Chapter 18: Electrical Properties

- Why study electrical properties?
- What are the physical phenomena that distinguish conductors, semiconductors, and insulators?
- For metals, how is conductivity affected by imperfections, *T*, and deformation?
- For semiconductors, how is conductivity affected by impurities (doping) and *T*?

View of an Integrated Circuit

• Scanning electron microscope images of an IC:

A dot map showing location of Si (a semiconductor):
 Si shows up as light regions.

- A dot map showing location of AI (a conductor):
 - -- Al shows up as light regions.

Fig. (d) from Fig. 18.27 (a), *Callister 7e*. (Fig. 18.27 is courtesy Nick Gonzales, National Semiconductor Corp., West Jordan, UT.)

Fig. (a), (b), (c) from Fig. 18.0, *Callister 7e*.

Definitions

Further definitions

 $J = \sigma \epsilon$ <= another way to state Ohm's law $J = \text{current density} = \frac{\text{current}}{\text{surface area}} = \frac{1}{A} \quad \text{like a flux}$ $\epsilon = \text{electric field potential} = V/\ell \quad \text{or} \quad (\Delta V/\Delta \ell)$ $\int J = \sigma (\Delta V/\Delta \ell)$ Electron flux conductivity voltage gradient

Current carriers

- electrons in most solids
- ions can also carry (particularly in liquid solutions)

Electrical Conduction

- Resistivity, ρ and Conductivity, σ:
 - -- geometry-independent forms of Ohm's Law
 - -- Resistivity is a material property & is independent of sample

Electrical Properties

• Which will conduct more electricity?

- Analogous to flow of water in a pipe
- So resistance depends on sample geometry, etc.

Conductivity: Comparison

• Room *T* values $(Ohm-m)^{-1} = (\Omega - m)^{-1}$ METALS conductors CERAMICS

semiconductors

Selected values from Tables 18.1, 18.3, and 18.4, Callister 7e.

METALSconductorsCERAMICSSilver 6.8×10^7 Soda-lime glass $10^{-10}-10^{-11}$ Copper 6.0×10^7 Concrete 10^{-9} Iron 1.0×10^7 Aluminum oxide $<10^{-13}$

SEMICONDUCTORSSilicon 4×10^{-4} Germanium 2×10^{0} GaAs 10^{-6}

POLYMERS Polystyrene Polyethylene

<10⁻¹⁴ 10⁻¹⁵-10⁻¹⁷

insulators

Chapter 18 - 6

Electronic Band Structures

Adapted from Fig. 18.2, Callister 7e.

Band Structure

- Valence band filled highest occupied energy levels
- Conduction band empty lowest unoccupied energy levels

Various possible electron band structures

Fermi energy E_f: the energy corresponding to the highest filled state at 0 K

Conduction & Electron Transport

- Metals (Conductors):
- -- Thermal energy puts many electrons into a higher energy state.
- Energy States:
- -- for metals nearby energy states are accessible by thermal fluctuations.

+

Metals: Resistivity vs T, Impurities

- Imperfections increase resistivity
 - -- grain boundaries
 - -- dislocations
 - -- impurity atoms
 - -- vacancies

Adapted from Fig. 18.8, *Callister 7e*. (Fig. 18.8 adapted from J.O. Linde, *Ann. Physik* **5**, p. 219 (1932); and C.A. Wert and R.M. Thomson, *Physics of Solids*, 2nd ed., McGraw-Hill Book Company, New York, 1970.)

- Resistivity increases with: -- temperature
 - -- wt% impurity

 $\rho = \rho_{\text{thermal}} + \rho_{\text{impurity}} + \rho_{\text{deformation}}$

Chapter 18 - 11

Energy States: Insulators & Semiconductors

• Insulators:

- Semiconductors:
- -- Higher energy states not -- Higher energy states separated accessible due to gap (> 2 eV). by smaller gap (< 2 eV).

Charge Carriers

Adapted from Fig. 18.6 (b), Callister 7e.

Higher temp. promotes more electrons into the conduction band

 $\therefore \sigma \uparrow as T \uparrow$

Electrons scattered by impurities, grain boundaries, etc.

Conduction in Terms of Electron and Hole Migration

Concept of electrons and holes: • valence electron • hole • electron hole Si atom electron pair creation pair migration applied applied no applied electric field electric field electric field Adapted from Fig. 18.11, • Electrical Conductivity given by: Callister 7e.

 $\sigma = n|e|\mu_e + p|e|\mu_h \qquad \text{hole mobility}$ $\# \text{ electrons/m}^3 \qquad \text{electron mobility}$

Pure Semiconductors: Conductivity vs T

75, p. 865, 1949.)

Intrinsic vs Extrinsic Conduction

• Intrinsic:

electrons = # holes (n = p)
--case for pure Si

- Extrinsic:
 - *--n ≠ p*
 - --occurs when impurities are added with a different # valence electrons than the host (e.g., Si atoms)
- *n*-type Extrinsic: (n >> p)
 p-type Extrinsic: (p >> n)

Summary

- Electrical conductivity and resistivity are:
 - -- material parameters.
 - -- geometry independent.
- Electrical resistance is:
 - -- a geometry and material dependent parameter.
- Conductors, semiconductors, and insulators...
 - -- differ in accessibility of energy states for conductance electrons.
- · For metals, conductivity is increased by
 - -- reducing deformation
 - -- reducing imperfections
 - -- decreasing temperature.

