Chapter 3: The structure of crystalline solids

Outline

- Fundamental concepts
- Unit cells
- Metallic crystal structure
- Density
- Crystal systems

Fundamental concepts

 Crystalline materials: atoms are situated in a repeating or periodic array over large atomic distances-

Long Range Order

- Crystalline structure: how atoms, ions, or molecules are spatially arranged
- Lattice: a three-dimensional array of points coinciding with atom position

Crystal Systems

Unit cell: smallest repetitive volume which contains the complete lattice pattern of a crystal.

Fig 3.1 (a) a hard sphere unit cell (b) a reduced-sphere unit cell, (c) an aggregate of many atoms

Metallic crystal structures

- Features of metallic crystal structures
 - non-directional in nature
 - no restriction on the number and position of nearest-neighbor atoms
 - close-packed: low energy
 - common type:
 - face-centered cubic (FCC)
 - body-centered cubic (BCC)
 - hexagonal closed-packed (HCP)

Face Centered Cubic Structure (FCC)

- Atoms touch each other along face diagonals.
 - --Note: All atoms are identical; the face-centered atoms are shaded differently only for ease of viewing.

ex: Al, Cu, Au, Pb, Ni, Pt, Ag

• Coordination # = 12

Adapted from Fig. 3.1, Callister 7e.

The FCC crystal structure

- Total atoms per unit cell=
- The relation between cubic edge a and the radius R=

Atomic Packing Factor (APF)

APF = Volume of atoms in unit cell*

Volume of unit cell

*assume hard spheres

• APF for FCC=

Body Centered Cubic Structure (BCC)

- Atoms touch each other along cube diagonals.
 - --Note: All atoms are identical; the center atom is shaded differently only for ease of viewing.

ex: Cr, W, Fe (α), Tantalum, Molybdenum

Coordination # = 8

Adapted from Fig. 3.2, *Callister 7e.*

The BCC crystal structure

- Total atoms per unit cell:
- Coordination number:
- The relation between cubic edge a and the radius

$$a = \frac{4R}{\sqrt{3}}$$

Atomic packing factor (APF)=0.68

Hexagonal Close-Packed Structure (HCP)

- ABAB... Stacking Sequence
- 3D Projection

2D Projection

- Coordination # = 12
- APF = 0.74
- c/a = 1.633

6 atoms/unit cell

ex: Cd, Mg, Ti, Zn

Theoretical Density, p

Density =
$$\rho = \frac{\text{Mass of Atoms in Unit Cell}}{\text{Total Volume of Unit Cell}}$$

$$\rho = \frac{n A}{V_C N_A}$$

Where n = number of atoms/unit cell

A = atomic weight

 V_C = Volume of unit cell = a^3 for cubic

 N_A = Avogadro's number

 $= 6.023 \times 10^{23} \text{ atoms/mol}$

Crystal systems

Table 3.2 Lattice Parameter Relationships and Figures Showing Unit Cell Geometries for the Seven Crystal Systems

	Crystal System	Axial Relationships	Interaxial Angles	Unit Cell Geometry
	Cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$	a a a
	Hexagonal	$a = b \neq c$	$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	
	Tetragonal	$a = b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	

Crystal systems

Rhombohedral

$$a = b = c$$

$$a = b = c$$
 $\alpha = \beta = \gamma \neq 90^{\circ}$

Orthorhombic

$$a \neq b \neq c$$

$$a \neq b \neq c$$
 $\alpha = \beta = \gamma = 90^{\circ}$

Monoclinic

$$a \neq b \neq a$$

$$a \neq b \neq c$$
 $\alpha = \gamma = 90^{\circ} \neq \beta$

Triclinic

$$a \neq b \neq c$$

$$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$$

Crystal Systems

Cubic: Lead ore

Rhombic: Topaz

Monoclinic: Gypsum

Hexagonal: Emerald

Tetragonal: idocrase

Triclinic: Axinite

