

Biomaterials in Bone Tissue Engineering

Miqin Zhang Professor of Dept of Materials Science and Engineering Adjunct Prof. of Neurological Surgery, Radiology, and Orthopaedics & Sports Medicine University of Washington

Musculoskeletal Conditions are Worsening!!!

- 1 out of 7 Americans have musculoskeletal impairments.
 36.9 million Americans incur injuries every year.
- 1 out of 2 women and 1 out of 4 men over 50 suffer an osteoporosis-related fracture
- **\$300** billion every year

Data from AAOS, NIH, NOF and http://www.usbjd.org

Bone Tissue Engineering

- Scaffolds gradually degraded and eventually eliminated Patient-derived bone cells onto a macroporous manmade scaffolds to create completely natural new tissues
- Common cells: osteoblast, mesenchymal stem cells

Criteria for Scaffold Materials

- Excellent mechanical strength
 - Cancerous bone (compressive stress 0.5-10 MPa)
- Three dimensional (3D) interconnected macroporous microstructures
- Controllable biodegradation and bioresorption
- Suitable surface chemistry
- Malleable
- Good biocompatibility and biofunctionality

Mechanisms for Increased Toughness

Wavy fracture surface - Area of crack surface

is increased

Clinching at crack tip

 Clinching reduces the applied stress intensity factor

10 µm

In vivo Ectopic Animal Model

Z. Li, H. Ramay, K. Hauch, D. Xiao, and M. Zhang, *Biomaterials*, 26 (18), 3919-3928 (2005).

Chris Allan (MD, UW Orthopedics) (bone) Buddy Ratner (UW Bioengineering) Miqin Zhang (UW Materials Science and Engineering)

In vivo Orthotopic Animal Model: Cranial defects

Richard Hopper (MD, Children Hospital) Miqin Zhang (UW Materials Science and Engineering)

