Diffusion

Diffusion - Mass transport by atomic motion

Mechanisms

- •Gases & Liquids random (Brownian) motion
- •Solids vacancy diffusion or interstitial diffusion

Interdiffusion: In an alloy, atoms tend to migrate from regions of high conc. to regions of low conc.

Self-diffusion: In an elemental solid, atoms also migrate.

Interdiffusion

Label some atoms

After some time

Diffusion mechanisms

Conditions:

Vacancy Diffusion:

- atoms exchange with vacancies
- · applies to substitutional impurities atoms
- rate depends on:
 - --number of vacancies
 - --activation energy to exchange.

increasing elapsed time

Diffusion simulation

- Simulation of interdiffusion across an interface:
- Rate of substitutional diffusion depends on:
 -vacancy concentration
 -frequency of jumping.

田田田静田	
田田戸田田	
maniak	
inene	

(Courtesy P.M. Anderson)

How do we quantify the amount or rate of diffusion?

Measured empirically

- Make thin film (membrane) of known surface area
- Impose concentration gradient
- Measure how fast atoms or molecules diffuse through the membrane

Steady-state diffusion

• Diffusion coefficient increases with increasing *T*.

Diffusion paths

- materials w/secondary bonding
- smaller diffusing atoms
- lower density materials

- materials w/covalent bonding
- larger diffusing atoms
- higher density materials

Engineering stress

- Tensile stress, $\sigma\!\!:$

• Shear stress, τ :

Engineering strain

• Tensile strain:

• Shear strain:

• Lateral strain:

Engineering strain

• Modulus of Elasticity, *E*: (also known as Young's modulus)

Elastic properties of materials

Plastic deformation

Yield strength, $\sigma_{\rm y}$

Tensile strength, TS

• Maximum stress on engineering stress-strain curve.

- Metals: occurs when noticeable necking starts.
- Polymers: occurs when polymer backbone chains are aligned and about to break.

Ductility

• Plastic tensile strain at failure:

Toughness

- Energy to break a unit volume of material
- Approximate by the area under the stress-strain curve.

Hardness

- Resistance to permanently indenting the surface.
- Large hardness means:
 - --resistance to plastic deformation or cracking in compression.
 - --better wear properties.

		Shape of Indentation			Formula for
Test	Indenter	Side View	Top View	Load	Hardness Number ^a
Brinell	10-mm sphere of steel or tungsten carbide		_;= d ←	Р	$HB = \frac{2P}{\pi D[D - \sqrt{D^2 - d^2}]}$
Vickers microhardness	Diamond pyramid			Р	$HV = 1.854P/d_1^2$
Knoop microhardness	Diamond pyramid	<i>l/b</i> = 7.11 <i>b/t</i> = 4.00		Р	$\mathbf{HK} = 14.2P/l^2$
Rockwell and Superficial Rockwell	$\begin{cases} Diamond \\ cone \\ \frac{1}{18}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2} \text{ in.} \\ diameter \\ steel spheres \end{cases}$			60 100 150 15 30 45	kg kg kg kg Superficial Rockwell kg

Table 6.5 Hardness Testing Techniques

^a For the hardness formulas given, P (the applied load) is in kg, while D, d, d₁, and l are all in mm.

Source: Adapted from H. W. Hayden, W. G. Moffatt, and J. Wulff, The Structure and Properties of Materials, Vol. III, Mechanical Behavior. Copyright © 1965 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.

Dislocation and plastic deformation

• Cubic & hexagonal metals - plastic deformation by plastic shear or slip where one plane of atoms slides over adjacent plane by defect motion (dislocations).

Adapted from Fig. 7.1, *Callister 7e.*

Dislocation motion

Deformation mechanisms

Adapted from Fig. 7.6, *Callister 7e.*

Slip in single crystals

- Crystals slip due to a resolved shear stress, τ_R .
- Applied tension can produce such a stress.

Critical resolved shear stress

- Condition for dislocation motion:
- Crystal orientation can make it easy or hard to move dislocation

Slip motion in polycrystals

- Stronger grain boundaries pin deformations
- Slip planes & directions (λ, ϕ) change from one crystal to another.
- τ_R will vary from one crystal to another.
- The crystal with the largest τ_{R} yields first.
- Other (less favorably oriented) crystals yield later.

Adapted from Fig. 7.10, *Callister 7e.* (Fig. 7.10 is courtesy of C. Brady, National Bureau of Standards [now the National Institute of Standards and Technology, Gaithersburg, MD].)

Strategies for strengthening: grain size reduction

- Grain boundaries are barriers to slip.
- Barrier "strength" increases with increasing angle of misorientation.
- Smaller grain size: more barriers to slip.

Adapted from Fig. 7.14, *Callister 7e.* (Fig. 7.14 is from *A Textbook of Materials Technology*, by Van Vlack, Pearson Education, Inc., Upper Saddle River, NJ.)

• Hall-Petch Equation:

Strategies for strengthening: solid solutions

Adapted from Fig. 7.4, *Callister 7e.*

Effects of stress at dislocations

Strengthening by alloying

Adapted from Fig. 7.17, *Callister 7e.*

Strengthening by alloying

Strategies for strengthening: Cold work (%CW)

- Room temperature deformation.
- Common forming operations change the cross sectional area:

Impact of cold work

As cold work is increased

