Taxonomy of metals

Steels

Based on data provided in Tables 11.1(b), 11.2(b), 11.3, and 11.4, Callister 7e.

Nomenclature AISI & SAE

- 10xx Plain Carbon Steels
- 11xx Plain Carbon Steels (resulfurized for machinability)
- 15xx Mn (10 ~ 20%)
- 40xx Mo (0.20 ~ 0.30%)
- 43xx Ni (1.65 2.00%), Cr (0.4 0.90%), Mo (0.2 0.3%)
- 44xx Mo (0.5%)

where xx is wt% C x 100

example: 1060 steel - plain carbon steel with 0.60 wt% C

Stainless Steel -- >11% Cr

Cast iron

Ferrous alloys with > 2.1 wt% C
more commonly 3 - 4.5 wt%C
low melting (also brittle) so easiest to cast

Types of cast iron

Gray iron

- graphite flakes
- weak & brittle under tension
- stronger under compression
- excellent vibrational dampening
- wear resistant

Ductile iron

- add Mg or Ce
- graphite in nodules not flakes
- matrix often pearlite better ductility

Adapted from Fig. 11.3(a) & (b), Callister 7e.

Types of cast iron

White iron

<1wt% Si so harder but brittlemore cementite

Malleable iron

heat treat at 800-900°Cgraphite in rosettesmore ductile

Adapted from Fig. 11.3(c) & (d), *Callister* 7e.

Production of cast iron

Other alloys

Based on discussion and data provided in Section 11.3, Callister 7e.

Metal fabrication methods 1

Metal fabrication methods 2

Metal fabrication methods 3

Thermal processing of metals

Annealing: Heat to *T*_{anneal}, then cool slowly.

Based on discussion in Section 11.7, Callister 7e.

Heat treatments

Precipitation hardening

- Particles impede dislocations.
- Ex: Al-Cu system
- Procedure:

- Other precipitation systems:
 - Cu-Be Cu-Cra Temp.
 - Cu-Sn
 - Mg-Al

Adapted from Fig. 11.22, *Callister 7e*.

→Time

Precipitation hardening

- 2014 Al Alloy:
- *TS* peaks with precipitation time.
- Increasing *T* accelerates process.

• %*EL* reaches minimum with precipitation time.

Adapted from Fig. 11.27 (a) and (b), *Callister 7e*. (Fig. 11.27 adapted from *Metals Handbook: Properties and Selection: Nonferrous Alloys and Pure Metals*, Vol. 2, 9th ed., H. Baker (Managing Ed.), American Society for Metals, 1979. p. 41.)

Ceramics

- Bonding:
 - -- Mostly ionic, some covalent.
 - -- % ionic character increases with difference in electronegativity.
- Large vs small ionic bond character:

IA																	0
Н																	He
2.1	IIA											IIIA	IVA	VA	VIA	VIIA	-
Li	Be											В	C	Ν	0	F	Ne
1.0	1.5											2.0	2.5	3.0	3.5	4.0	-
Na	Mg							VIII				AI	Si	Р	S	CI	Ar
0.9	1.2	IIIB	IVB	VB	VIB	VIIB	/			IB	IIB	1.5	1.8	2.1	2.5	3.0	-
Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8	-
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5	-
Cs	Ba	La-Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
0.7	0.9	1.1–1.2	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2	-
Fr	Ra	Ac–No															
0.7	0.9	1.1-1.7															

Adapted from Fig. 2.7, *Callister 7e.* (Fig. 2.7 is adapted from Linus Pauling, *The Nature of the Chemical Bond*, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

Silicate Ceramics

• Most common elements on earth are Si & O

- SiO₂ (silica) structures are quartz, crystobalite, & tridymite
- The strong Si-O bond leads to a strong, high melting material (1710°C)

Amorphous silica

- Silica gels amorphous SiO₂
 - Si⁴⁺ and O²⁻ not in well-ordered lattice
 - Charge balanced by H⁺ (to form OH⁻) at "dangling" bonds
 - very high surface area > 200 m²/g
 - SiO₂ is quite stable, therefore unreactive
 - makes good catalyst support

Silicates

 Combine SiO₄⁴⁻ tetrahedra by having them share corners, edges, or faces

 Cations such as Ca²⁺, Mg²⁺, & Al³⁺ act to neutralize & provide ionic bonding

Layered silicates

- Layered silicates (clay silicates)
 - SiO₄ tetrahedra connected together to form 2-D plane

• Therefore, cations are required to balance charge

Layered silicates

Kaolinite clay alternates $(Si_2O_5)^{2-}$ layer with $Al_2(OH)_4^{2+}$ layer

Note: these sheets loosely bound by van der Waal's forces 21

Carbon forms

- Carbon black amorphous surface area ca. 1000 m²/g
- Diamond
 - tetrahedral carbon
 - hard no good slip planes
 - brittle can cut it
 - large diamonds jewelry
 - small diamonds
 - often man made used for cutting tools and polishing
 - diamond films
 - hard surface coat tools, medical devices, etc.

Adapted from Fig. 12.15, *Callister 7e.*

Carbon forms

• layer structure – aromatic layers

- weak van der Waal's forces between layers
- planes slide easily, good lubricant

Carbon forms

Fullerenes or carbon nanotubes

- •wrap the graphite sheet by curving into ball or tube
- •Buckminister fullerenes
 - •Like a soccer ball C_{60} also C_{70} + others

Defects

- Frenkel Defect
- Shottky Defect

Adapted from Fig. 12.21, *Callister* 7e. (Fig. 12.21 is from W.G. Moffatt, G.W. Pearsall, and J. Wulff, *The Structure and Properties of Materials*, Vol. 1, *Structure*, John Wiley and Sons, Inc., p. 78.)

• Equilibrium concentration of defects

Impurities

resulting geometry

Ceramic phase diagrams

MgO-Al₂O₃ diagram:

Measuring the elastic modulus

- Room *T* behavior is usually elastic, with brittle failure.
- 3-Point Bend Testing often used.
 - --tensile tests are difficult for brittle materials.

Measuring strengths

• 3-point bend test to measure room *T* strength.

