Chapter 15: Characteristics, Applications & Processing of Polymers

- What are the tensile properties of polymers and how are they affected by basic microstructural features?
- Hardening, anisotropy, and annealing in polymers.
- How does the elevated temperature mechanical response of polymers compare to ceramics and metals?

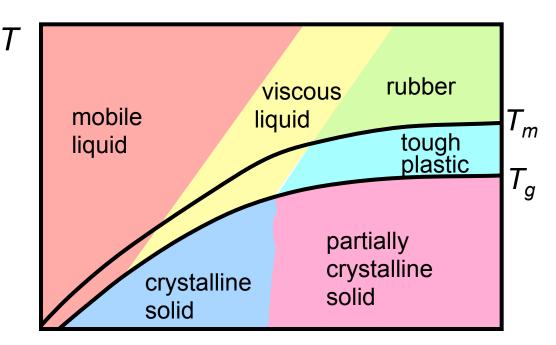
Processing of Plastics

Thermoplastic –

- can be reversibly cooled & reheated, i.e. recycled
- heat till soft, shape as desired, then cool
- ex: polyethylene, polypropylene, polystyrene, etc.

Thermoset

- when heated forms a network
- degrades (not melts) when heated
- mold the prepolymer then allow further reaction
- ex: urethane, epoxy, bakelyte


Thermoplastics vs. Thermosets

Thermoplastics:

- -- little crosslinking
- -- ductile
- -- soften w/heating
- -- polyethylene polypropylene polycarbonate polystyrene


Thermosets:

- -- large crosslinking (10 to 50% of mers)
- -- hard and brittle
- -- do NOT soften w/heating
- -- vulcanized rubber, epoxies, polyester resin, phenolic resin

Molecular weight

Adapted from Fig. 15.19, Callister 7e. (Fig. 15.19 is from F.W. Billmeyer, Jr., Textbook of Polymer Science, 3rd ed., John Wiley and Sons, Inc., 1984.)

Polymer Types: Elastomers

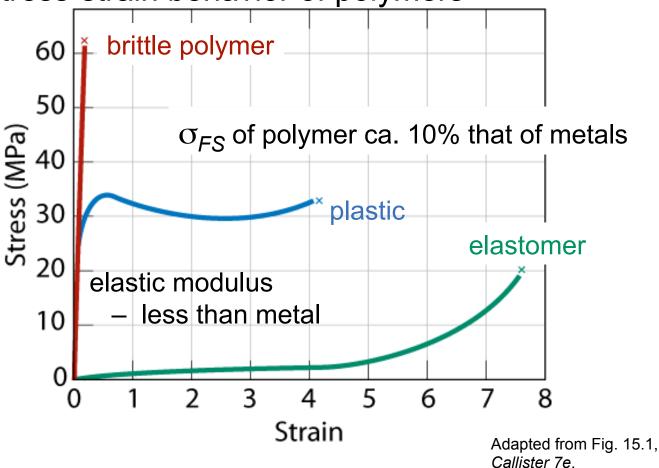
Elastomers – rubber

- Crosslinked materials
 - Natural rubber
 - Synthetic rubber and thermoplastic elastomers

 SBR- styrene-butadiene rubber styrene $-(CH_2CH)_a - (CH_2CH = CHCH_2)_b - (CH_2CH)_c$

Polymer Types: Fibers

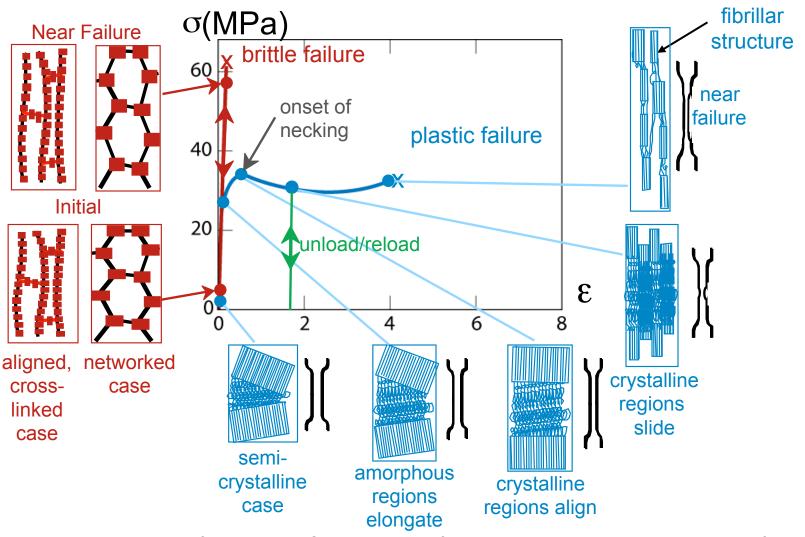
Fibers - length/diameter >100


- Textiles are main use
 - Must have high tensile strength
 - Usually highly crystalline & highly polar
- Formed by spinning
 - ex: extrude polymer through a spinnerette
 - Pt plate with 1000's of holes for nylon
 - ex: rayon dissolved in solvent then pumped through die head to make fibers
 - the fibers are drawn
 - leads to highly aligned chains- fibrillar structure

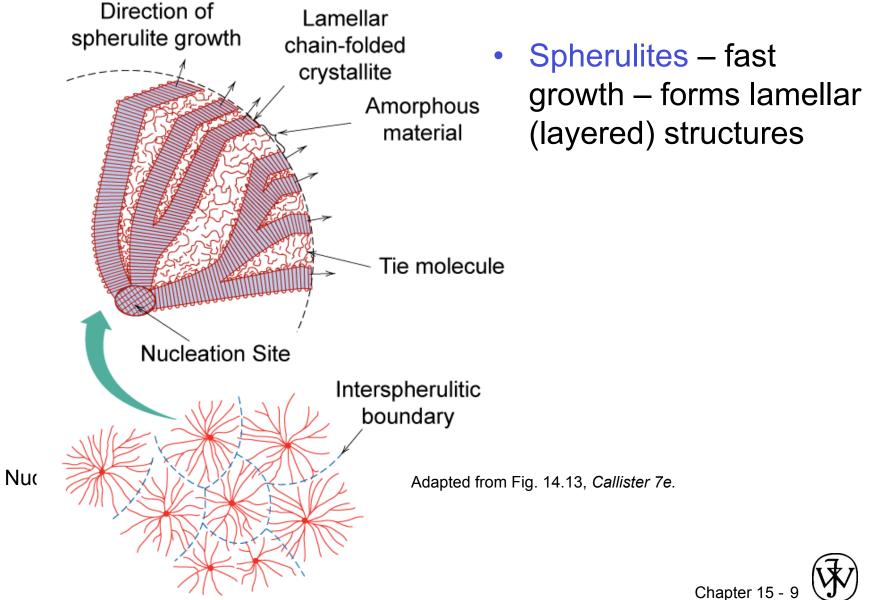
Polymer Types

- Coatings thin film on surface i.e. paint, varnish
 - To protect item
 - Improve appearance
 - Electrical insulation
- Adhesives produce bond between two adherands
 - Usually bonded by:
 - 1. Secondary bonds
 - 2. Mechanical bonding
- Films blown film extrusion
- Foams gas bubbles in plastic

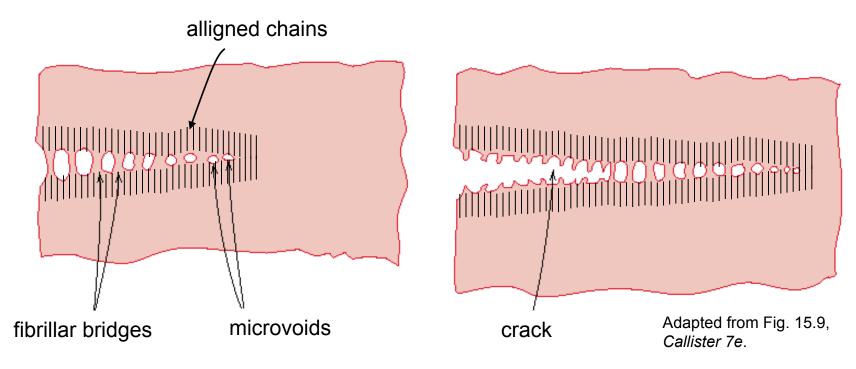
Mechanical Properties


i.e. stress-strain behavior of polymers

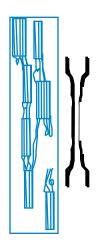
Strains – deformations > 1000% possible (for metals, maximum strain ca. 10% or less)


Tensile Response: Brittle & Plastic

Stress-strain curves adapted from Fig. 15.1, *Callister 7e.* Inset figures along plastic response curve adapted from Figs. 15.12 & 15.13, *Callister 7e.* (Figs. 15.12 & 15.13 are from J.M. Schultz, *Polymer Materials Science*, Prentice-Hall, Inc., 1974, pp. 500-501.)

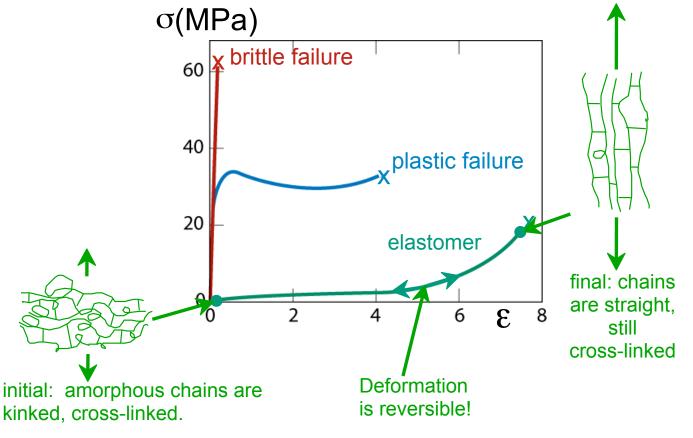

Polymer Crystal Forms

Polymer Fracture


Crazing ≅ Griffith cracks in metals

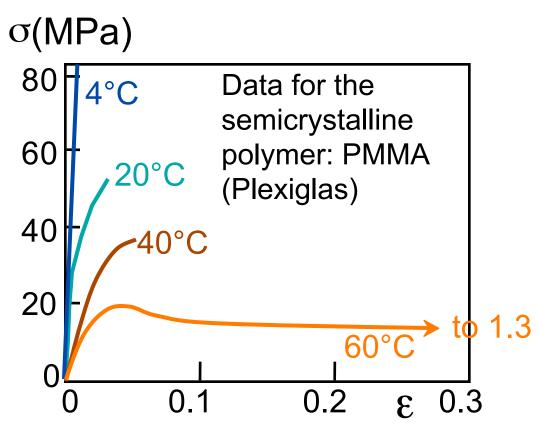
- spherulites plastically deform to fibrillar structure
- microvoids and fibrillar bridges form

Predeformation by Drawing


- Drawing...(ex: monofilament fishline)
 - -- stretches the polymer prior to use
 - -- aligns chains in the stretching direction
- Results of drawing:
 - -- increases the elastic modulus (*E*) in the stretching direction
 - -- increases the tensile strength (*TS*) in the stretching direction
 - -- decreases ductility (%EL)
- Annealing after drawing...
 - -- decreases alignment
 - -- reverses effects of drawing.
- Compare to cold working in metals!

Adapted from Fig. 15.13, *Callister* 7e. (Fig. 15.13 is from J.M. Schultz, *Polymer Materials Science*, Prentice-Hall, Inc., 1974, pp. 500-501.)

Tensile Response: Elastomer Case

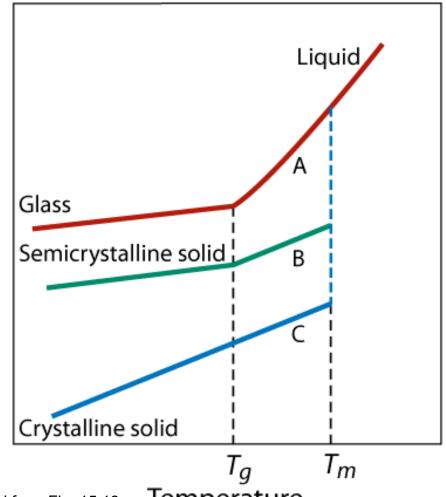


Stress-strain curves adapted from Fig. 15.1, Callister 7e. Inset figures along elastomer curve (green) adapted from Fig. 15.15, Callister 7e. (Fig. 15.15 is from Z.D. Jastrzebski, The Nature and Properties of Engineering Materials, 3rd ed., John Wiley and Sons, 1987.)

- Compare to responses of other polymers:
 - -- brittle response (aligned, crosslinked & networked polymer)
 - -- plastic response (semi-crystalline polymers)

T and Strain Rate: Thermoplastics

- Decreasing *T*...
 - -- increases *E*
 - -- increases *TS*
 - -- decreases %EL
- Increasing strain rate...
 - -- same effects as decreasing *T*.

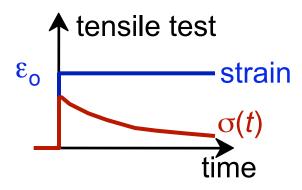

Adapted from Fig. 15.3, *Callister 7e.* (Fig. 15.3 is from T.S. Carswell and J.K. Nason, 'Effect of Environmental Conditions on the Mechanical Properties of Organic Plastics", *Symposium on Plastics*, American Society for Testing and Materials, Philadelphia, PA, 1944.)

Melting vs. Glass Transition Temp.

What factors affect T_m and T_a ?

- Both T_m and T_q increase with increasing chain stiffness
- Chain stiffness increased by
- Polar groups or sidegroups

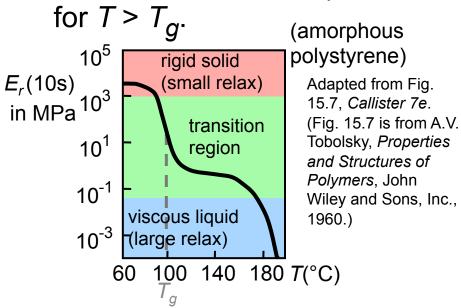
 Double bonds or arow
 hain group Double bonds or aromatic chain groups
- Regularity effects T_m only



Temperature Adapted from Fig. 15.18, Callister 7e.

Chapter 15 -

Time Dependent Deformation


- Stress relaxation test:
 - -- strain to ε_0 and hold.
 - -- observe decrease in stress with time.

Relaxation modulus:

$$E_r(t) = \frac{\sigma(t)}{\varepsilon_o}$$

Data: Large drop in E_r

• Sample $T_g(^{\circ}C)$ values:

Chapter 15 - 15

Summary

- General drawbacks to polymers:
 - -- E, σ_y , K_c , $T_{application}$ are generally small.
 - -- Deformation is often *T* and time dependent.
 - -- Result: polymers benefit from composite reinforcement.
- Thermoplastics (PE, PS, PP, PC):
 - -- Smaller E, σ_y , $T_{application}$
 - -- Larger K_c
 - -- Easier to form and recycle
- Elastomers (rubber):
 - -- Large reversible strains!
- Thermosets (epoxies, polyesters):
 - -- Larger E, σ_y , $T_{application}$
 - -- Smaller Kc

Table 15.3 Callister 7e:

Good overview of applications and trade names of polymers.

