CHAPTER 14: POLYMER STRUCTURES

- What are the basic microstructural features?
- How are polymer properties effected by molecular weight?
- How do polymeric crystals accommodate the polymer chain?

Chapter 14 – Polymers

mer

repeat unit

Poly

many

What is a polymer?

Polyethylene (PE)

Polyvinyl chloride (PVC)

Polypropylene (PP)

Adapted from Fig. 14.2, Callister 7e.

Chapter 14 - 2

Polymer Composition

Most polymers are hydrocarbons – i.e. made up of H and C

- Saturated hydrocarbons
 - Each carbon bonded to four other atoms

 $C_n H_{2n+2}$

Name	Composition	Structure	Boiling Point (°C)
Methane	CH_4	$\mathbf{H} - \mathbf{H}$ $\mathbf{H} - \mathbf{H}$ \mathbf{H}	-164
Ethane	C_2H_6	$\begin{array}{ccc} H & H \\ I & I \\ H - C - C - H \\ I & I \\ H & H \end{array}$	-88.6
Propane	C_3H_8	$\begin{array}{cccc} H & H & H \\ I & I & I \\ H - C - C - C - C - H \\ I & I & I \\ H & H & H \end{array}$	-42.1
Butane	C_4H_{10}		-0.5
Pentane	$C_{5}H_{12}$		36.1
Hexane	C_6H_{14}		69.0
			Chapter 14 - 4

Table 14.1 Compositions and Molecular Structures for Some of the Paraffin Compounds: C_nH_{2n+2}

Unsaturated Hydrocarbons

 Double & triple bonds relatively reactive – can form new bonds

- Double bond - ethylene or ethene - C_nH_{2n}

- 4-bonds, but only 3 atoms bound to C's
- Triple bond acetylene or ethyne $C_n H_{2n-2}$

Some common hydrocarbon groups

Chemistry of Polymers

Free radical polymerization

• Initiator: example - benzoyl peroxide

Chemistry of Polymers

Adapted from Fig. 14.1, *Callister 7e.*

Note: polyethylene is just a long HC

- paraffin is short polyethylene

Bulk or Commodity Polymers

Table 14.3 A Listing of Repeat Units for 10 of the More Common Polymeric Materials

Chapter 14 - 9

Polymeric Materials		
Polymer	Repeat Unit	
Polystyrene (PS)		
Poly(methyl methacrylate) (PMMA)	$ \begin{array}{cccc} H & CH_3 \\ & & \\ -C - C - \\ & & \\ H & C - O - CH_3 \\ & \ \\ O \end{array} $	
Phenol-formaldehyde (Bakelite)	CH ₂ CH ₂ CH ₂ CH ₂	
		(7

Table 14.3 A Listing of Repeat Units for 10 of the More Common Polymeric Materials

Chapter 14 - 10

Table 14.3 A Listing of Repeat Units for 10 of the More Common Polymeric Materials

MOLECULAR WEIGHT

- Molecular weight, M_i : Mass of a mole of chains.
- Lower M higher M Number-average, Mn $\overline{M}_n = \frac{\text{total wt of polymer}}{\text{total #of molecules}}$ Amount of polymer Weight-average, \overline{M}_{W} $M_n = \sum X_i M_i$ $\overline{M}_w = \sum W_i M_i$ M_{w} is more sensitive to higher molecular Molecular weight weights Adapted from Fig. 14.4, Callister 7e. Chapter 14 - 1

End to End Distance, r

Molecular Structures

• Covalent chain configurations and strength:

Adapted from Fig. 14.7, Callister 7e.

Molecular configuration

Geometrical isomerism

Cis-Trans Molecular Machines

azobenezene

http://www.physics.berkeley.edu/ research/crommie

Tacticity

Tacticity – stereoregularity of chain

Copolymers

- two or more monomers polymerized together
- random A and B randomly vary in chain
- alternating A and B alternate in polymer chain
- block large blocks of A alternate with large blocks of B
- graft chains of B grafted on to A backbone

A – • B -•

Block Copolymers

From almaden.ibm.com

Block Copolymers

Polymer Crystallinity

Adapted from Fig. 14.10, *Callister 7e.*

Chapter 14 - 2

Ex: polyethylene unit cell

- Crystals must contain the polymer chains in some way
 - Chain folded structure

Polymer Crystallinity

(Fig. 14.11 is from H.W. Hayden, W.G. Moffatt, and J. Wulff, *The Structure and Properties of Materials*, Vol. III, *Mechanical Behavior*, John Wiley and Sons, Inc., 1965.)

Polymer Crystal Forms

• Single crystals – only if slow careful growth

Adapted from Fig. 14.11, Callister 7e.

