Chapter 12: Structures & Properties of Ceramics

- Structures of ceramic materials: How do they differ from those of metals?
- Point defects:
 How are they different from those in metals?
- Impurities:
 How are they accommodated in the lattice and how do they affect properties?
- Mechanical Properties:
 What special provisions/tests are made for ceramic materials?

Ceramic Bonding

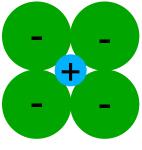
- Bonding:
 - -- Mostly ionic, some covalent.
 - -- % ionic character increases with difference in electronegativity.
- Large vs small ionic bond character:

	<u> </u>																
IA																	0
Н						Ca	F ₂ ·	lar	an n								He
2.1	IIA					Ou	2.	IGI	90			IIIA	IVA	VA	VIA	VIIA	_
Li	Be					SiC	٠. ٥	m 0	Ш			В) C	N	0	F	Ne
1.0	1.5					SIC	ر. S	1116	III -			2.0	2.5	3.0	3.5	4.0	_
Na	Mg	_						VIII				Αl	Si	Р	S	Cl	Ar
0.9	1.2	HIB	IVB	VB	VIB	VIIB			$\overline{}$	IB	IIB	1.5	1.8	2.1	2.5	3.0	_
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
8.0	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8	_
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	-	Xe
8.0	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5	_
Cs	Ва	La-Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
0.7	0.9	1.1-1.2	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2	_
Fr	Ra	Ac-No															
0.7	0.9	1.1-1.7															

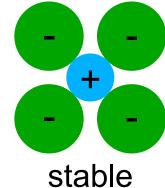
Adapted from Fig. 2.7, *Callister 7e.* (Fig. 2.7 is adapted from Linus Pauling, *The Nature of the Chemical Bond*, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by

Cornell University.


Chapter 12 -

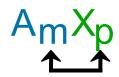

Ionic Bonding & Structure

1. Size - Stable structures:


--maximize the # of nearest oppositely charged neighbors.

unstable

stable



Adapted from Fig. 12.1, Callister 7e.

Charge Neutrality:

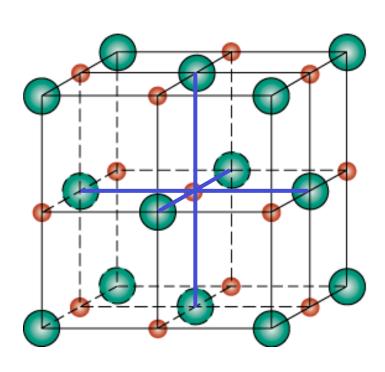
--Net charge in the structure should be zero.

--General form:

m, p determined by charge neutrality

Coordination # and Ionic Radii

Coordination # increases with


r_{cation}

Issue: How many anions can you arrange around a cation?

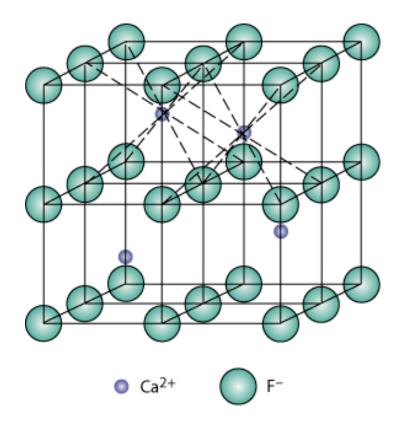
rcation C ranion < 0.155	Coor # 2	d linear	0.0	ZnS (zincblende) Adapted from Fig. 12.4, Callister 7e.
0.155 - 0.225	3	triangular	9	NaCl
0.225 - 0.414	4	T_D		(sodium chloride) Adapted from Fig. 12.2, Callister 7e.
0.414 - 0.732	6	O_H		CsCl (cesium
0.732 - 1.0 Adapted from Table Callister 7e.	8 12.2,	cubic		chloride) Adapted from Fig. 12.3, Callister 7e Chapter 12 - 4

Rock Salt Structure

Same concepts can be applied to ionic solids in general. Example: NaCl (rock salt) structure

$$o$$
 Na⁺ r_{Na} = 0.102 nm

$$r_{CI} = 0.181 \text{ nm}$$


$$r_{\rm Na}/r_{\rm Cl} = 0.564$$

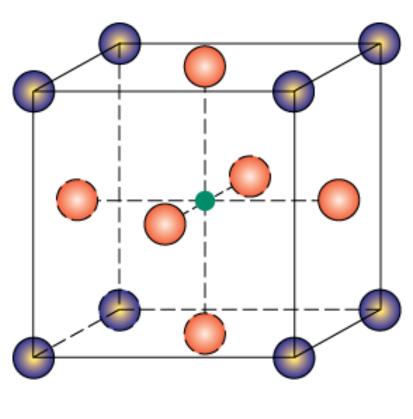
 \therefore cations prefer O_H sites

Adapted from Fig. 12.2, Callister 7e.

AX₂ Crystal Structures

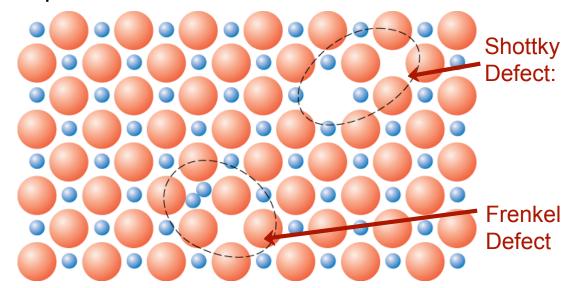
Fluorite structure

Adapted from Fig. 12.5, *Callister 7e.*


- Calcium Fluorite (CaF₂)
- cations in cubic sites
- UO₂, ThO₂, ZrO₂, CeO₂
- antifluorite structure cations and anions reversed

ABX₃ Crystal Structures

Perovskite

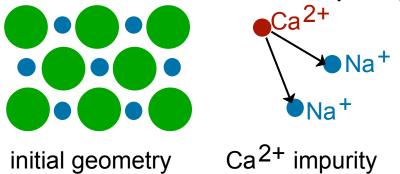

Ex: complex oxide BaTiO₃

Adapted from Fig. 12.6, *Callister 7e.*

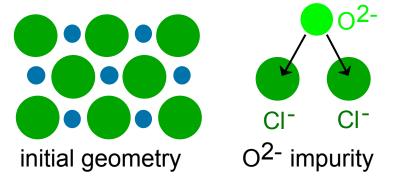
Defects in Ceramic Structures

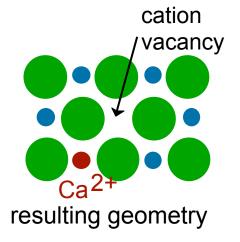
- Frenkel Defect
 - --a cation is out of place.
- Shottky Defect
 - --a paired set of cation and anion vacancies.

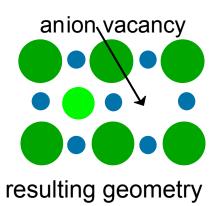
Adapted from Fig. 12.21, *Callister* 7e. (Fig. 12.21 is from W.G. Moffatt, G.W. Pearsall, and J. Wulff, *The Structure and Properties of Materials*, Vol. 1, *Structure*, John Wiley and Sons, Inc., p. 78.)


• Equilibrium concentration of defects $\sim e^{-Q_D/kT}$

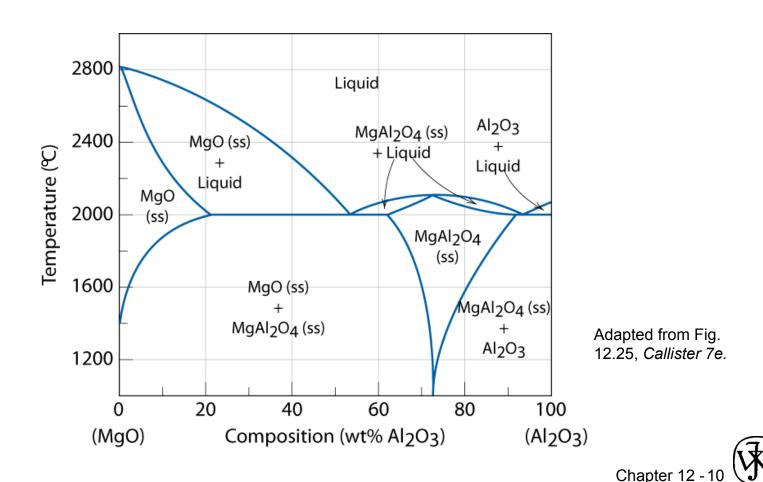
Impurities


Impurities must also satisfy charge balance = Electroneutrality


• Ex: NaCl Na⁺ Cl⁻

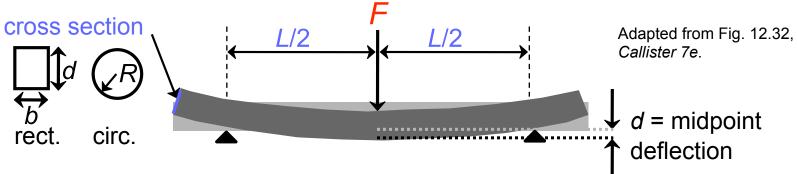

Substitutional cation impurity

Substitutional anion impurity

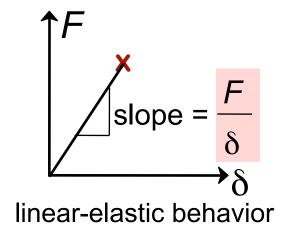


Ceramic Phase Diagrams

MgO-Al₂O₃ diagram:

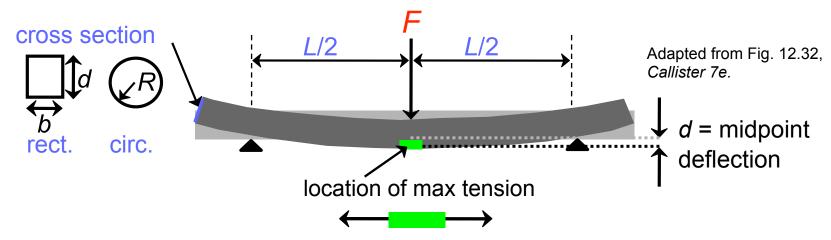

Stress-strain behavior

- Flectural testing replaces tensile testing
- Reasons not to perform a standard tension test
 - difficult to prepare and test specimens having a required geometry
 - difficult to grip brittle materials without fracturing them
 - ceramics fail after only about 0.1% strain and samples are difficult to align without experiencing bending stress



Measuring Elastic Modulus

- Room T behavior is usually elastic, with brittle failure.
- 3-Point Bend Testing often used.
 - --tensile tests are difficult for brittle materials.


Determine elastic modulus according to:

$$E = \frac{F}{\delta} \frac{L^3}{4bd^3} = \frac{F}{\delta} \frac{L^3}{12\pi R^4}$$
rect. circ. cross section section

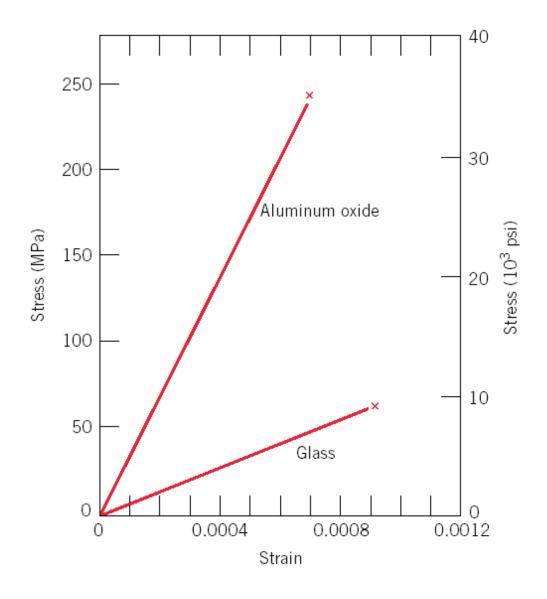
Measuring Strength

3-point bend test to measure room T strength.

Flexural strength:

$$\sigma_{fs} = \underbrace{\frac{1.5F_fL}{bd^2}}_{\begin{array}{c} \text{bd}^2 \\ \text{rect.} \end{array}} = \underbrace{\frac{F_fL}{\pi R^3}}_{\begin{array}{c} \text{} \\ \text{} \\$$

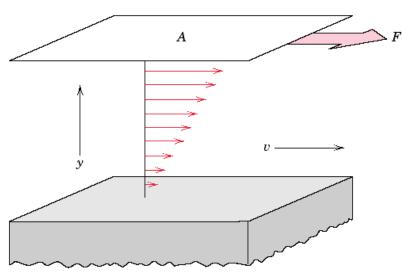
• Typ. values:


Material	$\sigma_{fS}(MPa)$ I	E(GPa)
Si nitride	250-1000	304
Si carbide	100-820	345
Al oxide	275-700	393
glass (soda)	69	69

Data from Table 12.5, Callister 7e.

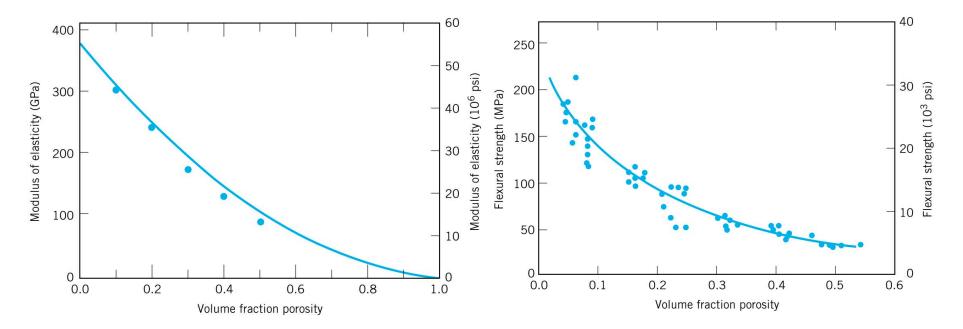
Elastic behavior

 Typical stressstrain behavior to fracture for aluminum oxide and glass


Mechanisms of plastic deformation

Crystalline ceramics are brittle

- Covalent bonds are relatively strong
- There are limited numbers of slip systems
- Dislocation structures are complex


Noncrystalline ceramics

- Plastic deformation does not
- occur by dislocation motion
- for noncrystalline ceramics
- Viscosity is a measure of
- of non-crystalline material's
- resistance to deformation

Influence of porosity on mechanical behavior

- $E=E_0(1-1.9P+0.9P^2)$
- $\sigma_{fs} = \sigma_0 \exp(-nP)$

Hardness

Table 13.6 Approximate Knoop Hardness (100 g load) for Seven Ceramic Materials

Material	Approximate Knoop Hardness
Diamond (carbon)	7000
Boron carbide (B ₄ C)	2800
Silicon carbide (SiC)	2500
Tungsten carbide (WC)	2100
Aluminum oxide (Al_2O_3)	2100
Quartz (SiO ₂)	800
Glass	550

Summary

- Ceramic materials have covalent & ionic bonding.
- Structures are based on:
 - -- charge neutrality
 - -- maximizing # of nearest oppositely charged neighbors.
- Structures may be predicted based on:
 - -- ratio of the cation and anion radii.
- Defects
 - -- must preserve charge neutrality
 - -- have a concentration that varies exponentially w/T.
- Room *T* mechanical response is elastic, but fracture is brittle, with negligible deformation.