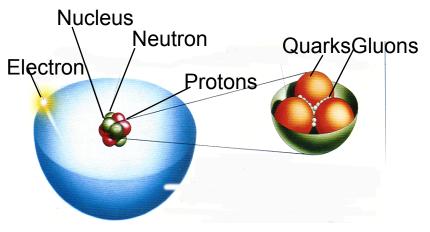
Chapter 2: Atomic structure and interatomic bonding


- Fundamental concepts
- Electrons in atoms
- Periodic table
- Bonding forces and energies

Chapter 2: Atomic structure and interatomic bonding

Fundamental concepts

- Proton and electron
 Charge: 1.60 x10⁻¹⁹ C
- Mass of electron 9.11x10⁻³¹ kg
- Mass of protons and neutrons
 →1.67 x 10⁻²⁷ kg

- Atomic number: the number of protons
- Atomic mass =protons+neutrons
- Isotopes
- Atomic mass unit (amu): 1amu=1/12 C
- One mole = 6.023x10²³ atoms (Avogadro's)

Electrons in atoms

Atomic models

• Bohr

electrons revolve around the atomic nucleus in discrete orbitals and the energies of electrons are quantized

Wave-mechanical

electrons exhibits both wavelike and particle-like characteristics, its position is considered to be a probability distribution

Electrons in atoms (continued)

Comparison of the (a)
 Bohr and (b) wave
 mechanical atom
 models

In terms of electron distribution

Quantum numbers

- Principal quantum number n=1, 2 ..; K, L, M, N, O
- Orbital quantum number I=0, ..n-1; subshell, s, p, d, or f; the shape of the electron subshell
- M_I= -I,...,0,...,+I
- Spin moment m_s 1/2 or -1/2

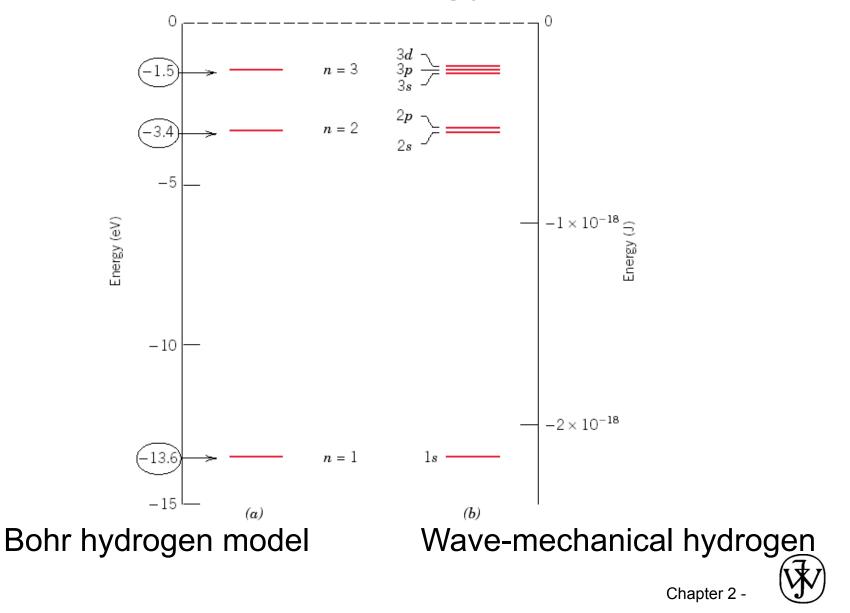

Principal Number of Electrons Shell Number Ouantum Designation Subshells of States Per Subshell Per Shell Number n Κ 2 2 1 1 S 2 1 S 2 L 8 3 6 p1 2 S 183 М 3 6 p5 10 d 2 1 S 3 6 pΝ 32 4 5 10 d 7 14

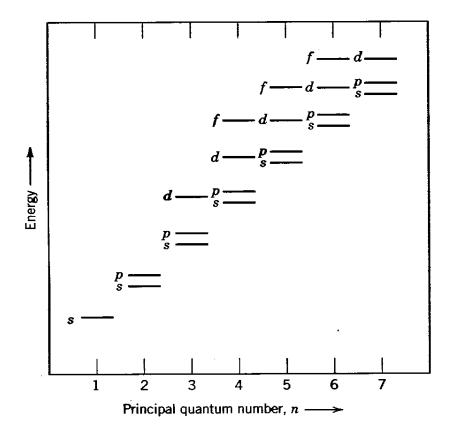
Table 2.1The Number of Available Electron States in Some of theElectron Shells and Subshells

r 2 -

Electron energy states

Quantum Numbers

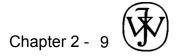
- The smaller n, the lower energy
- The smaller I, the lower energy
- There are some overlaps in energy, especially for d and f states



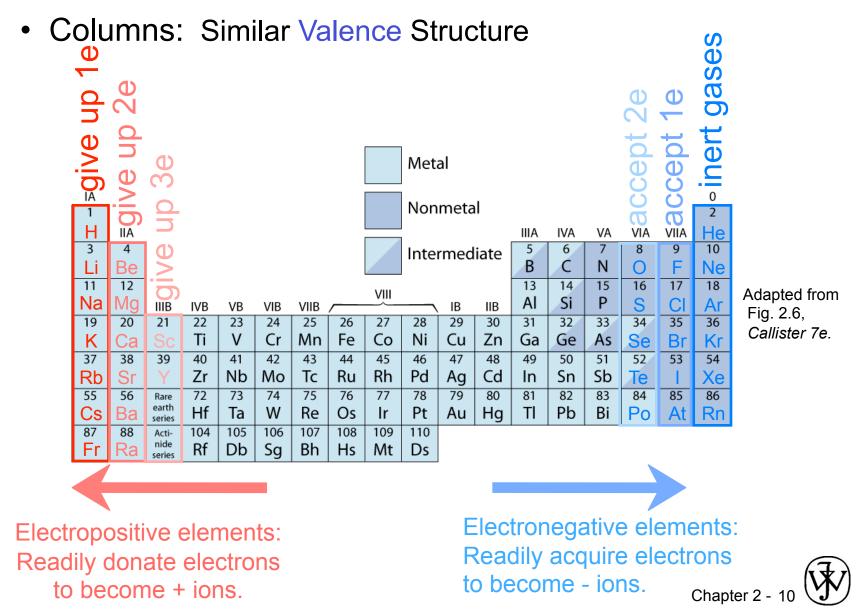
Relative energies of the electrons for various shells and subshells

Electron configurations

- Energy minimum rule
- Pauli exclusion
 principle
- Hund's rule: as many unpaired electrons as possible
- Ground state
- Valence electrons

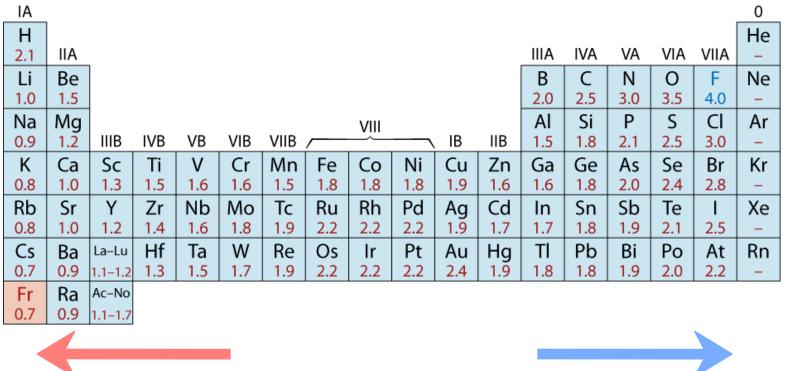


Relative energies of the electrons for various shells and subshells



Electronic Configurations

ex: Fe - atomic # = 26



The Periodic Table

Electronegativity

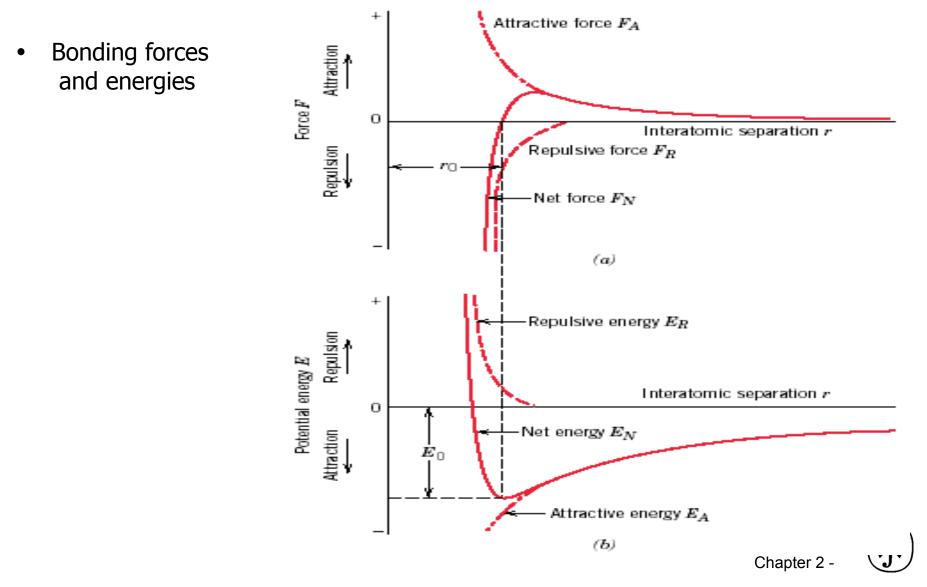
- Ranges from 0.7 to 4.0,
- Large values: tendency to acquire electrons.

Smaller electronegativity

Larger electronegativity

Adapted from Fig. 2.7, Callister 7e. (Fig. 2.7 is adapted from Linus Pauling, The Nature of the Chemical Bond, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

The periodic table(*continued*)


SURVEY OF ELEMENTS

• Most elements: Electron configuration not stable.

<u>Element</u>	Atomic #	Electron configuration	
Hydrogen	1	1s ¹	
Helium	2	1 <i>s</i> ² (stable)	
Lithium	3	1s ² 2s ¹	
Beryllium	4	1s ² 2s ²	
Boron	5	1s ² 2s ² 2p ¹	Adapted from Table 2.2,
Carbon	6	$1s^{2}2s^{2}2p^{2}$	Callister 7e.
Neon	10	$1s^22s^22p^6$ (stable)	
Sodium	11	1s ² 2s ² 2p ⁶ 3s ¹	
Magnesium	12	1s ² 2s ² 2p ⁶ 3s ²	
Aluminum	13	$1s^{2}2s^{2}p^{6}3s^{2}3p^{1}$	
Argon	18	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	(stable)
Krypton	36	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ²	4 <u>p⁶ (stable</u>)

• Why? Valence (outer) shell usually not filled completely.

Atomic bonding in solids

Ionic Bonding

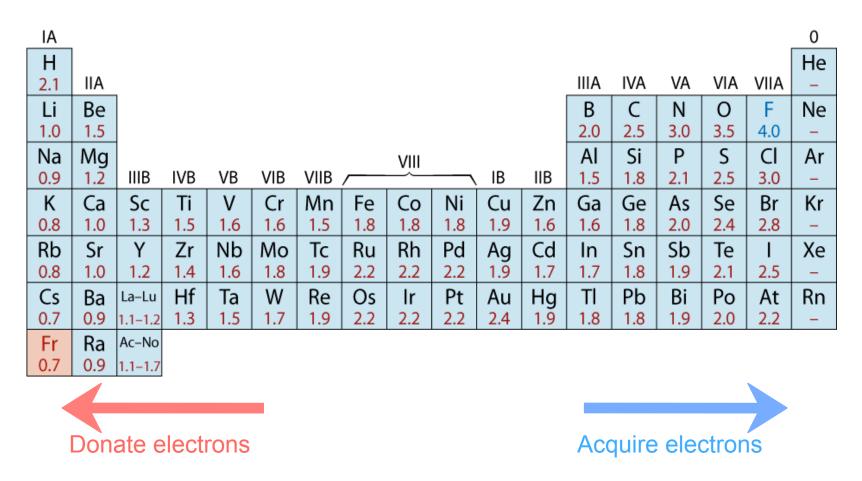
- Occurs between + and ions.
- Requires electron transfer.
- Large difference in electronegativity required.
- Example: NaCl

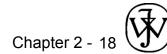
Examples: Ionic Bonding

• Predominant bonding in Ceramics

IA	I																0
H 2.1	IIA											IIIA	IVA	VA	VIA	VIIA	He -
Li	Be]										В	С	Ν	0	F	Ne
1.0	1.5											2.0	2.5	3.0	3.5	4.0	-
Na	Mg							VIII				AI	Si	Р	S	CI	Ar
0.9	1.2	IIIB	IVB	VB	VIB	VIIB			$ \rightarrow $	IB	IIB	1.5	1.8	2.1	2.5	3.0	-
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8	-
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5	-
Cs	Ва	La–Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
0.7	0.9	1.1–1.2	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2	_
Fr	Ra	Ac–No															
0.7	0.9	1.1-1.7															
Donate electrons Acquire electrons																	
A	Adapted from Fig. 2.7, Callister 7e. (Fig. 2.7 is adapted from Linus Pauling, The Nature of the Chemical																

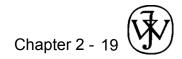
Adapted from Fig. 2.7, *Callister 7e.* (Fig. 2.7 is adapted from Linus Pauling, *The Nature of the Chemica Bond*, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.



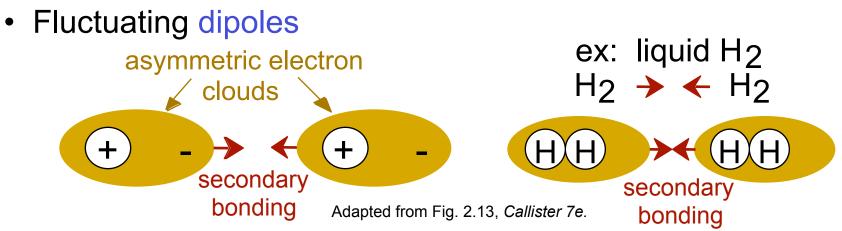

Covalent Bonding

- similar electronegativity : share electrons
- bonds determined by valence s & p orbitals dominate bonding
- Example: CH₄

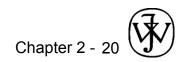
Covalent Bonding



Primary Bonding


- Metallic Bond -- delocalized as electron cloud
- Ionic-Covalent Mixed Bonding % ionic character = $\begin{pmatrix} -\frac{(X_A - X_B)^2}{4} \\ 1 - e^{-\frac{4}{4}} \end{pmatrix} x (100\%)$

where $X_A \& X_B$ are Pauling electronegativities



SECONDARY BONDING

Arises from interaction between dipoles

• Permanent dipoles-molecule induced

Summary: Bonding

TypeBond EnergyIonicLarge!

Comments Nondirectional (ceramics)

CovalentVariableDirectionallarge-Diamond(semiconductors, ceramicssmall-Bismuthpolymer chains)

small-Bismuth polymer chains) Variable

Metallic Variable large-Tungsten small-Mercury

Secondary smallest

Nondirectional (metals)

Directional inter-chain (polymer) inter-molecular

Summary

- Atomic structure
- Electrons in atoms:
 - Bohr atomic and wave-mechanical model
 - Quantum numbers
 - Electron configuration
- Periodic table
- Bonding forces and energies
- Bondings

