook of Materials 
Technology, by Van Vlack, Pearson Education, 
Inc., Upper Saddle River, NJ.) 
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Adapted from Fig. 7.4, 
Callister 7e. 
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Adapted from Fig. 
7.5, Callister 7e.  
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Adapted from Fig. 
7.17, Callister 7e.  
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Adapted from Fig. 
7.18, Callister 7e.  
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•  Room temperature deformation. 

•  Common forming operations change the cross sectional area: 

Adapted from Fig. 
11.8, Callister 7e.  

-Forging 

A o A d 

force 
die 

blank 

force -Drawing 

tensile  
force A o 

A d die 

die 

-Extrusion 

ram billet 
container 

container 
force die holder 

die 

A o 

A d extrusion 

-Rolling 

roll 
A o 

A d roll 
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Adapted from Fig. 7.20, 
Callister 7e.   

As cold work is increased 


