Chapter 18: Electrical Properties

- What are the physical phenomena that distinguish conductors, semiconductors, and insulators?
- For metals, how is conductivity affected by imperfections, *T*, and deformation?
- For semiconductors, how is conductivity affected by impurities (doping) and *T*?

Electronic Band Structures

Adapted from Fig. 18.2, Callister 7e.

Band Structure

- Valence band filled highest occupied energy levels
- Conduction band empty lowest unoccupied energy levels

Conduction & Electron Transport

- Metals (Conductors):
- -- Thermal energy puts many electrons into a higher energy state.
- Energy States:
- -- for metals nearby energy states are accessible by thermal fluctuations.

+

Energy States: Insulators & Semiconductors

• Insulators:

- Semiconductors:
- -- Higher energy states not -- Higher energy states separated accessible due to gap (> 2 eV). by smaller gap (< 2 eV).

Charge Carriers

Adapted from Fig. 18.6 (b), Callister 7e.

Higher temp. promotes more electrons into the conduction band

 $\therefore \sigma \uparrow as T \uparrow$

Electrons scattered by impurities, grain boundaries, etc.

Pure Semiconductors: Conductivity vs T

75, p. 865, 1949.)

Conduction in Terms of Electron and Hole Migration

Concept of electrons and holes: • valence electron • hole • electron hole Si atom electron pair creation pair migration applied applied no applied electric field electric field electric field Adapted from Fig. 18.11, • Electrical Conductivity given by: Callister 7e. # holes/m³

electron mobility

 $\sigma = n |e|\mu_e + p |e|\mu_h$

electrons/m

hole mobility

Intrinsic vs Extrinsic Conduction

• Intrinsic:

electrons = # holes (n = p)
--case for pure Si

- Extrinsic:
 - *--n ≠ p*
 - --occurs when impurities are added with a different # valence electrons than the host (e.g., Si atoms)
- *n*-type Extrinsic: (n >> p)
 p-type Extrinsic: (p >> n)

Intrinsic Semiconductors

- Pure material semiconductors: e.g., silicon & germanium
 - Group IVA materials
- Compound semiconductors
 - III-V compounds
 - Ex: GaAs & InSb
 - II-VI compounds
 - Ex: CdS & ZnTe
 - The wider the electronegativity difference between the elements the wider the energy gap.

Doped Semiconductor: Conductivity vs. T

- Data for Doped Silicon:
 - -- $\boldsymbol{\sigma}$ increases doping
 - -- reason: imperfection sites lower the activation energy to produce mobile electrons.

Adapted from Fig. 19.15, *Callister 5e*. (Fig. 19.15 adapted from G.L. Pearson and J. Bardeen, *Phys. Rev.* **75**, p. 865, 1949.)

- Comparison: intrinsic vs extrinsic conduction...
 - extrinsic doping level: 10²¹/m³ of a *n*-type donor impurity (such as P).
 - -- for *T* < 100 K: "freeze-out", thermal energy insufficient to excite electrons.
 - -- for 150 K < *T* < 450 K: "extrinsic"
 - -- for T >> 450 K: "intrinsic"

Number of Charge Carriers

Intrinsic Conductivity

 $\sigma = n|e|\mu_e + p|e|\mu_e$

for intrinsic semiconductor n = p

$$\therefore \quad \sigma = n |e|(\mu_e + \mu_n)$$

• Ex: GaAs

$$n = \frac{\sigma}{\left|e\right|\left(\mu_e + \mu_n\right)} = \frac{10^{-6}(\Omega \cdot m)^{-1}}{(1.6x10^{-19}\text{C})(0.85 + 0.45 \text{ m}^2/\text{V} \cdot \text{s})}$$

For GaAs $n = 4.8 \times 10^{24} \text{ m}^{-3}$ For Si $n = 1.3 \times 10^{16} \text{ m}^{-3}$

p-n Rectifying Junction

- Allows flow of electrons in one direction only (e.g., useful to convert alternating current to direct current.
- Processing: diffuse P into one side of a B-doped crystal.
- Results:

- Adapted from Fig. 18.21, *Callister 7*e.
- --No applied potential: no net current flow.
- --Forward bias: carrier flow through *p*-type and *n*-type regions; holes and electrons recombine at *p*-*n* junction; current flows.
- --Reverse bias: carrier flow away from *p*-*n* junction; carrier conc. greatly reduced at junction; little current flow.

Fig. 18.22, Callister 7e.

Fig. 18.23, Callister 7e.

Chapter 18 - 14

Transistor MOSFET

MOSFET (metal oxide semiconductor field effect transistor)

Integrated Circuit Devices

- Integrated circuits state of the art ca. 50 nm line width
 - 1 Mbyte cache on board
 - > 100,000,000 components on chip
 - chip formed layer by layer
 - Al is the "wire"

Electrical Properties of Polymers

http://www-materials.eng.cam.ac.uk/mpsite/ interactive_charts/resistivity-cost/NS6Chart.html

Polymer Solar Cells

Nature Materials 5, 675 - 676 (2006)

ehf.uni-oldenburg.de

UNISOLAR® photovoltaic laminates

Photo courtesy of United Solar Ovonic, LLC

Summary

- Electrical conductivity and resistivity are:
 - -- material parameters.
 - -- geometry independent.
- Electrical resistance is:
 - -- a geometry and material dependent parameter.
- Conductors, semiconductors, and insulators...
 - -- differ in accessibility of energy states for conductance electrons.
- · For metals, conductivity is increased by
 - -- reducing deformation
 - -- reducing imperfections
 - -- decreasing temperature.
- For pure semiconductors, conductivity is increased by
 - -- increasing temperature
 - -- doping (e.g., adding B to Si (*p*-type) or P to Si (*n*-type).

